mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
Pulse: move timeresidual matching to function
This commit is contained in:
parent
1f00a3fe76
commit
168b0a60bc
1 changed files with 227 additions and 211 deletions
|
@ -172,6 +172,227 @@ def create_template(dt=1, timelength=1, bp_freq=(0, np.inf), name=None, normalis
|
|||
|
||||
return template, _deltapeak
|
||||
|
||||
def get_time_residuals_for_template(
|
||||
N_residuals, template, interpolation_template=None,
|
||||
antenna_dt=1, antenna_timelength=100,
|
||||
snr_sigma_factor=10,bp_freq=(0,np.inf),
|
||||
normalise_noise=False, h5_cache_fname=None, read_cache=True, write_cache=None,
|
||||
rng=rng, tqdm=tqdm,
|
||||
):
|
||||
# Read in cached time residuals
|
||||
if read_cache:
|
||||
cached_time_residuals = read_time_residuals_cache(h5_cache_fname, template.dt, antenna_dt, snr_sigma_factor)
|
||||
|
||||
else:
|
||||
cached_time_residuals = np.array([])
|
||||
|
||||
#
|
||||
# Find difference between true and templated times
|
||||
#
|
||||
time_residuals = np.zeros(max(0, (N_residuals - len(cached_time_residuals))))
|
||||
for j in tqdm(range(len(time_residuals))):
|
||||
do_plots = j==0
|
||||
|
||||
# receive at antenna
|
||||
## place the deltapeak signal at a random location
|
||||
antenna = Waveform(None, dt=antenna_dt, name='Signal')
|
||||
if interpolation_template is None: # Create antenna trace without interpolation template
|
||||
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=[0.2, 0.8], rng=rng)
|
||||
|
||||
antenna.peak_sample = antenna_peak_sample
|
||||
antenna.peak_time = antenna.dt * antenna.peak_sample
|
||||
antenna.signal = antenna_bp(antenna.signal, *bp_freq, antenna.dt)
|
||||
print(f"Antenna Peak Time: {antenna.peak_time}")
|
||||
print(f"Antenna Peak Sample: {antenna.peak_sample}")
|
||||
|
||||
else: # Sample the interpolation template at some offset
|
||||
antenna.peak_time = antenna_timelength * ((0.8 - 0.2) *rng.random(1) + 0.2)
|
||||
sampling_offset = rng.random(1)*antenna.dt
|
||||
|
||||
antenna.t = util.sampled_time(1/antenna.dt, start=0, end=antenna_timelength)
|
||||
|
||||
# Sample the interpolation template
|
||||
antenna.signal = interpolation_template.interpolate(antenna.t - antenna.peak_time)
|
||||
|
||||
antenna.peak_sample = antenna.peak_time/antenna.dt
|
||||
antenna_true_signal = antenna.signal
|
||||
|
||||
true_time_offset = antenna.peak_time - template.peak_time
|
||||
|
||||
if False: # flip polarisation
|
||||
antenna.signal *= -1
|
||||
|
||||
## Add noise
|
||||
noise_amplitude = max(template.signal) * 1/snr_sigma_factor
|
||||
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal), normalise=normalise_noise)
|
||||
filtered_noise = antenna_bp(noise_realisation, *bp_freq, antenna.dt)
|
||||
|
||||
antenna.signal += filtered_noise
|
||||
|
||||
# Show signals
|
||||
if do_plots:
|
||||
fig, axs = plt.subplots(2, sharex=True)
|
||||
axs[0].set_title("Antenna Waveform")
|
||||
axs[-1].set_xlabel("Time [ns]")
|
||||
axs[0].set_ylabel("Amplitude")
|
||||
axs[0].plot(antenna.t, antenna.signal, label='bandpassed w/ noise', alpha=0.9)
|
||||
axs[0].plot(antenna.t, antenna.signal - filtered_noise, label='bandpassed w/o noise', alpha=0.9)
|
||||
axs[0].legend()
|
||||
|
||||
axs[1].set_title("Template")
|
||||
axs[1].set_ylabel("Amplitude")
|
||||
axs[1].plot(template.t, template.signal, label='orig')
|
||||
axs[1].plot(template.t + true_time_offset, template.signal, label='true moved orig')
|
||||
axs[1].legend()
|
||||
|
||||
axs[0].grid()
|
||||
axs[1].grid()
|
||||
|
||||
fig.savefig('figures/11_antenna_signals.pdf')
|
||||
|
||||
if True: # zoom
|
||||
wx = 100
|
||||
x0 = true_time_offset
|
||||
|
||||
old_xlims = axs[0].get_xlim()
|
||||
axs[0].set_xlim( x0-wx, x0+wx)
|
||||
fig.savefig('figures/11_antenna_signals_zoom.pdf')
|
||||
|
||||
# restore
|
||||
axs[0].set_xlim(*old_xlims)
|
||||
|
||||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
axs2 = None
|
||||
if True: # upsampled trace
|
||||
upsampled_trace, upsampled_t = trace_upsampler(antenna.signal, template.t, antenna.t)
|
||||
if do_plots: # Show upsampled traces
|
||||
fig2, axs2 = plt.subplots(1, sharex=True)
|
||||
if not hasattr(axs2, '__len__'):
|
||||
axs2 = [axs2]
|
||||
|
||||
axs2[-1].set_xlabel("Time [ns]")
|
||||
axs2[0].set_ylabel("Amplitude")
|
||||
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='orig')
|
||||
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
|
||||
axs2[0].legend(loc='upper right')
|
||||
|
||||
fig2.savefig('figures/11_upsampled.pdf')
|
||||
|
||||
wx = 1e2
|
||||
x0 = upsampled_t[0] + wx - 5
|
||||
axs2[0].set_xlim(x0-wx, x0+wx)
|
||||
fig2.savefig('figures/11_upsampled_zoom.pdf')
|
||||
|
||||
if True:
|
||||
plt.close(fig2)
|
||||
|
||||
# determine correlations with arguments
|
||||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
|
||||
|
||||
# Determine best correlation time
|
||||
idx = np.argmax(abs(corrs))
|
||||
best_sample_lag = lags[idx]
|
||||
best_time_lag = best_sample_lag * lag_dt
|
||||
|
||||
else: # downsampled template
|
||||
raise NotImplementedError
|
||||
|
||||
corrs, (_, _, lags) = my_downsampling_correlation(antenna.signal, antenna.t, template.signal, template.t)
|
||||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||
|
||||
# Calculate the time residual
|
||||
time_residuals[j] = best_time_lag - true_time_offset
|
||||
|
||||
if not do_plots:
|
||||
continue
|
||||
|
||||
if do_plots and axs2:
|
||||
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
|
||||
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
|
||||
|
||||
# Show the final signals correlated
|
||||
if do_plots:
|
||||
# amplitude scaling required for single axis plotting
|
||||
template_amp_scaler = max(abs(template.signal)) / max(abs(antenna.signal))
|
||||
|
||||
# start the figure
|
||||
fig, axs = plt.subplots(2, sharex=True)
|
||||
ylabel_kwargs = dict(
|
||||
#rotation=0,
|
||||
ha='right',
|
||||
va='center'
|
||||
)
|
||||
axs[-1].set_xlabel("Time [ns]")
|
||||
|
||||
offset_list = [
|
||||
[best_time_lag, dict(label=template.name, color='orange')],
|
||||
[true_time_offset, dict(label='True offset', color='green')],
|
||||
]
|
||||
|
||||
# Signal
|
||||
i=0
|
||||
axs[i].set_ylabel("Amplitude", **ylabel_kwargs)
|
||||
axs[i].plot(antenna.t, antenna.signal, label=antenna.name)
|
||||
|
||||
# Plot the template
|
||||
for offset_args in offset_list:
|
||||
this_kwargs = offset_args[1]
|
||||
offset = offset_args[0]
|
||||
|
||||
l = axs[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
|
||||
|
||||
axs[i].legend()
|
||||
|
||||
# Correlation
|
||||
i=1
|
||||
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
|
||||
axs[i].plot(lags * lag_dt, corrs)
|
||||
|
||||
# Lines across both axes
|
||||
for offset_args in offset_list:
|
||||
this_kwargs = offset_args[1]
|
||||
offset = offset_args[0]
|
||||
|
||||
for i in [0,1]:
|
||||
axs[i].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
|
||||
|
||||
axs[0].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
|
||||
|
||||
|
||||
if True: # zoom
|
||||
wx = len(template.signal) * (template.dt)/2
|
||||
t0 = best_time_lag
|
||||
|
||||
old_xlims = axs[0].get_xlim()
|
||||
axs[i].set_xlim( x0-wx, x0+3*wx)
|
||||
fig.savefig('figures/11_corrs_zoom.pdf')
|
||||
|
||||
# restore
|
||||
axs[i].set_xlim(*old_xlims)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig('figures/11_corrs.pdf')
|
||||
|
||||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
# Were new time residuals calculated?
|
||||
# Add them to the cache file
|
||||
if len(time_residuals) > 1:
|
||||
# merge cached and calculated time residuals
|
||||
time_residuals = np.concatenate((cached_time_residuals, time_residuals), axis=None)
|
||||
|
||||
if write_cache or read_cache and write_cache is None: # write the cache
|
||||
write_time_residuals_cache(h5_cache_fname, time_residuals, template_dt, antenna_dt, snr_sigma_factor)
|
||||
else:
|
||||
time_residuals = cached_time_residuals
|
||||
|
||||
# Only return N_residuals (even if more have been cached)
|
||||
return time_residuals[:N_residuals]
|
||||
|
||||
if __name__ == "__main__":
|
||||
import os
|
||||
import matplotlib
|
||||
|
@ -192,7 +413,7 @@ if __name__ == "__main__":
|
|||
[10, 20, 30, 50],
|
||||
[100, 200, 300, 500]
|
||||
),
|
||||
axis=None)
|
||||
axis=None, dtype=float)
|
||||
|
||||
antenna_dt = 2 # ns
|
||||
antenna_timelength = 1024 # ns
|
||||
|
@ -245,223 +466,18 @@ if __name__ == "__main__":
|
|||
time_accuracies = np.zeros(len(snr_factors))
|
||||
mask_counts = np.zeros(len(snr_factors))
|
||||
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
|
||||
# Read in cached time residuals
|
||||
if True:
|
||||
cached_time_residuals = read_time_residuals_cache(h5_cache_fname, template.dt, antenna_dt, snr_sigma_factor)
|
||||
else:
|
||||
cached_time_residuals = np.array([])
|
||||
|
||||
#
|
||||
# Find difference between true and templated times
|
||||
#
|
||||
time_residuals = np.zeros(max(0, (N_residuals - len(cached_time_residuals))))
|
||||
for j in tqdm(range(len(time_residuals))):
|
||||
do_plots = j==0
|
||||
|
||||
# receive at antenna
|
||||
## place the deltapeak signal at a random location
|
||||
antenna = Waveform(None, dt=antenna_dt, name='Signal')
|
||||
|
||||
if False: # Create antenna trace without interpolation template
|
||||
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=[0.2, 0.8], rng=rng)
|
||||
|
||||
antenna.peak_sample = antenna_peak_sample
|
||||
antenna.peak_time = antenna.dt * antenna.peak_sample
|
||||
antenna.signal = antenna_bp(antenna.signal, *bp_freq, antenna.dt)
|
||||
print(f"Antenna Peak Time: {antenna.peak_time}")
|
||||
print(f"Antenna Peak Sample: {antenna.peak_sample}")
|
||||
|
||||
else: # Sample the interpolation template at some offset
|
||||
antenna.peak_time = antenna_timelength * ((0.8 - 0.2) *rng.random(1) + 0.2)
|
||||
sampling_offset = rng.random(1)*antenna.dt
|
||||
|
||||
antenna.t = util.sampled_time(1/antenna.dt, start=0, end=antenna_timelength)
|
||||
|
||||
# Sample the interpolation template
|
||||
antenna.signal = interp_template.interpolate(antenna.t - antenna.peak_time)
|
||||
|
||||
antenna.peak_sample = antenna.peak_time/antenna.dt
|
||||
antenna_true_signal = antenna.signal
|
||||
|
||||
true_time_offset = antenna.peak_time - template.peak_time
|
||||
|
||||
if False: # flip polarisation
|
||||
antenna.signal *= -1
|
||||
|
||||
## Add noise
|
||||
noise_amplitude = max(template.signal) * 1/snr_sigma_factor
|
||||
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal), normalise=normalise_noise)
|
||||
filtered_noise = antenna_bp(noise_realisation, *bp_freq, antenna.dt)
|
||||
|
||||
antenna.signal += filtered_noise
|
||||
|
||||
if do_plots: # show signals
|
||||
fig, axs = plt.subplots(2, sharex=True)
|
||||
axs[0].set_title("Antenna Waveform")
|
||||
axs[-1].set_xlabel("Time [ns]")
|
||||
axs[0].set_ylabel("Amplitude")
|
||||
axs[0].plot(antenna.t, antenna.signal, label='bandpassed w/ noise', alpha=0.9)
|
||||
axs[0].plot(antenna.t, antenna.signal - filtered_noise, label='bandpassed w/o noise', alpha=0.9)
|
||||
axs[0].legend()
|
||||
|
||||
axs[1].set_title("Template")
|
||||
axs[1].set_ylabel("Amplitude")
|
||||
axs[1].plot(template.t, template.signal, label='orig')
|
||||
axs[1].plot(template.t + true_time_offset, template.signal, label='true moved orig')
|
||||
axs[1].legend()
|
||||
|
||||
axs[0].grid()
|
||||
axs[1].grid()
|
||||
|
||||
fig.savefig('figures/11_antenna_signals.pdf')
|
||||
|
||||
if True: # zoom
|
||||
wx = 100
|
||||
x0 = true_time_offset
|
||||
|
||||
old_xlims = axs[0].get_xlim()
|
||||
axs[0].set_xlim( x0-wx, x0+wx)
|
||||
fig.savefig('figures/11_antenna_signals_zoom.pdf')
|
||||
|
||||
# restore
|
||||
axs[0].set_xlim(*old_xlims)
|
||||
|
||||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
axs2 = None
|
||||
if True: # upsampled trace
|
||||
upsampled_trace, upsampled_t = trace_upsampler(antenna.signal, template.t, antenna.t)
|
||||
|
||||
if do_plots: # Show upsampled traces
|
||||
fig2, axs2 = plt.subplots(1, sharex=True)
|
||||
if not hasattr(axs2, '__len__'):
|
||||
axs2 = [axs2]
|
||||
|
||||
axs2[-1].set_xlabel("Time [ns]")
|
||||
axs2[0].set_ylabel("Amplitude")
|
||||
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='orig')
|
||||
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
|
||||
axs2[0].legend(loc='upper right')
|
||||
|
||||
fig2.savefig('figures/11_upsampled.pdf')
|
||||
|
||||
wx = 1e2
|
||||
x0 = upsampled_t[0] + wx - 5
|
||||
axs2[0].set_xlim(x0-wx, x0+wx)
|
||||
fig2.savefig('figures/11_upsampled_zoom.pdf')
|
||||
|
||||
if True:
|
||||
plt.close(fig2)
|
||||
|
||||
# determine correlations with arguments
|
||||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
|
||||
|
||||
# Determine best correlation time
|
||||
idx = np.argmax(abs(corrs))
|
||||
best_sample_lag = lags[idx]
|
||||
best_time_lag = best_sample_lag * lag_dt
|
||||
|
||||
else: # downsampled template
|
||||
raise NotImplementedError
|
||||
|
||||
corrs, (_, _, lags) = my_downsampling_correlation(antenna.signal, antenna.t, template.signal, template.t)
|
||||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||
|
||||
# Calculate the time residual
|
||||
time_residuals[j] = best_time_lag - true_time_offset
|
||||
|
||||
if not do_plots:
|
||||
continue
|
||||
|
||||
if do_plots and axs2:
|
||||
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
|
||||
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
|
||||
|
||||
# Show the final signals correlated
|
||||
if do_plots:
|
||||
# amplitude scaling required for single axis plotting
|
||||
template_amp_scaler = max(abs(template.signal)) / max(abs(antenna.signal))
|
||||
|
||||
# start the figure
|
||||
fig, axs = plt.subplots(2, sharex=True)
|
||||
ylabel_kwargs = dict(
|
||||
#rotation=0,
|
||||
ha='right',
|
||||
va='center'
|
||||
)
|
||||
axs[-1].set_xlabel("Time [ns]")
|
||||
|
||||
offset_list = [
|
||||
[best_time_lag, dict(label=template.name, color='orange')],
|
||||
[true_time_offset, dict(label='True offset', color='green')],
|
||||
]
|
||||
|
||||
# Signal
|
||||
i=0
|
||||
axs[i].set_ylabel("Amplitude", **ylabel_kwargs)
|
||||
axs[i].plot(antenna.t, antenna.signal, label=antenna.name)
|
||||
|
||||
# Plot the template
|
||||
for offset_args in offset_list:
|
||||
this_kwargs = offset_args[1]
|
||||
offset = offset_args[0]
|
||||
|
||||
l = axs[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
|
||||
|
||||
axs[i].legend()
|
||||
|
||||
# Correlation
|
||||
i=1
|
||||
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
|
||||
axs[i].plot(lags * lag_dt, corrs)
|
||||
|
||||
# Lines across both axes
|
||||
for offset_args in offset_list:
|
||||
this_kwargs = offset_args[1]
|
||||
offset = offset_args[0]
|
||||
|
||||
for i in [0,1]:
|
||||
axs[i].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
|
||||
|
||||
axs[0].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
|
||||
|
||||
|
||||
if True: # zoom
|
||||
wx = len(template.signal) * (template.dt)/2
|
||||
t0 = best_time_lag
|
||||
|
||||
old_xlims = axs[0].get_xlim()
|
||||
axs[i].set_xlim( x0-wx, x0+3*wx)
|
||||
fig.savefig('figures/11_corrs_zoom.pdf')
|
||||
|
||||
# restore
|
||||
axs[i].set_xlim(*old_xlims)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig('figures/11_corrs.pdf')
|
||||
|
||||
if True:
|
||||
plt.close(fig)
|
||||
time_residuals = get_time_residuals_for_template(
|
||||
N_residuals, template, interpolation_template=interp_template,
|
||||
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
|
||||
snr_sigma_factor=snr_sigma_factor, bp_freq=bp_freq, normalise_noise=normalise_noise,
|
||||
h5_cache_fname=h5_cache_fname, rng=rng, tqdm=tqdm)
|
||||
|
||||
print()# separating tqdm
|
||||
print()# separating tqdm
|
||||
# Were new time residuals calculated?
|
||||
# Add them to the cache file
|
||||
if len(time_residuals) > 1:
|
||||
# merge cached and calculated time residuals
|
||||
time_residuals = np.concatenate((cached_time_residuals, time_residuals), axis=None)
|
||||
|
||||
if True: # write the cache
|
||||
write_time_residuals_cache(h5_cache_fname, time_residuals, template_dt, antenna_dt, snr_sigma_factor)
|
||||
else:
|
||||
time_residuals = cached_time_residuals
|
||||
|
||||
# Make a plot of the time residuals
|
||||
if N_residuals > 1:
|
||||
time_residuals = time_residuals[:N_residuals]
|
||||
|
||||
for i in range(1 + cut_wrong_peak_matches):
|
||||
mask_count = 0
|
||||
|
||||
|
|
Loading…
Reference in a new issue