mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
Fourier SNR: change markers with sampling frequency
This commit is contained in:
parent
fe05908bbb
commit
1968814e06
1 changed files with 38 additions and 5 deletions
|
@ -217,18 +217,35 @@ if __name__ == "__main__":
|
|||
# plot the snrs
|
||||
fig, axs2 = plt.subplots()
|
||||
fig.basefname="signal_to_noise_vs_N"
|
||||
axs2.set_title("A: {:.2e}, $\\sigma$: {:.2e}".format(sine_amp, noise_sigma))
|
||||
axs2.set_xlabel("$N = T*f_s$")
|
||||
axs2.set_ylabel("SNR")
|
||||
|
||||
mycolors = {}
|
||||
myshapes = { 250: '^', 500: 'v' }
|
||||
for i, (f_sample, f_sine, t_lengths) in enumerate(fs_iter):
|
||||
|
||||
if f_sine in mycolors.keys():
|
||||
color = mycolors[f_sine]
|
||||
else:
|
||||
color = None
|
||||
|
||||
if f_sample in myshapes.keys():
|
||||
marker = myshapes[f_sample]
|
||||
else:
|
||||
marker = 'x'
|
||||
|
||||
# plot the means
|
||||
l = axs2.plot(t_lengths*f_sample, np.mean(my_snrs[i], axis=-1), marker='*', ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black')
|
||||
l = axs2.plot(t_lengths*f_sample, np.mean(my_snrs[i], axis=-1), color=color, marker=marker, ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black', mew=0.1)
|
||||
|
||||
color = l[0].get_color()
|
||||
mycolors[f_sine] = color
|
||||
myshapes[f_sample] = l[0].get_marker()
|
||||
|
||||
for k, t_length in enumerate(t_lengths):
|
||||
t_length = np.repeat(t_length * f_sample, my_snrs.shape[-1])
|
||||
axs2.plot(t_length, my_snrs[i,k], ls='none', color=color, marker='o', alpha=max(0.01, 1/my_snrs.shape[-1]))
|
||||
if True:
|
||||
for k, t_length in enumerate(t_lengths):
|
||||
t_length = np.repeat(t_length * f_sample, my_snrs.shape[-1])
|
||||
axs2.plot(t_length, my_snrs[i,k], ls='none', color=color, marker='o', alpha=max(0.01, 1/my_snrs.shape[-1]))
|
||||
|
||||
|
||||
axs2.legend()
|
||||
|
@ -236,14 +253,30 @@ if __name__ == "__main__":
|
|||
# plot snrs vs T
|
||||
fig, axs3 = plt.subplots()
|
||||
fig.basefname="signal_to_noise_vs_T"
|
||||
axs3.set_title("A: {:.2e}, $\\sigma$: {:.2e}".format(sine_amp, noise_sigma))
|
||||
axs3.set_xlabel("time [us]")
|
||||
axs3.set_ylabel("SNR")
|
||||
|
||||
#mycolors = {}
|
||||
#myshapes = { 250: '^', 500: 'v' }
|
||||
for i, (f_sample, f_sine, t_lengths) in enumerate(fs_iter):
|
||||
|
||||
if f_sine in mycolors.keys():
|
||||
color = mycolors[f_sine]
|
||||
else:
|
||||
color = None
|
||||
|
||||
if f_sample in myshapes.keys():
|
||||
marker = myshapes[f_sample]
|
||||
else:
|
||||
marker = 'x'
|
||||
|
||||
# plot the means
|
||||
l = axs3.plot(t_lengths, np.mean(my_snrs[i], axis=-1), marker='o', ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black', markeredgewidth=1)
|
||||
l = axs3.plot(t_lengths, np.mean(my_snrs[i], axis=-1), color=color, marker=marker, ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black', mew=1)
|
||||
|
||||
color = l[0].get_color()
|
||||
mycolors[f_sine] = color
|
||||
myshapes[f_sample] = l[0].get_marker()
|
||||
|
||||
for k, t_length in enumerate(t_lengths):
|
||||
t_length = np.repeat(t_length , my_snrs.shape[-1])
|
||||
|
|
Loading…
Reference in a new issue