ZH: testable script to show phases at antennas

This commit is contained in:
Eric Teunis de Boone 2022-11-18 16:19:44 +01:00
parent cf8818efe3
commit 2240d67c1c
3 changed files with 73 additions and 15 deletions

View file

@ -167,8 +167,9 @@ if __name__ == "__main__":
# make beacon per antenna
for i, antenna in enumerate(ev.antennas):
beacon = lib.beacon_from(tx, antenna, f_beacon, antenna.t, radiate_rsq=beacon_radiate_rsq)
t0 = lib.distance(tx, antenna)/3e8 * 1e9 # ns
beacon = lib.beacon_from(tx, antenna, f_beacon, antenna.t, t0=t0, c_light=np.inf, radiate_rsq=beacon_radiate_rsq)
E = np.array([antenna.Ex, antenna.Ey, antenna.Ez, beacon])
append_antenna_hdf5( antennas_fname, antenna, E, name='orig_traces', prepend_time=True)
@ -177,6 +178,6 @@ if __name__ == "__main__":
for j, _ in enumerate(beacon_amplitudes):
E[j] += beacon_amplitudes[j]*beacon
append_antenna_hdf5( antennas_fname, antenna, E, name='traces', prepend_time=True)
append_antenna_hdf5( antennas_fname, antenna, E, name='traces', prepend_time=True, attrs_dict=dict(t0=t0))
print("Antenna HDF5 file written as " + str(antennas_fname))

View file

@ -36,3 +36,29 @@ def beacon_from(tx, rx, f, t=0, t0=0, c_light=3e8, radiate_rsq=True, amplitude=1
amplitude *= 1/(dist**2)
return sine_beacon(f, t, t0=t0, amplitude=amplitude,**kwargs)
def phase_field_from_tx(x, y, tx, f_beacon, c_light=3e8, t0=0, wrap_phase=True, return_meshgrid=True):
xs, ys = np.meshgrid(x, y, sparse=True)
x_distances = (tx.x - xs)**2
y_distances = (tx.y - ys)**2
dist = np.sqrt( x_distances + y_distances )
phase = (dist/c_light + t0) * f_beacon*2*np.pi
if wrap_phase:
phase = phase_mod(phase)
if return_meshgrid:
return phase, (xs, ys)
else:
return phase, (np.repeat(xs, len(ys), axis=0), np.repeat(ys, len(xs[0]), axis=1))
def phase_mod(phase, low=np.pi):
"""
Modulo phase such that it falls within the
interval $[-low, 2\pi - low)$.
"""
return (phase + low) % (2*np.pi) - low

View file

@ -24,9 +24,16 @@ if __name__ == "__main__":
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
beacon_frequencies = np.array([ant.attrs['beacon_freq'] for ant in antennas])
beacon_amplitudes = np.array([ant.attrs['beacon_amplitude'] for ant in antennas])
beacon_phases = np.array([ant.attrs['beacon_phase'] for ant in antennas])
subtitle = ""
if True:
beacon_frequencies = np.array([ant.attrs['beacon_freq'] for ant in antennas])
beacon_amplitudes = np.array([ant.attrs['beacon_amplitude'] for ant in antennas])
beacon_phases = np.array([lib.phase_mod(ant.attrs['beacon_phase']) for ant in antennas])
else:
subtitle = " Phases from t0"
beacon_frequencies = np.array([ f_beacon for ant in antennas ])
beacon_amplitudes = np.array([ 1 for ant in antennas ])
beacon_phases = np.array([ lib.phase_mod(ant.attrs['t0']*beacon_frequencies[i]*2*np.pi) for i, ant in enumerate(antennas)])
#####
sizes = 64
@ -40,26 +47,50 @@ if __name__ == "__main__":
x = [ a.x for a in antennas ]
y = [ a.y for a in antennas ]
#####
fig, axs = plt.subplots()
axs.set_title("Amplitude at beacon frequency at each antenna")
axs.set_title(f"Amplitude at beacon frequency at each antenna\nf at A0: {beacon_frequencies[0]}GHz" + subtitle)
axs.set_aspect('equal', 'datalim')
axs.set_xlabel('[m]')
axs.set_ylabel('[m]')
if True:
# underlie a calculate phase field
xs = np.linspace( np.min(x), np.max(x), 50)
ys = np.linspace( np.min(y), np.max(y), 50)
phases, (xs, ys) = lib.phase_field_from_tx(xs, ys, tx, f_beacon, return_meshgrid=False)
sc2 = axs.scatter(xs, ys, c=phases, alpha=0.5, zorder=-5)
fig.colorbar(sc2, ax=axs)
if True:
# underlie a calculate phase field
if True: # only fill for antennas
xs = np.linspace( np.min(x), np.max(x), 4*np.ceil(len(antennas)**0.5) -1 )
ys = np.linspace( np.min(y), np.max(y), 4*np.ceil(len(antennas)**0.5) -1)
else: # make field from halfway the transmitter
xs = np.linspace( (tx.x - np.min(x))/2, np.max(x), 500)
ys = np.linspace( (tx.y - np.min(y))/2, np.max(y), 500)
sc = axs.scatter(x, y, c=vals, s=sizes)
phases, (xs, ys) = lib.phase_field_from_tx(xs, ys, tx, f_beacon*1e9,return_meshgrid=False)
sc2 = axs.scatter(xs, ys, c=phases, alpha=0.5, zorder=-5, cmap='Spectral_r')
fig.colorbar(sc2, ax=axs)
axs.plot(tx.x, tx.y, marker='X', color='k')
sc = axs.scatter(x, y, c=vals, s=sizes, cmap='Spectral_r', edgecolors='k', marker='X')
fig.colorbar(sc, ax=axs, label=colorlabel)
axs.plot(tx.x, tx.y, marker='X', color='k')
#for i, freq in enumerate(beacon_frequencies):
# axs.text(f"{freq:.2e}", (x[i], y[i]))
fig.colorbar(sc, ax=axs, label=colorlabel)
else:
phases, (xs, ys) = lib.phase_field_from_tx(x, y, tx, f_beacon*1e9, return_meshgrid=False)
phase_diffs = vals - lib.phase_mod(phases)
phase_diffs = lib.phase_mod(phase_diffs)
print(phases)
sc = axs.scatter(xs, ys, c=phase_diffs, s=sizes, cmap="Spectral_r")
axs.plot(tx.x, tx.y, marker='X', color='k')
fig.colorbar(sc, ax=axs, label=colorlabel)
fig.savefig(__file__ + ".pdf")
plt.show()