mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
Pulse: as generating Thesis plots
This commit is contained in:
parent
b9314a2800
commit
2281019853
1 changed files with 289 additions and 58 deletions
|
@ -1,4 +1,10 @@
|
|||
#!/usr/bin/env python3
|
||||
# vim: fdm=marker fmr=<<<,>>>
|
||||
|
||||
# TODO: compare with Peak Hilbert Envelope Timing
|
||||
|
||||
# Remove non-cross Points in SNR plot
|
||||
# extrapolate exponential to lower snr values
|
||||
|
||||
|
||||
from lib import util
|
||||
|
@ -79,7 +85,7 @@ def antenna_bp(trace, low_bp, high_bp, dt, order=3):
|
|||
|
||||
return bandpassed
|
||||
|
||||
def my_correlation(in1, template, lags=None):
|
||||
def my_correlation(in1, template, lags=None, normalise=True):
|
||||
template_length = len(template)
|
||||
in1_length = len(in1)
|
||||
|
||||
|
@ -118,6 +124,9 @@ def my_correlation(in1, template, lags=None):
|
|||
|
||||
corrs[i] = np.dot(in1_slice, template_slice)
|
||||
|
||||
if normalise:
|
||||
corrs /= np.amax(corrs)
|
||||
|
||||
return corrs, (in1, template, lags)
|
||||
|
||||
def trace_upsampler(trace, template_t, trace_t):
|
||||
|
@ -149,7 +158,7 @@ def trace_downsampler(trace, template_t, trace_t, offset):
|
|||
pass
|
||||
|
||||
|
||||
def hilbert_envelope_max_amplitude_time(trace, trace_t, do_plot=False, fname_distinguish=None):
|
||||
def hilbert_envelope_max_amplitude_time(trace, trace_t, do_plot=False, fname_distinguish='', zoom_wx=50, inset_zoom_extent=(0.03, 0.4, 0.53, 0.57)):
|
||||
analytic_signal = signal.hilbert(trace)
|
||||
envelope = abs(analytic_signal)
|
||||
|
||||
|
@ -173,9 +182,43 @@ def hilbert_envelope_max_amplitude_time(trace, trace_t, do_plot=False, fname_dis
|
|||
|
||||
if True:
|
||||
ax.legend()
|
||||
ax.grid()
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_hilbert_timing{fname_distinguish}.pdf')
|
||||
if zoom_wx:
|
||||
xlims = ax.get_xlim()
|
||||
|
||||
if not hasattr(zoom_wx, '__len__'):
|
||||
zoom_wx = (zoom_wx, zoom_wx)
|
||||
|
||||
if inset_zoom_extent: # do inset axes
|
||||
orig_ax = ax
|
||||
|
||||
axins = orig_ax.inset_axes(inset_zoom_extent)
|
||||
axins.patch.set_alpha(0.9)
|
||||
axins.set_yticklabels([])
|
||||
axins.set_xlim(t_max - zoom_wx[0], t_max + zoom_wx[-1])
|
||||
axins.grid()
|
||||
|
||||
# replot data
|
||||
axins.plot(trace_t, trace, label='Waveform')
|
||||
axins.plot(trace_t, envelope, ls='dashed', label='Envelope')
|
||||
|
||||
# indicate maximum and t_max
|
||||
axins.axhline(envelope[max_idx], ls='dotted', color='g')
|
||||
axins.axvline(t_max, ls='dotted', color='g')
|
||||
|
||||
# increase margins and indicate inset zoom
|
||||
orig_ax.margins(y=0.09)
|
||||
orig_ax.indicate_inset_zoom(axins)
|
||||
else:
|
||||
ax.set_xlim(t_max - zoom_wx[0], t_max + zoom_wx[-1])
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_hilbert_timing{fname_distinguish}_zoom.pdf')
|
||||
|
||||
ax.set_xlim(*xlims)
|
||||
|
||||
plt.close(fig)
|
||||
|
||||
|
@ -239,7 +282,7 @@ def get_time_residuals_for_template(
|
|||
snr_sigma_factor=10,bp_freq=(0,np.inf),
|
||||
normalise_noise=False, h5_cache_fname=None, read_cache=True, write_cache=None,
|
||||
rng=rng, tqdm=tqdm,
|
||||
peak_window=[0.2, 0.8],
|
||||
peak_window=[0.6, 0.65],
|
||||
):
|
||||
# Read in cached time residuals
|
||||
if read_cache:
|
||||
|
@ -248,11 +291,14 @@ def get_time_residuals_for_template(
|
|||
else:
|
||||
cached_time_residuals, cached_snrs, cached_hilbert_time_residuals = np.array([]), np.array([]), np.array([])
|
||||
|
||||
print(cached_hilbert_time_residuals.shape)
|
||||
print(cached_time_residuals.shape)
|
||||
|
||||
#
|
||||
# Find difference between true and templated times
|
||||
#
|
||||
|
||||
hilbert_interp_t_max, _ = hilbert_envelope_max_amplitude_time(interp_template.signal, interp_template.t)
|
||||
hilbert_interp_t_max, _ = hilbert_envelope_max_amplitude_time(interp_template.signal, interp_template.t, zoom_wx=None)
|
||||
|
||||
time_residuals = np.zeros(max(0, (N_residuals - len(cached_time_residuals))))
|
||||
snrs = np.zeros_like(time_residuals)
|
||||
|
@ -305,7 +351,7 @@ def get_time_residuals_for_template(
|
|||
|
||||
# Show signals
|
||||
if do_plots:
|
||||
fig, axs = plt.subplots(2, sharex=True)
|
||||
fig, axs = plt.subplots(1, sharex=True)
|
||||
if not hasattr(axs, '__len__'):
|
||||
axs = [axs]
|
||||
|
||||
|
@ -319,18 +365,16 @@ def get_time_residuals_for_template(
|
|||
if True: # indicate signal and noise levels
|
||||
level_kwargs = dict(ls='dashed', alpha=0.4)
|
||||
|
||||
axs[0].axhline(antenna.signal_level, color=l2[0].get_color(), **level_kwargs, label='Signal Level')
|
||||
axs[0].axhline(antenna.noise_level, color=l3[0].get_color(), **level_kwargs, label='Noise Level')
|
||||
axs[0].axhline(antenna.signal_level, color=l2[0].get_color(), **level_kwargs)#, label='Signal Level')
|
||||
axs[0].axhline(antenna.noise_level, color=l3[0].get_color(), **level_kwargs)#, label='Noise Level')
|
||||
|
||||
|
||||
axs[0].legend(title=f'SNR = {antenna.signal_to_noise:.1g}')
|
||||
axs[0].legend(title=f'SNR = {antenna.signal_to_noise:.2g}', loc='lower right')
|
||||
axs[0].grid()
|
||||
|
||||
if len(axs) > 1:
|
||||
axs[1].set_title("Template")
|
||||
axs[1].set_ylabel("Amplitude")
|
||||
axs[1].plot(template.t, template.signal, label='orig')
|
||||
axs[1].plot(template.t + true_time_offset, template.signal, label='true moved orig')
|
||||
axs[1].plot(template.t + true_time_offset, template.signal, label='Template')
|
||||
axs[1].legend()
|
||||
axs[1].grid()
|
||||
|
||||
|
@ -338,11 +382,53 @@ def get_time_residuals_for_template(
|
|||
fig.savefig(f'figures/11_antenna_signals_tdt{template.dt:.1g}.pdf')
|
||||
|
||||
if True: # zoom
|
||||
wx = 100
|
||||
x0 = true_time_offset
|
||||
wx = 50
|
||||
x0 = true_time_offset + wx/2
|
||||
|
||||
old_xlims = axs[0].get_xlim()
|
||||
axs[0].set_xlim( x0-wx, x0+wx)
|
||||
if True: # do inset axes
|
||||
extent = [0.03, 0.4, 0.53, 0.57]
|
||||
orig_ax = axs[0]
|
||||
|
||||
axins = orig_ax.inset_axes(extent)
|
||||
axins.patch.set_alpha(0.9)
|
||||
axins.set_yticklabels([])
|
||||
axins.set_xlim(x0-wx, x0+wx)
|
||||
axins.grid()
|
||||
|
||||
# replot data
|
||||
l1 = axins.plot(antenna.t, antenna.signal, label='Filtered w/ noise', alpha=0.7)
|
||||
l2 = axins.plot(antenna.t, antenna.signal - filtered_noise, label='Filtered w/o noise', alpha=0.7)
|
||||
l3 = axins.plot(antenna.t, filtered_noise, label='Noise', alpha=0.7)
|
||||
|
||||
if True: # indicate signal and noise levels
|
||||
level_kwargs = dict(ls='dashed', alpha=0.4)
|
||||
|
||||
axins.axhline(antenna.signal_level, color=l2[0].get_color(), **level_kwargs)#, label='Signal Level')
|
||||
axins.axhline(antenna.noise_level, color=l3[0].get_color(), **level_kwargs)#, label='Noise Level')
|
||||
|
||||
# increase margins and indicate inset zoom
|
||||
orig_ax.margins(y=0.09)
|
||||
orig_ax.indicate_inset_zoom(axins)
|
||||
|
||||
if len(axs) > 1:
|
||||
orig_ax = axs[1]
|
||||
axins2 = orig_ax.inset_axes(extent)
|
||||
axins2.patch.set_alpha(axins.patch.get_alpha())
|
||||
axins2.set_yticklabels([])
|
||||
axins2.set_xlim(x0-wx, x0+wx)
|
||||
axins2.grid()
|
||||
|
||||
# replot data
|
||||
axins2.plot(template.t + true_time_offset, template.signal)
|
||||
|
||||
# increase margins and indicate inset zoom
|
||||
orig_ax.margins(y=0.1)
|
||||
orig_ax.indicate_inset_zoom(axins2)
|
||||
else:
|
||||
axs[0].set_xlim( x0-wx, x0+wx)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_antenna_signals_tdt{template.dt:.1g}_zoom.pdf')
|
||||
|
||||
# restore
|
||||
|
@ -361,15 +447,39 @@ def get_time_residuals_for_template(
|
|||
|
||||
axs2[-1].set_xlabel("Time [ns]")
|
||||
axs2[0].set_ylabel("Amplitude")
|
||||
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='orig')
|
||||
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='waveform')
|
||||
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
|
||||
axs2[0].legend(loc='upper right')
|
||||
|
||||
axs2[0].grid()
|
||||
|
||||
fig2.tight_layout()
|
||||
fig2.savefig(f'figures/11_upsampled_tdt{template.dt:.1g}.pdf')
|
||||
|
||||
wx = 1e2
|
||||
x0 = upsampled_t[0] + wx - 5
|
||||
axs2[0].set_xlim(x0-wx, x0+wx)
|
||||
wx = 0.25e2
|
||||
x0 = upsampled_t[np.argmax(upsampled_trace)] - 5
|
||||
|
||||
if True: # do inset axes
|
||||
extent = [0.03, 0.4, 0.47, 0.57]
|
||||
orig_ax = axs2[0]
|
||||
|
||||
axins = orig_ax.inset_axes(extent)
|
||||
axins.patch.set_alpha(0.9)
|
||||
axins.set_yticklabels([])
|
||||
axins.set_xlim(x0-wx, x0+wx)
|
||||
axins.grid()
|
||||
|
||||
# replot data
|
||||
axins.plot(antenna.t, antenna.signal, marker='o')
|
||||
axins.plot(upsampled_t, upsampled_trace)
|
||||
|
||||
# increase margins and indicate inset zoom
|
||||
orig_ax.margins(y=0.1)
|
||||
orig_ax.indicate_inset_zoom(axins)
|
||||
else:
|
||||
axs2[0].set_xlim(x0-wx, x0+wx)
|
||||
|
||||
fig2.tight_layout()
|
||||
fig2.savefig(f'figures/11_upsampled_tdt{template.dt:.1g}_zoom.pdf')
|
||||
|
||||
if True:
|
||||
|
@ -385,7 +495,7 @@ def get_time_residuals_for_template(
|
|||
best_time_lag = best_sample_lag * lag_dt
|
||||
|
||||
# Find Hilbert Envelope t0
|
||||
hilbert_best_time_lag, _ = hilbert_envelope_max_amplitude_time(upsampled_trace, upsampled_t, do_plot=do_plots)
|
||||
hilbert_best_time_lag, _ = hilbert_envelope_max_amplitude_time(upsampled_trace, upsampled_t, do_plot=do_plots, zoom_wx=(6,12))
|
||||
|
||||
else: # downsampled template
|
||||
raise NotImplementedError
|
||||
|
@ -411,13 +521,14 @@ def get_time_residuals_for_template(
|
|||
template_amp_scaler = max(abs(template.signal)) / max(abs(antenna.signal))
|
||||
|
||||
# start the figure
|
||||
fig, axs = plt.subplots(2, sharex=True)
|
||||
fig, axs = plt.subplots(2, sharex=True, figsize=(9,6))
|
||||
ylabel_kwargs = dict(
|
||||
#rotation=0,
|
||||
ha='right',
|
||||
#ha='right',
|
||||
va='center'
|
||||
)
|
||||
axs[-1].set_xlabel("Time [ns]")
|
||||
axs[-1].set_xlabel("Time [ns]")
|
||||
|
||||
offset_list = [
|
||||
[best_time_lag, dict(label=template.name, color='orange')],
|
||||
|
@ -437,10 +548,12 @@ def get_time_residuals_for_template(
|
|||
l = axs[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
|
||||
|
||||
axs[i].legend()
|
||||
axs[i].grid()
|
||||
|
||||
# Correlation
|
||||
i=1
|
||||
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
|
||||
axs[i].grid()
|
||||
axs[i].plot(lags * lag_dt, corrs)
|
||||
|
||||
# Lines across both axes
|
||||
|
@ -454,20 +567,83 @@ def get_time_residuals_for_template(
|
|||
axs[0].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
|
||||
|
||||
|
||||
# separated axes
|
||||
for i, myax in enumerate(axs):
|
||||
[ axes.set_visible(False) for axes in axs]
|
||||
myax.set_visible(True)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}_axes{i}.pdf')
|
||||
|
||||
# re enable all axes
|
||||
[ axes.set_visible(True) for axes in axs]
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}.pdf')
|
||||
|
||||
if True: # zoom
|
||||
wx = len(template.signal) * (min(1,template.dt))/4
|
||||
t0 = true_time_offset
|
||||
|
||||
old_xlims = axs[0].get_xlim()
|
||||
axs[i].set_xlim( x0-wx, x0+3*wx)
|
||||
if True: # do inset axes
|
||||
extent = [0.03, 0.4, 0.47, 0.57]
|
||||
|
||||
axins = []
|
||||
for i in [0,1]:
|
||||
orig_ax = axs[i]
|
||||
axins.append(orig_ax.inset_axes(extent))
|
||||
axins[i].patch.set_alpha(0.9)
|
||||
axins[i].set_yticklabels([])
|
||||
axins[i].set_xlim(x0-wx, x0+wx)
|
||||
axins[i].grid()
|
||||
|
||||
# replot data
|
||||
if i == 0:
|
||||
axins[i].plot(antenna.t, antenna.signal, label=antenna.name)
|
||||
|
||||
# Plot the template
|
||||
for offset_args in offset_list:
|
||||
this_kwargs = offset_args[1]
|
||||
offset = offset_args[0]
|
||||
|
||||
l = axins[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
|
||||
|
||||
elif i == 1: # correlation
|
||||
axins[i].plot(lags*lag_dt, corrs)
|
||||
|
||||
# Lines across both axes
|
||||
for offset_args in offset_list:
|
||||
this_kwargs = offset_args[1]
|
||||
offset = offset_args[0]
|
||||
|
||||
for j in [0,1]:
|
||||
axins[j].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
|
||||
|
||||
axins[i].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
|
||||
|
||||
# increase margins and indicate inset zoom
|
||||
orig_ax.margins(y=0.1)
|
||||
orig_ax.indicate_inset_zoom(axins[i])
|
||||
|
||||
else:
|
||||
axs[i].set_xlim( t0-wx, t0+2*wx)
|
||||
|
||||
# separated axes
|
||||
for i, myax in enumerate(axs):
|
||||
[ axes.set_visible(False) for axes in axs]
|
||||
myax.set_visible(True)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}_axes{i}_zoom.pdf')
|
||||
|
||||
# re enable all axes
|
||||
[ axes.set_visible(True) for axes in axs]
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}_zoom.pdf')
|
||||
|
||||
# restore
|
||||
axs[i].set_xlim(*old_xlims)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}.pdf')
|
||||
|
||||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
|
@ -496,27 +672,45 @@ if __name__ == "__main__":
|
|||
if os.name == 'posix' and "DISPLAY" not in os.environ:
|
||||
matplotlib.use('Agg')
|
||||
|
||||
figsize = (8,6)
|
||||
fontsize = 12
|
||||
if True:
|
||||
from matplotlib import rcParams
|
||||
#rcParams["text.usetex"] = True
|
||||
rcParams["font.family"] = "serif"
|
||||
rcParams["font.size"] = fontsize
|
||||
if not True:# small
|
||||
figsize = (6, 4)
|
||||
rcParams["font.size"] = "15" # 15 at 6,4 looks fine
|
||||
elif True: # large
|
||||
figsize = (9, 6)
|
||||
rcParams["font.size"] = "16" # 15 at 9,6 looks fine
|
||||
rcParams["grid.linestyle"] = 'dotted'
|
||||
rcParams["figure.figsize"] = figsize
|
||||
fontsize = rcParams['font.size']
|
||||
|
||||
if False:
|
||||
plt.rc('font', size=25)
|
||||
|
||||
figsize = (12,12)
|
||||
|
||||
bp_freq = (30e-3, 80e-3) # GHz
|
||||
interp_template_dt = 5e-5 # ns
|
||||
template_length = 200 # ns
|
||||
|
||||
antenna_dt = 2 # ns
|
||||
antenna_timelength = 1024 # ns
|
||||
antenna_timelength = 2048 # ns
|
||||
|
||||
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
|
||||
template_dts = np.array([antenna_dt, 5e-1, 5e-2]) # ns
|
||||
if True:
|
||||
template_dts = np.array([ 5e-1, 1e-1, 1e-2]) # ns
|
||||
elif True:
|
||||
template_dts = np.array([1e-2]) # ns
|
||||
else:
|
||||
template_dts = np.array([antenna_dt, 5e-1]) # ns
|
||||
snr_factors = np.concatenate( # 1/noise_amplitude factor
|
||||
(
|
||||
#[0.25, 0.5, 0.75],
|
||||
[1, 1.5, 2, 2.5, 3, 4, 5, 7],
|
||||
[10, 20, 30, 50],
|
||||
[100, 200, 300, 500]
|
||||
#[5, 50]
|
||||
),
|
||||
axis=None, dtype=float)
|
||||
|
||||
|
@ -536,16 +730,18 @@ if __name__ == "__main__":
|
|||
# to create an 'analog' sampled antenna
|
||||
interp_template, _deltapeak = create_template(dt=interp_template_dt, timelength=template_length, bp_freq=bp_freq, name='Interpolation Template', normalise=True)
|
||||
|
||||
interp_template.interpolate = interpolate.interp1d(interp_template.t, interp_template.signal, assume_sorted=True, fill_value=0, bounds_error=False, copy=False)
|
||||
interp_template.interpolate = interpolate.interp1d(interp_template.t, interp_template.signal, assume_sorted=True, fill_value=0, bounds_error=False, copy=False)#, kind='nearest')
|
||||
|
||||
if True: # show interpolation template
|
||||
if not True: # show interpolation template
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Filter Response")
|
||||
ax.set_xlabel("Time [ns]")
|
||||
ax.set_ylabel("Amplitude")
|
||||
ax.plot(interp_template.t, max(interp_template.signal)*_deltapeak[0], label='Impulse')
|
||||
ax.plot(interp_template.t, interp_template.signal, label='Filtered Signal')
|
||||
ax.legend()
|
||||
ax.legend(loc='upper right')
|
||||
ax.grid()
|
||||
fig.tight_layout()
|
||||
fig.savefig('figures/11_filter_response.pdf')
|
||||
|
||||
if True: # show filtering equivalence samplerates
|
||||
|
@ -556,7 +752,8 @@ if __name__ == "__main__":
|
|||
ax.plot(_time, max(_bandpassed)*_deltapeak[0], label='Impulse Antenna')
|
||||
ax.plot(_time, _bandpassed, label='Filtered Antenna')
|
||||
|
||||
ax.legend()
|
||||
ax.legend(loc='upper right')
|
||||
fig.tight_layout()
|
||||
fig.savefig('figures/11_interpolation_deltapeak+antenna.pdf')
|
||||
|
||||
if True:
|
||||
|
@ -615,18 +812,19 @@ if __name__ == "__main__":
|
|||
|
||||
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title(
|
||||
"Template Correlation Lag finding"
|
||||
+ f"\n template dt: {template_dt: .1e}ns"
|
||||
+ f"; antenna dt: {antenna_dt: .1e}ns"
|
||||
+ ";" if not mask_count else "\n"
|
||||
+ f"snr_factor: {snr_sigma_factor: .1e}"
|
||||
+ "" if not mask_count else f"; N_masked: {mask_count}"
|
||||
)
|
||||
#ax.set_title(
|
||||
# "Template Correlation Lag finding"
|
||||
# + f"\n template dt: {template_dt: .1e}ns"
|
||||
# + f"; antenna dt: {antenna_dt: .1e}ns"
|
||||
# + ";" if not mask_count else "\n"
|
||||
# + f"snr_factor: {snr_sigma_factor: .1e}"
|
||||
# + "" if not mask_count else f"; N_masked: {mask_count}"
|
||||
# )
|
||||
ax.set_xlabel("Time Residual [ns]")
|
||||
ax.set_ylabel("#")
|
||||
ax.grid()
|
||||
|
||||
if True:
|
||||
if not True:
|
||||
# indicate boxcar accuracy limits
|
||||
for sign in [-1, 1]:
|
||||
ax.axvline( sign*template_dt/np.sqrt(12), ls='--', alpha=0.5, color='green')
|
||||
|
@ -671,8 +869,17 @@ if __name__ == "__main__":
|
|||
chisq_strs
|
||||
)
|
||||
|
||||
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
|
||||
ax.text( *(0.02, 0.95), text_str, ha='left', va='top', transform=ax.transAxes)
|
||||
|
||||
if True:
|
||||
ax.legend(title=f"$\\langle SNR \\rangle$ = {snr_sigma_factor:.2g}", loc='upper right')
|
||||
|
||||
if True:
|
||||
this_lim = 55
|
||||
if ax.get_ylim()[1] <= this_lim:
|
||||
ax.set_ylim([None, this_lim])
|
||||
|
||||
fig.tight_layout()
|
||||
if mask_count:
|
||||
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}_masked.pdf")
|
||||
else:
|
||||
|
@ -687,20 +894,27 @@ if __name__ == "__main__":
|
|||
#
|
||||
if True:
|
||||
enable_threshold_markers = [False, False, True, True]
|
||||
threshold_markers = ['^', 'v', '8', 'X'] # make sure to have filled markers here
|
||||
threshold_markers = ['^', 'v', '8', 'o'] # make sure to have filled markers here
|
||||
mask_thresholds = np.array([np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0])
|
||||
|
||||
fig, ax = plt.subplots(figsize=figsize)
|
||||
ax.set_title(f"Template matching SNR vs time accuracy")
|
||||
ax.set_xlabel("Signal to Noise Factor")
|
||||
ax.set_xlabel("Signal to Noise")
|
||||
ax.set_ylabel("Time Accuracy [ns]")
|
||||
ax.grid()
|
||||
|
||||
ax.legend(title="\n".join([
|
||||
ax.legend(title=", ".join([
|
||||
f"N={N_residuals}",
|
||||
#f"template_dt={template_dt:0.1e}ns",
|
||||
f"antenna_dt={antenna_dt:0.1e}ns",
|
||||
]))
|
||||
f"$1/f_s$ ={antenna_dt}ns",
|
||||
]), loc='lower left')
|
||||
|
||||
if not True:
|
||||
ax.set_title(f"Template matching, $N={N_residuals}$, $dt={antenna_dt}\\mathrm{{ns}}$")
|
||||
|
||||
if False:
|
||||
pass
|
||||
# add wrong_peak_condition_multiple into plot
|
||||
|
||||
# plot the values per template_dt slice
|
||||
template_dt_colors = [None]*len(template_dts)
|
||||
|
@ -733,11 +947,11 @@ if __name__ == "__main__":
|
|||
snr_sigma_factor *= 2
|
||||
|
||||
# plot all invalid datapoints
|
||||
if True:
|
||||
if False:
|
||||
ax.plot(snrs[~valid_mask], y_values[~valid_mask], color='grey', **scatter_kwargs)
|
||||
|
||||
# plot valid datapoints
|
||||
if True:
|
||||
if False:
|
||||
if template_dt_colors[a] is not None:
|
||||
scatter_kwargs['color'] = template_dt_colors[a]
|
||||
|
||||
|
@ -747,20 +961,26 @@ if __name__ == "__main__":
|
|||
|
||||
masked_count = np.count_nonzero(~valid_mask)
|
||||
|
||||
threshold_index = np.argmin(masked_count <= mask_thresholds) -1
|
||||
|
||||
if not enable_threshold_markers[threshold_index]:
|
||||
continue
|
||||
|
||||
# plot accuracy indicating masking counts
|
||||
kwargs = dict(
|
||||
ls='none',
|
||||
color= None if template_dt_colors[a] is None else template_dt_colors[a],
|
||||
marker=threshold_markers[np.argmin( masked_count <= mask_thresholds)-1],
|
||||
marker=threshold_markers[threshold_index],
|
||||
ms=10,
|
||||
markeredgecolor='white',
|
||||
markeredgewidth=1,
|
||||
alpha=0.8
|
||||
)
|
||||
|
||||
#l = ax.plot(snr_sigma_factor, np.sqrt(np.mean(y_values[valid_mask])**2), **{**kwargs, **dict(ms=50)})
|
||||
|
||||
if False:
|
||||
l = ax.errorbar(snr_sigma_factor, time_accuracy, yerr=time_accuracy_std, xerr=snr_std, **kwargs)
|
||||
l = ax.errorbar(snr_sigma_factor, time_accuracy, yerr=time_accuracy_std, xerr=snr_std, **kwargs, capsize=5)
|
||||
else:
|
||||
l = ax.plot(snr_sigma_factor, time_accuracy, **kwargs)
|
||||
|
||||
|
@ -771,14 +991,19 @@ if __name__ == "__main__":
|
|||
|
||||
# indicate boxcar threshold
|
||||
if True:
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[a], label=f'Template dt:{template_dt:0.1e}ns')
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[a], label=f'{template_dt}ns')
|
||||
text_coord = (0.03, template_dt/np.sqrt(12))
|
||||
ax.text( *text_coord, f'${template_dt}\mathrm{{\,ns}} / \sqrt{{12}}$', va='bottom', ha='left', color=template_dt_colors[a], fontsize=fontsize-1, transform=ax.get_yaxis_transform())
|
||||
|
||||
|
||||
# Set horizontal line at 1 ns
|
||||
if True:
|
||||
if not True:
|
||||
ax.axhline(1, ls='--', alpha=0.8, color='g')
|
||||
|
||||
ax.legend()
|
||||
if not True:
|
||||
ax.legend(title="Template dt", loc='lower left')
|
||||
elif True:
|
||||
ax.legend().remove()
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f"figures/11_time_res_vs_snr_full_linear.pdf")
|
||||
|
@ -793,6 +1018,11 @@ if __name__ == "__main__":
|
|||
this_lim = 1e1
|
||||
if ax.get_ylim()[1] >= this_lim:
|
||||
ax.set_ylim([None, this_lim])
|
||||
# but keep it above 1
|
||||
if True:
|
||||
this_lim = 1e0
|
||||
if ax.get_ylim()[1] <= this_lim:
|
||||
ax.set_ylim([None, this_lim])
|
||||
|
||||
# require y-axis lower limit to be at least 1e-1
|
||||
if True:
|
||||
|
@ -807,12 +1037,13 @@ if __name__ == "__main__":
|
|||
low_ylims = ax.get_ylim()[0]
|
||||
if low_ylims <= this_lim:
|
||||
ax.set_ylim([this_lim, None])
|
||||
|
||||
|
||||
# require x-axis lower limit to be under 1e0
|
||||
if True:
|
||||
this_lim = 1e0
|
||||
if ax.get_xlim()[0] >= this_lim:
|
||||
ax.set_xlim([this_lim, None])
|
||||
|
||||
|
||||
fig.tight_layout()
|
||||
if len(template_dts) == 1:
|
||||
|
|
Loading…
Reference in a new issue