mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 11:33:32 +01:00
ZH: Periods from shower saves figures better
This commit is contained in:
parent
9b7aa02e78
commit
2ffec6a10b
1 changed files with 30 additions and 16 deletions
|
@ -18,7 +18,7 @@ import aa_generate_beacon as beacon
|
|||
import lib
|
||||
from lib import rit
|
||||
|
||||
def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_sample_shifts, dt=None, sample_shift_first_trace=0):
|
||||
def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_sample_shifts, dt=None, sample_shift_first_trace=0, plot_iteration_with_shifted_trace=None):
|
||||
"""
|
||||
Find the best sample_shift for each antenna by summing the antenna traces
|
||||
and seeing how to get the best alignment.
|
||||
|
@ -63,12 +63,22 @@ def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_samp
|
|||
best_sample_shifts[i] = sample_shift_first_trace
|
||||
continue
|
||||
|
||||
if i == plot_iteration_with_shifted_trace:
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Traces at ({:.1f},{:.1f},{:.1f})".format(*test_loc))
|
||||
ax.set_xlabel("Time [ns]")
|
||||
ax.set_ylabel("Amplitude")
|
||||
ax.plot(t_sum, a_sum)
|
||||
|
||||
shift_maxima = np.zeros( len(allowed_sample_shifts) )
|
||||
for j, shift in enumerate(allowed_sample_shifts):
|
||||
augmented_a = np.roll(a_int, shift)
|
||||
|
||||
shift_maxima[j] = np.max(augmented_a + a_sum)
|
||||
|
||||
if i == plot_iteration_with_shifted_trace:
|
||||
ax.plot(t_sum, augmented_a, label=f'{shift} shifted')
|
||||
|
||||
# transform maximum into best_sample_shift
|
||||
best_idx = np.argmax(shift_maxima)
|
||||
best_sample_shifts[i] = allowed_sample_shifts[best_idx]
|
||||
|
@ -85,6 +95,8 @@ if __name__ == "__main__":
|
|||
|
||||
fname = "ZH_airshower/mysim.sry"
|
||||
|
||||
savepath = "./periods_from_shower_figures/"
|
||||
|
||||
allowed_ks = np.arange(-2, 3, 1)
|
||||
Xref = 400
|
||||
|
||||
|
@ -94,6 +106,8 @@ if __name__ == "__main__":
|
|||
x_fine = np.linspace(-2e3, 2e3, 30)
|
||||
y_fine = np.linspace(-2e3, 2e3, 30)
|
||||
|
||||
N_runs = 3
|
||||
|
||||
####
|
||||
fname_dir = path.dirname(fname)
|
||||
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
||||
|
@ -114,7 +128,7 @@ if __name__ == "__main__":
|
|||
freq_name = next(iter(freq_names))
|
||||
f_beacon = ev.antennas[0].beacon_info[freq_name]['freq']
|
||||
|
||||
# determine best ks per location
|
||||
# determine allowable ks per location
|
||||
dt = ev.antennas[0].t[1] - ev.antennas[0].t[0]
|
||||
allowed_sample_shifts = np.rint(allowed_ks/f_beacon /dt).astype(int)
|
||||
print("Checking:", allowed_ks, ": shifts :", allowed_sample_shifts)
|
||||
|
@ -134,12 +148,15 @@ if __name__ == "__main__":
|
|||
scale2d = dXref*np.tan(np.deg2rad(2.))
|
||||
|
||||
# Setup Plane grid to test
|
||||
for r in range(6):
|
||||
for r in range(N_runs):
|
||||
xoff, yoff = 0,0
|
||||
if r == 0:
|
||||
x = x_coarse
|
||||
y = y_coarse
|
||||
else:
|
||||
old_ks_per_loc = ks_per_loc[best_idx]
|
||||
xoff = xx[best_idx]
|
||||
yoff = yy[best_idx]
|
||||
if r == 1:
|
||||
x = x_fine
|
||||
y = y_fine
|
||||
|
@ -164,7 +181,7 @@ if __name__ == "__main__":
|
|||
yy.append(y_+yoff)
|
||||
|
||||
# Find best k for each antenna
|
||||
shifts, maximum = find_best_sample_shifts_summing_at_location(test_loc, ev.antennas, allowed_sample_shifts, dt)
|
||||
shifts, maximum = find_best_sample_shifts_summing_at_location(test_loc, ev.antennas, allowed_sample_shifts, dt=dt)
|
||||
|
||||
# Translate sample shifts back into period multiple k
|
||||
ks = np.rint(shifts*f_beacon*dt)
|
||||
|
@ -174,6 +191,11 @@ if __name__ == "__main__":
|
|||
|
||||
xx = np.array(xx)
|
||||
yy = np.array(yy)
|
||||
locs = list(zip(xx, yy))
|
||||
|
||||
## Save maxima to file
|
||||
np.savetxt(savepath + __file__+f'.maxima.run{r}.txt', np.column_stack((locs, maxima_per_loc, ks_per_loc)) )
|
||||
|
||||
if True: #plot maximum at test locations
|
||||
fig, axs = plt.subplots()
|
||||
axs.set_title(f"Grid Run {r}")
|
||||
|
@ -182,26 +204,18 @@ if __name__ == "__main__":
|
|||
sc = axs.scatter(xx/1e3, yy/1e3, c=maxima_per_loc, cmap='Spectral_r', alpha=0.6)
|
||||
fig.colorbar(sc, ax=axs)
|
||||
|
||||
fig.savefig(__file__+f'.run{r}.pdf')
|
||||
fig.savefig(savepath + __file__+f'.maxima.run{r}.pdf')
|
||||
|
||||
## Save ks to file
|
||||
best_idx = np.argmax(maxima_per_loc)
|
||||
np.savetxt(__file__+f'.bestk.run{r}.txt', ks_per_loc[best_idx] )
|
||||
print(ks_per_loc[best_idx])
|
||||
|
||||
## Save maxima to file
|
||||
np.savetxt(__file__+f'.maxima.run{r}.txt', maxima_per_loc)
|
||||
np.savetxt(savepath + __file__+f'.bestk.run{r}.txt', ks_per_loc[best_idx] )
|
||||
print('Best k:', ks_per_loc[best_idx])
|
||||
|
||||
# Abort if no improvement
|
||||
if ( r!= 0 and (old_ks_per_loc == ks_per_loc[best_idx]).all() ):
|
||||
print("No improvement, breaking")
|
||||
print("No changes from previous grid, breaking")
|
||||
break
|
||||
|
||||
# Prepare variables for next loop
|
||||
old_ks_per_loc = ks_per_loc[best_idx]
|
||||
xoff = xx[best_idx]
|
||||
yoff = yy[best_idx]
|
||||
|
||||
# Save best ks to hdf5 antenna file
|
||||
with h5py.File(antennas_fname, 'a') as fp:
|
||||
group = fp.require_group('antennas')
|
||||
|
|
Loading…
Reference in a new issue