mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 17:23:34 +01:00
ZH: shower slice figures for best k set per iteration
Extends the reconstruction from 49d4779
This commit is contained in:
parent
d5d1686a6b
commit
32f7445fc4
1 changed files with 50 additions and 14 deletions
|
@ -339,19 +339,23 @@ if __name__ == "__main__":
|
|||
|
||||
if True: #plot maximum at test locations
|
||||
fig, axs = plt.subplots()
|
||||
axs.set_title(f"Optimizing signal strength, Grid Run {r}")
|
||||
axs.set_title(f"Optimizing signal strength varying k per antenna,\n Grid Run {r}")
|
||||
axs.set_ylabel("vxvxB [km]")
|
||||
axs.set_xlabel(" vxB [km]")
|
||||
axs.set_aspect('equal', 'datalim')
|
||||
sc = axs.scatter(xx/1e3, yy/1e3, c=maxima_per_loc, cmap='Spectral_r', alpha=0.6)
|
||||
fig.colorbar(sc, ax=axs)
|
||||
fig.colorbar(sc, ax=axs, label='Max Amplitude [$\\mu V/m$]')
|
||||
|
||||
# indicate maximum value
|
||||
idx = np.argmax(maxima_per_loc)
|
||||
axs.plot(xx[idx]/1e3, yy[idx]/1e3, 'bx', ms=30)
|
||||
|
||||
if fig_dir:
|
||||
old_xlims = axs.get_xlim()
|
||||
old_ylims = axs.get_ylim()
|
||||
fig.tight_layout()
|
||||
fig.savefig(path.join(fig_dir, __file__+f'.maxima.run{r}.pdf'))
|
||||
if True:
|
||||
if False:
|
||||
axs.plot(tx.x/1e3, tx.y/1e3, marker='X', color='k')
|
||||
fig.tight_layout()
|
||||
fig.savefig(path.join(fig_dir, __file__+f'.maxima.run{r}.with_tx.pdf'))
|
||||
|
@ -372,19 +376,51 @@ if __name__ == "__main__":
|
|||
## Do a small reconstruction of the shower for best ks
|
||||
if True:
|
||||
print("Reconstructing for best k")
|
||||
_, __, p, ___ = rit.shower_plane_slice(ev, X=Xref, Nx=len(x), Ny=len(y), wx=scale2d, wy=scale2d, xoff=xoff, yoff=yoff, zgr=0)
|
||||
|
||||
fig, axs = plt.subplots()
|
||||
axs.set_title(f"Shower slice for best k, Grid Run {r}")
|
||||
axs.set_ylabel("vxvxB [km]")
|
||||
axs.set_xlabel(" vxB [km]")
|
||||
axs.set_aspect('equal', 'datalim')
|
||||
sc = axs.scatter(xx/1e3, yy/1e3, c=p, cmap='Spectral_r', alpha=0.6)
|
||||
fig.colorbar(sc, ax=axs)
|
||||
for j in range(2):
|
||||
power_reconstruction = j==1
|
||||
|
||||
if fig_dir:
|
||||
fig.tight_layout()
|
||||
fig.savefig(path.join(fig_dir, __file__+f'.reconstruction.run{r}.pdf'))
|
||||
if power_reconstruction: # Do power reconstruction
|
||||
# backup antenna times
|
||||
backup_times = [ ant.t_AxB for ant in ev.antennas ]
|
||||
|
||||
# incorporate ks into timing
|
||||
for i, ant in enumerate(ev.antennas):
|
||||
ev.antennas[i].t_AxB = ant.t_AxB - best_k[i] * 1/f_beacon
|
||||
|
||||
xx, yy, p, ___ = rit.shower_plane_slice(ev, X=Xref, Nx=len(x), Ny=len(y), wx=x[-1]-x[0], wy=y[-1]-y[0], xoff=xoff, yoff=yoff, zgr=0)
|
||||
|
||||
# repair antenna times
|
||||
for i, backup_t_AxB in enumerate(backup_times):
|
||||
ev.antennas[i].t_AxB = backup_t_AxB
|
||||
else: # get maximum amplitude at each location
|
||||
maxima = np.empty( len(locs) )
|
||||
for i, loc in enumerate(locs):
|
||||
test_loc = loc[0]* ev.uAxB + loc[1]*ev.uAxAxB + dXref *ev.uA
|
||||
P, t_, a_, a_sum, t_sum = rit.pow_and_time(test_loc, ev, dt=dt)
|
||||
maxima[i] = np.max(a_sum)
|
||||
|
||||
fig, axs = plt.subplots()
|
||||
axs.set_title(f"Shower slice for best k, Grid Run {r}")
|
||||
axs.set_ylabel("vxvxB [km]")
|
||||
axs.set_xlabel(" vxB [km]")
|
||||
axs.set_aspect('equal', 'datalim')
|
||||
if power_reconstruction:
|
||||
sc = axs.scatter(xx/1e3, yy/1e3, c=p, cmap='Spectral_r', alpha=0.6)
|
||||
fig.colorbar(sc, ax=axs, label='Power')
|
||||
else:
|
||||
sc = axs.scatter(xx/1e3, yy/1e3, c=maxima, cmap='Spectral_r', alpha=0.6)
|
||||
fig.colorbar(sc, ax=axs, label='Max Amplitude [$\\mu V/m$]')
|
||||
|
||||
|
||||
if fig_dir:
|
||||
if power_reconstruction:
|
||||
fname_extra = "power"
|
||||
else:
|
||||
fname_extra = "max_amp"
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(path.join(fig_dir, __file__+f'.reconstruction.run{r}.{fname_extra}.pdf'))
|
||||
|
||||
# Abort if no improvement
|
||||
if ( r!= 0 and (old_ks_per_loc == ks_per_loc[best_idx]).all() ):
|
||||
|
|
Loading…
Reference in a new issue