mirror of
				https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
				synced 2025-10-31 03:46:44 +01:00 
			
		
		
		
	ZH:lib/snr optional debugging plot in function
This commit is contained in:
		
							parent
							
								
									91016be038
								
							
						
					
					
						commit
						370b6f366a
					
				
					 2 changed files with 77 additions and 16 deletions
				
			
		|  | @ -49,12 +49,12 @@ if __name__ == "__main__": | |||
|         os.makedirs(fig_dir, exist_ok=True) | ||||
| 
 | ||||
|     # Read in antennas from file | ||||
|     f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) | ||||
|     f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname, traces_key='filtered_traces') | ||||
|     _, __, txdata = beacon.read_tx_file(tx_fname) | ||||
| 
 | ||||
|     # general properties | ||||
|     dt = antennas[0].t[1] - antennas[0].t[0] # ns | ||||
|     beacon_pb = lib.passband(f_beacon-1e-3, f_beacon+1e-3) # GHz | ||||
|     beacon_pb = lib.passband(f_beacon, None) # GHz | ||||
|     beacon_amp = np.max(txdata['amplitudes'])# mu V/m | ||||
| 
 | ||||
|     # General Bandpass | ||||
|  | @ -62,19 +62,39 @@ if __name__ == "__main__": | |||
|     high_bp = args.passband_high if args.passband_high >= 0 else np.inf # GHz | ||||
|     pb = lib.passband(low_bp, high_bp) # GHz | ||||
| 
 | ||||
|     noise_pb = pb | ||||
| 
 | ||||
|     if args.use_passband: # Apply filter to raw beacon/noise to compare with Filtered Traces | ||||
|         myfilter = lambda x: block_filter(x, dt, pb[0], pb[1]) | ||||
|     else: # Compare raw beacon/noise with Filtered Traces | ||||
|         myfilter = lambda x: x | ||||
| 
 | ||||
|     ## | ||||
|     ## Debug plot of Beacon vs Noise SNR | ||||
|     ## | ||||
|     if True: | ||||
|         ant = antennas[0] | ||||
| 
 | ||||
|         fig, ax = plt.subplots(figsize=figsize) | ||||
|         _ = lib.signal_to_noise(myfilter(beacon_amp*ant.beacon), myfilter(ant.noise), samplerate=1/dt, signal_band=beacon_pb, noise_band=noise_pb, debug_ax=ax) | ||||
| 
 | ||||
|         ax.set_title("Spectra and passband") | ||||
|         ax.set_xlabel("Frequency") | ||||
|         ax.set_ylabel("Amplitude") | ||||
|         low_x, high_x = min(beacon_pb[0], noise_pb[0]), max(beacon_pb[1] or 0, noise_pb[1]) | ||||
|         ax.set_xlim(low_x, high_x) | ||||
| 
 | ||||
|         if fig_dir: | ||||
|             fig.savefig(path.join(fig_dir, path.basename(__file__) + f".debug_plot.pdf")) | ||||
|     ## | ||||
|     ## Beacon vs Noise SNR | ||||
|     ## | ||||
|     if True: | ||||
|         beacon_snrs = [ lib.signal_to_noise(myfilter(beacon_amp*ant.beacon), myfilter(ant.noise), samplerate=1/dt, signal_band=beacon_pb, noise_band=pb) for ant in antennas ] | ||||
|         N_samples = len(antennas[0].beacon) | ||||
|         beacon_snrs = [ lib.signal_to_noise(myfilter(beacon_amp*ant.beacon), myfilter(ant.noise), samplerate=1/dt, signal_band=beacon_pb, noise_band=noise_pb) for i, ant in enumerate(antennas) ] | ||||
| 
 | ||||
|         fig, ax = plt.subplots(figsize=figsize) | ||||
|         ax.set_title("Maximum Beacon/Noise SNR") | ||||
|         ax.set_title(f"Maximum Beacon/Noise SNR (N_samples:{N_samples:.1e})") | ||||
|         ax.set_xlabel("Antenna no.") | ||||
|         ax.set_ylabel("SNR") | ||||
|         ax.plot([ int(ant.name) for ant in antennas], beacon_snrs, 'o', ls='none') | ||||
|  |  | |||
|  | @ -1,6 +1,10 @@ | |||
| import numpy as np | ||||
| from collections import namedtuple | ||||
| 
 | ||||
| from lib import direct_fourier_transform as dtft | ||||
| 
 | ||||
| import matplotlib.pyplot as plt # for debug plotting | ||||
| 
 | ||||
| passband = namedtuple("passband", ['low', 'high'], defaults=[0, np.inf]) | ||||
| 
 | ||||
| def get_freq_spec(val,dt): | ||||
|  | @ -27,30 +31,67 @@ def bandpass_mask(freqs, band=passband()): | |||
| 
 | ||||
|     return low_pass & high_pass | ||||
| 
 | ||||
| def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True): | ||||
|     fft, freqs = get_freq_spec(samples, samplerate) | ||||
| def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True, debug_ax=False): | ||||
|     bins = 0 | ||||
|     fft, freqs = get_freq_spec(samples, 1/samplerate) | ||||
|     bandmask = [False]*len(freqs) | ||||
| 
 | ||||
|     bandmask = bandpass_mask(freqs, band=band) | ||||
|     if band[1] is None: | ||||
|         # Only a single frequency given | ||||
|         # use a DTFT for finding the power | ||||
|         time = np.arange(0, len(samples), 1/samplerate) | ||||
| 
 | ||||
|     if normalise_bandsize: | ||||
|         bins = np.count_nonzero(bandmask, axis=-1) | ||||
|         real, imag = dtft(band[0], time, samples) | ||||
|         power = np.sum(np.abs(real**2 + imag**2)) | ||||
|     else: | ||||
|         bins = 1 | ||||
|         bandmask = bandpass_mask(freqs, band=band) | ||||
| 
 | ||||
|     power = np.sum(np.abs(fft[bandmask])**2) | ||||
|         if normalise_bandsize: | ||||
|             bins = np.count_nonzero(bandmask, axis=-1) | ||||
|         else: | ||||
|             bins = 1 | ||||
| 
 | ||||
|     return power/bins | ||||
|         bins = max(1, bins) | ||||
| 
 | ||||
| def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None): | ||||
|         power = 1/bins * np.sum(np.abs(fft[bandmask])**2) | ||||
| 
 | ||||
|     # Prepare plotting variables if an Axes is supplied | ||||
|     if debug_ax: | ||||
|         if any(bandmask): | ||||
|             min_f, max_f = min(freqs[bandmask]), max(freqs[bandmask]) | ||||
|         else: | ||||
|             min_f, max_f = 0, 0 | ||||
| 
 | ||||
|         if band[1] is None: | ||||
|             min_f, max_f = band[0], band[0] | ||||
| 
 | ||||
|         if debug_ax is True: | ||||
|             debug_ax = plt.gca() | ||||
| 
 | ||||
|         l = debug_ax.plot(freqs, np.abs(fft), alpha=0.9) | ||||
| 
 | ||||
|         amp = np.sqrt(power) | ||||
| 
 | ||||
|         if min_f != max_f: | ||||
|             debug_ax.plot( [min_f, max_f], [amp, amp], alpha=0.7, color=l[0].get_color(), ls='dashed') | ||||
|             debug_ax.axvspan(min_f, max_f, color=l[0].get_color(), alpha=0.2) | ||||
|         else: | ||||
|             debug_ax.plot( min_f, amp, '4', alpha=0.7, color=l[0].get_color(), ms=10) | ||||
| 
 | ||||
|     return power | ||||
| 
 | ||||
| def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None, debug_ax=False): | ||||
|     if noise_band is None: | ||||
|         noise_band = signal_band | ||||
| 
 | ||||
|     if noise is None: | ||||
|         noise = samples | ||||
| 
 | ||||
|     noise_power = bandpower(noise, samplerate, noise_band) | ||||
|     if debug_ax is True: | ||||
|         debug_ax = plt.gca() | ||||
| 
 | ||||
|     signal_power = bandpower(samples, samplerate, signal_band) | ||||
|     noise_power = bandpower(noise, samplerate, noise_band, debug_ax=debug_ax) | ||||
| 
 | ||||
|     signal_power = bandpower(samples, samplerate, signal_band, debug_ax=debug_ax) | ||||
| 
 | ||||
|     return (signal_power/noise_power)**0.5 | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue