ZH:lib/snr optional debugging plot in function

This commit is contained in:
Eric Teunis de Boone 2023-02-02 08:49:05 +01:00
parent 91016be038
commit 370b6f366a
2 changed files with 77 additions and 16 deletions

View file

@ -49,12 +49,12 @@ if __name__ == "__main__":
os.makedirs(fig_dir, exist_ok=True)
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname, traces_key='filtered_traces')
_, __, txdata = beacon.read_tx_file(tx_fname)
# general properties
dt = antennas[0].t[1] - antennas[0].t[0] # ns
beacon_pb = lib.passband(f_beacon-1e-3, f_beacon+1e-3) # GHz
beacon_pb = lib.passband(f_beacon, None) # GHz
beacon_amp = np.max(txdata['amplitudes'])# mu V/m
# General Bandpass
@ -62,19 +62,39 @@ if __name__ == "__main__":
high_bp = args.passband_high if args.passband_high >= 0 else np.inf # GHz
pb = lib.passband(low_bp, high_bp) # GHz
noise_pb = pb
if args.use_passband: # Apply filter to raw beacon/noise to compare with Filtered Traces
myfilter = lambda x: block_filter(x, dt, pb[0], pb[1])
else: # Compare raw beacon/noise with Filtered Traces
myfilter = lambda x: x
##
## Debug plot of Beacon vs Noise SNR
##
if True:
ant = antennas[0]
fig, ax = plt.subplots(figsize=figsize)
_ = lib.signal_to_noise(myfilter(beacon_amp*ant.beacon), myfilter(ant.noise), samplerate=1/dt, signal_band=beacon_pb, noise_band=noise_pb, debug_ax=ax)
ax.set_title("Spectra and passband")
ax.set_xlabel("Frequency")
ax.set_ylabel("Amplitude")
low_x, high_x = min(beacon_pb[0], noise_pb[0]), max(beacon_pb[1] or 0, noise_pb[1])
ax.set_xlim(low_x, high_x)
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".debug_plot.pdf"))
##
## Beacon vs Noise SNR
##
if True:
beacon_snrs = [ lib.signal_to_noise(myfilter(beacon_amp*ant.beacon), myfilter(ant.noise), samplerate=1/dt, signal_band=beacon_pb, noise_band=pb) for ant in antennas ]
N_samples = len(antennas[0].beacon)
beacon_snrs = [ lib.signal_to_noise(myfilter(beacon_amp*ant.beacon), myfilter(ant.noise), samplerate=1/dt, signal_band=beacon_pb, noise_band=noise_pb) for i, ant in enumerate(antennas) ]
fig, ax = plt.subplots(figsize=figsize)
ax.set_title("Maximum Beacon/Noise SNR")
ax.set_title(f"Maximum Beacon/Noise SNR (N_samples:{N_samples:.1e})")
ax.set_xlabel("Antenna no.")
ax.set_ylabel("SNR")
ax.plot([ int(ant.name) for ant in antennas], beacon_snrs, 'o', ls='none')

View file

@ -1,6 +1,10 @@
import numpy as np
from collections import namedtuple
from lib import direct_fourier_transform as dtft
import matplotlib.pyplot as plt # for debug plotting
passband = namedtuple("passband", ['low', 'high'], defaults=[0, np.inf])
def get_freq_spec(val,dt):
@ -27,30 +31,67 @@ def bandpass_mask(freqs, band=passband()):
return low_pass & high_pass
def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True):
fft, freqs = get_freq_spec(samples, samplerate)
def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True, debug_ax=False):
bins = 0
fft, freqs = get_freq_spec(samples, 1/samplerate)
bandmask = [False]*len(freqs)
bandmask = bandpass_mask(freqs, band=band)
if band[1] is None:
# Only a single frequency given
# use a DTFT for finding the power
time = np.arange(0, len(samples), 1/samplerate)
if normalise_bandsize:
bins = np.count_nonzero(bandmask, axis=-1)
real, imag = dtft(band[0], time, samples)
power = np.sum(np.abs(real**2 + imag**2))
else:
bins = 1
bandmask = bandpass_mask(freqs, band=band)
power = np.sum(np.abs(fft[bandmask])**2)
if normalise_bandsize:
bins = np.count_nonzero(bandmask, axis=-1)
else:
bins = 1
return power/bins
bins = max(1, bins)
def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None):
power = 1/bins * np.sum(np.abs(fft[bandmask])**2)
# Prepare plotting variables if an Axes is supplied
if debug_ax:
if any(bandmask):
min_f, max_f = min(freqs[bandmask]), max(freqs[bandmask])
else:
min_f, max_f = 0, 0
if band[1] is None:
min_f, max_f = band[0], band[0]
if debug_ax is True:
debug_ax = plt.gca()
l = debug_ax.plot(freqs, np.abs(fft), alpha=0.9)
amp = np.sqrt(power)
if min_f != max_f:
debug_ax.plot( [min_f, max_f], [amp, amp], alpha=0.7, color=l[0].get_color(), ls='dashed')
debug_ax.axvspan(min_f, max_f, color=l[0].get_color(), alpha=0.2)
else:
debug_ax.plot( min_f, amp, '4', alpha=0.7, color=l[0].get_color(), ms=10)
return power
def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None, debug_ax=False):
if noise_band is None:
noise_band = signal_band
if noise is None:
noise = samples
noise_power = bandpower(noise, samplerate, noise_band)
if debug_ax is True:
debug_ax = plt.gca()
signal_power = bandpower(samples, samplerate, signal_band)
noise_power = bandpower(noise, samplerate, noise_band, debug_ax=debug_ax)
signal_power = bandpower(samples, samplerate, signal_band, debug_ax=debug_ax)
return (signal_power/noise_power)**0.5