mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
Pulse Matching: introduce caching mechanism
This commit is contained in:
parent
a011aee28e
commit
4abb6997b8
1 changed files with 63 additions and 10 deletions
|
@ -6,6 +6,8 @@ from scipy import signal, interpolate, stats
|
|||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from itertools import zip_longest
|
||||
import h5py
|
||||
from copy import deepcopy
|
||||
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
|
@ -125,6 +127,33 @@ def trace_upsampler(trace, template_t, trace_t):
|
|||
def trace_downsampler(trace, template_t, trace_t, offset):
|
||||
pass
|
||||
|
||||
def read_time_residuals_cache(cache_fname, template_dt, antenna_dt, noise_sigma_factor, N=None):
|
||||
try:
|
||||
with h5py.File(cache_fname, 'r') as fp:
|
||||
pgroup = fp['time_residuals']
|
||||
pgroup2 = pgroup[f'{template_dt}_{antenna_dt}']
|
||||
|
||||
ds_name = str(noise_sigma_factor)
|
||||
|
||||
ds = pgroup2[ds_name]
|
||||
if N is None:
|
||||
return deepcopy(ds[:])
|
||||
else:
|
||||
return deepcopy(ds[:min(N, len(ds))])
|
||||
except KeyError:
|
||||
return np.array([])
|
||||
|
||||
def write_time_residuals_cache(cache_fname, time_residuals, template_dt, antenna_dt, noise_sigma_factor):
|
||||
with h5py.File(cache_fname, 'a') as fp:
|
||||
pgroup = fp.require_group('time_residuals')
|
||||
pgroup2 = pgroup.require_group(f'{template_dt}_{antenna_dt}')
|
||||
|
||||
ds_name = str(noise_sigma_factor)
|
||||
|
||||
if ds_name in pgroup2.keys():
|
||||
del pgroup2[ds_name]
|
||||
|
||||
ds = pgroup2.create_dataset(ds_name, (len(time_residuals)), dtype='f', data=time_residuals, maxshape=(None))
|
||||
|
||||
if __name__ == "__main__":
|
||||
import os
|
||||
|
@ -176,21 +205,30 @@ if __name__ == "__main__":
|
|||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
#
|
||||
# Find time accuracies as a function of signal strength
|
||||
#
|
||||
h5_cache_fname = f'11_pulsed_timing.hdf5'
|
||||
|
||||
time_accuracies = np.zeros(len(noise_factors))
|
||||
for k, noise_sigma_factor in tqdm(enumerate(noise_factors)):
|
||||
print() #separating tqdm
|
||||
|
||||
# Read in cached time residuals
|
||||
cached_time_residuals = read_time_residuals_cache(h5_cache_fname, template.dt, antenna_dt, noise_sigma_factor)
|
||||
|
||||
#
|
||||
# Find difference between true and templated times
|
||||
#
|
||||
time_residuals = np.zeros(N_residuals)
|
||||
for j in tqdm(range(N_residuals)):
|
||||
time_residuals = np.zeros(max(0, (N_residuals - len(cached_time_residuals))))
|
||||
for j in tqdm(range(len(time_residuals))):
|
||||
do_plots = j==0
|
||||
|
||||
# receive at antenna
|
||||
## place the deltapeak signal at a random location
|
||||
antenna = Waveform(None, dt=antenna_dt, name='Signal')
|
||||
|
||||
if not True: # Create antenna trace without template
|
||||
if False: # Create antenna trace without template
|
||||
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=[0.2, 0.8], rng=rng)
|
||||
|
||||
antenna.peak_sample = antenna_peak_sample
|
||||
|
@ -371,16 +409,25 @@ if __name__ == "__main__":
|
|||
plt.close(fig)
|
||||
|
||||
print()# separating tqdm
|
||||
# Make a plot of the time residuals
|
||||
# Were new time residuals calculated?
|
||||
# Add them to the cache file
|
||||
if len(time_residuals) > 1:
|
||||
time_accuracies[k] = np.std(time_residuals)
|
||||
# merge cached and calculated time residuals
|
||||
time_residuals = np.concatenate((cached_time_residuals, time_residuals), axis=None)
|
||||
write_time_residuals_cache(h5_cache_fname, time_residuals, template_dt, antenna_dt, noise_sigma_factor)
|
||||
else:
|
||||
time_residuals = cached_time_residuals
|
||||
|
||||
# Make a plot of the time residuals
|
||||
if N_residuals > 1:
|
||||
time_accuracies[k] = np.std(time_residuals[:N_residuals])
|
||||
|
||||
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title(
|
||||
"Template Correlation Lag finding"
|
||||
+ f"\n template dt: {template.dt*1e3: .1e}ps"
|
||||
+ f"; antenna dt: {antenna.dt: .1e}ns"
|
||||
+ f"\n template dt: {template_dt*1e3: .1e}ps"
|
||||
+ f"; antenna dt: {antenna_dt: .1e}ns"
|
||||
+ f"; noise_factor: {noise_sigma_factor: .1e}"
|
||||
)
|
||||
ax.set_xlabel("Time Residual [ns]")
|
||||
|
@ -428,7 +475,7 @@ if __name__ == "__main__":
|
|||
|
||||
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
|
||||
|
||||
fig.savefig("figures/11_time_residual_hist_{noise_sigma_factor: .1e}.pdf")
|
||||
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{noise_sigma_factor: .1e}.pdf")
|
||||
|
||||
if True:
|
||||
plt.close(fig)
|
||||
|
@ -436,10 +483,16 @@ if __name__ == "__main__":
|
|||
# SNR time accuracy plot
|
||||
if True:
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Template matching SNR vs time accuracy")
|
||||
ax.set_title(f"Template matching SNR vs time accuracy")
|
||||
ax.set_xlabel("Signal to Noise Factor")
|
||||
ax.set_ylabel("Time Accuracy [ns]")
|
||||
|
||||
ax.legend(title="\n".join([
|
||||
f"N={N_residuals}",
|
||||
f"template_dt={template_dt:0.1e}ns",
|
||||
f"antenna_dt={antenna_dt:0.1e}ns",
|
||||
]))
|
||||
|
||||
if True:
|
||||
ax.set_xscale('log')
|
||||
ax.set_yscale('log')
|
||||
|
@ -454,6 +507,6 @@ if __name__ == "__main__":
|
|||
ax.grid()
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig("figures/11_time_res_vs_snr.pdf")
|
||||
fig.savefig(f"figures/11_time_res_vs_snr_tdt{template_dt:0.1e}.pdf")
|
||||
|
||||
plt.show()
|
||||
|
|
Loading…
Reference in a new issue