ZH: let view_beacon script plot both raw and filtered traces

This commit is contained in:
Eric Teunis de Boone 2023-02-01 13:51:43 +01:00
parent 61d777651b
commit 5fca4a8bda
3 changed files with 71 additions and 53 deletions

View file

@ -10,7 +10,7 @@ beacon:
./aa_generate_beacon.py | tee figures/aa.log
./ab_modify_clocks.py 0 | tee figures/ab.log
./ac_show_signal_to_noise.py --no-show-plots --fig-dir=${FIG_DIR}
./view_beaconed_antenna.py 72 -p x -p y -p z -p AxB --no-show-plots --fig-dir=${FIG_DIR}
./view_beaconed_antenna.py 72 -p x -p y -p z --no-show-plots --fig-dir=${FIG_DIR}
clocks:
./ab_modify_clocks.py 15 --gaussian

View file

@ -400,7 +400,7 @@ if __name__ == "__main__":
for j, amp in enumerate(beacon_amplitudes):
traces[j] = traces[j] + amp*beacon + noise_realisation
append_antenna_hdf5( antennas_fname, antenna, traces, name='raw_traces', prepend_time=True)
append_antenna_hdf5( antennas_fname, antenna, traces, name='prefiltered_traces', prepend_time=True)
# .. and apply block_filter to every trace
dt = antenna.t[1] - antenna.t[0]

View file

@ -20,7 +20,7 @@ if __name__ == "__main__":
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
parser.add_argument('ant_idx', default=[72], nargs='*', help='Antenna Indices')
parser.add_argument('ant_idx', default=[72], nargs='*', type=int, help='Antenna Indices')
parser.add_argument('-p', '--polarisations', choices=['x', 'y', 'z', 'b', 'AxB'], action='append', help='Default: x,y,z')
parser.add_argument('--geom', action='store_true', help='Make a figure containg the geometry from tx to antenna(s)')
parser.add_argument('--ft', action='store_true', help='Add FT strenghts of antenna traces')
@ -28,6 +28,7 @@ if __name__ == "__main__":
args = parser.parse_args()
fname = "ZH_airshower/mysim.sry"
figsize = (9,6)
plot_ft_amplitude = args.ft
plot_geometry = args.geom
@ -57,71 +58,88 @@ if __name__ == "__main__":
idx = [ i for i, ant in enumerate(antennas) if int(ant.name) in names ]
fig1, axs = plt.subplots(1+plot_ft_amplitude*2)
if not plot_ft_amplitude:
axs = [axs]
axs[0].set_xlabel('t [ns]')
axs[0].set_ylabel('[$\mu$V/m]')
if plot_ft_amplitude:
axs[1].set_xlabel('f [GHz]')
axs[1].set_ylabel('Power')
for i_fig in range(2):
name_dist=''
axs[2].set_ylabel("Phase")
axs[2].set_xlabel('f [GHz]')
axs[2].set_ylim(-np.pi,+np.pi)
if i_fig == 1: #read in the raw_traces
_, __, antennas = beacon.read_beacon_hdf5(antennas_fname, traces_key='prefiltered_traces')
name_dist='.raw'
colorlist = []
for i in idx:
ant = antennas[i]
n_samples = len(ant.t)
samplerate = (ant.t[-1] - ant.t[0])/n_samples
fig1, axs = plt.subplots(1+plot_ft_amplitude*2, figsize=figsize)
if not plot_ft_amplitude:
axs = [axs]
axs[0].set_xlabel('t [ns]')
axs[0].set_ylabel('[$\mu$V/m]')
axs[0].axvline(ant.t[0], color='k', alpha=0.5)
if i_fig == 1:
axs[0].set_title("UnFiltered traces")
else:
axs[0].set_title("Filtered traces")
mydict = {}
for p in args.polarisations:
pattr = 'E'+str(p)
if p == 'b':
pattr = 'beacon'
elif p == 'AxB':
pattr = 'E_AxB'
if True:
axs[0].set_xlim(-250, 250)
mydict[p] = getattr(ant, pattr)
if plot_ft_amplitude:
axs[1].set_xlabel('f [GHz]')
axs[1].set_ylabel('Power')
for j, (direction, trace) in enumerate(mydict.items()):
l = axs[0].plot(ant.t, trace, label=f"$E_{{{direction}}}$ {ant.name}", alpha=0.7)
axs[2].set_ylabel("Phase")
axs[2].set_xlabel('f [GHz]')
axs[2].set_ylim(-np.pi,+np.pi)
#if False and j == 0 and 't0' in ant.attrs:
# axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5)
colorlist = []
for i in idx:
ant = antennas[i]
colorlist.append(l[0].get_color())
n_samples = len(ant.t)
samplerate = (ant.t[-1] - ant.t[0])/n_samples
if not plot_ft_amplitude:
continue
axs[0].axvline(ant.t[0], color='k', alpha=0.5)
freqs = ft.fftfreq(n_samples, 1/samplerate)[:n_samples//2]
fft = 2*ft.fft(trace)[:n_samples//2]/n_samples
mydict = {}
for p in args.polarisations:
pattr = 'E'+str(p)
if p == 'b':
pattr = 'beacon'
elif p == 'AxB':
pattr = 'E_AxB'
#axs[1].plot(freqs, np.abs(fft)**2, color=l[0].get_color())
mydict[p] = getattr(ant, pattr)
if True:
cft = lib.direct_fourier_transform(f_beacon, ant.t, trace)
amp = 2*len(ant.t) * (cft[0]**2 + cft[1]**2)
for j, (direction, trace) in enumerate(mydict.items()):
l = axs[0].plot(ant.t, trace, label=f"$E_{{{direction}}}$ {ant.name}", alpha=0.7)
#axs[0].axhline(amp, color=l[0].get_color())
#if False and j == 0 and 't0' in ant.attrs:
# axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5)
print(amp)
phase = np.arctan2(cft[0],cft[1])
axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
colorlist.append(l[0].get_color())
if plot_ft_amplitude:
fig1.legend(loc='center right', ncol=min(2, len(idx)))
else:
axs[0].legend(loc='upper right', ncol=min(3, len(idx)))
if fig_dir:
fig1.savefig(path.join(fig_dir, path.basename(__file__) + f".trace.pdf"))
if not plot_ft_amplitude:
continue
freqs = ft.fftfreq(n_samples, 1/samplerate)[:n_samples//2]
fft = 2*ft.fft(trace)[:n_samples//2]/n_samples
#axs[1].plot(freqs, np.abs(fft)**2, color=l[0].get_color())
if True:
cft = lib.direct_fourier_transform(f_beacon, ant.t, trace)
amp = 2*len(ant.t) * (cft[0]**2 + cft[1]**2)
#axs[0].axhline(amp, color=l[0].get_color())
print(amp)
phase = np.arctan2(cft[0],cft[1])
axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
if plot_ft_amplitude:
fig1.legend(loc='center right', ncol=min(2, len(idx)))
else:
axs[0].legend(loc='upper right', ncol=min(3, len(idx)))
if fig_dir:
fig1.savefig(path.join(fig_dir, path.basename(__file__) + f".trace{name_dist}.pdf"))
if plot_geometry:
if len(mydict) == 1:
@ -130,7 +148,7 @@ if __name__ == "__main__":
# only take the colour belonging to mydict[0]
geom_colorlist = [ colorlist[len(mydict)*(i)] for i in range(len(colorlist)//len(mydict)) ]
fig2, axs2 = plt.subplots(1)
fig2, axs2 = plt.subplots(1, figsize=figsize)
plot_antenna_geometry(antennas, ax=axs2, plot_max_values=False, color='grey', plot_names=False)
plot_antenna_geometry([ antennas[i] for i in idx], ax=axs2, colors=geom_colorlist, plot_max_values=False)