diff --git a/simulations/airshower_beacon_simulation/bd_antenna_phase_deltas.py b/simulations/airshower_beacon_simulation/bd_antenna_phase_deltas.py index 45a76de..9b54ae0 100755 --- a/simulations/airshower_beacon_simulation/bd_antenna_phase_deltas.py +++ b/simulations/airshower_beacon_simulation/bd_antenna_phase_deltas.py @@ -160,11 +160,11 @@ if __name__ == "__main__": ############################## # Compare actual time shifts # ############################## - antenna_time_shifts = { a.name: a.attrs['clock_offset'] for a in sorted(antennas, key=lambda a: int(a.name)) } + actual_antenna_time_shifts = { a.name: a.attrs['clock_offset'] for a in sorted(antennas, key=lambda a: int(a.name)) } if True: - actual_phase_shifts = [ -1*lib.phase_mod(2*np.pi*f_beacon*v) for k,v in antenna_time_shifts.items() ] - antenna_names = [int(k)-1 for k,v in antenna_time_shifts.items() ] + actual_antenna_phase_shifts = [ -1*lib.phase_mod(2*np.pi*f_beacon*v) for k,v in actual_antenna_time_shifts.items() ] + antenna_names = [int(k)-1 for k,v in actual_antenna_time_shifts.items() ] for i in range(2): plot_residuals = i == 1 @@ -179,7 +179,7 @@ if __name__ == "__main__": secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]') if plot_residuals: - phase_residuals = lib.phase_mod(mean_sigma_phase - actual_phase_shifts) + phase_residuals = lib.phase_mod(mean_sigma_phase - actual_antenna_phase_shifts) fig.suptitle("Difference between Measured and Actual phases\n for Antenna $i$") axs[-1].set_xlabel("Antenna Phase Residual $\\Delta_\\varphi$") else: @@ -193,7 +193,7 @@ if __name__ == "__main__": axs[i].hist(phase_residuals, bins='sqrt', alpha=0.8, color=colors[0]) else: axs[i].hist(mean_sigma_phase, bins='sqrt', density=False, alpha=0.8, color=colors[0], ls='solid' , histtype='step', label='Measured') - axs[i].hist(actual_phase_shifts, bins='sqrt', density=False, alpha=0.8, color=colors[1], ls='dashed', histtype='step', label='Actual') + axs[i].hist(actual_antenna_phase_shifts, bins='sqrt', density=False, alpha=0.8, color=colors[1], ls='dashed', histtype='step', label='Actual') i=1 @@ -202,7 +202,7 @@ if __name__ == "__main__": axs[i].plot(phase_residuals, np.arange(N_ant), alpha=0.6, ls='none', marker='x', color=colors[0]) else: axs[i].errorbar(mean_sigma_phase, np.arange(N_ant), yerr=std_sigma_phase, marker='4', alpha=0.7, ls='none', color=colors[0], label='Measured') - axs[i].plot(actual_phase_shifts, antenna_names, ls='none', marker='3', alpha=0.8, color=colors[1], label='Actual') + axs[i].plot(actual_antenna_phase_shifts, antenna_names, ls='none', marker='3', alpha=0.8, color=colors[1], label='Actual') axs[i].legend() fig.tight_layout() @@ -217,31 +217,45 @@ if __name__ == "__main__": ########################## ########################## - actual_time_shifts = [] + actual_baseline_time_shifts = [] for i,b in enumerate(basenames): - actual_time_shift = lib.phase_mod(lib.phase_mod(antenna_time_shifts[b[0]]*2*np.pi*f_beacon) - lib.phase_mod(antenna_time_shifts[b[1]]*2*np.pi*f_beacon)) + actual_baseline_time_shift = actual_antenna_time_shifts[b[0]] - actual_antenna_time_shifts[b[1]] - actual_time_shifts.append(actual_time_shift) + actual_baseline_time_shifts.append(actual_baseline_time_shift) # unpack mean_sigma_phase back into a list of time diffs - measured_time_diffs = [] + measured_baseline_time_diffs = [] for i,b in enumerate(basenames): - time0, time1 = mean_sigma_phase[name2idx(b[0])], mean_sigma_phase[name2idx(b[1])] - measured_time_diffs.append(time1 - time0) + phase0, phase1 = mean_sigma_phase[name2idx(b[0])], mean_sigma_phase[name2idx(b[1])] + measured_baseline_time_diffs.append(lib.phase_mod(phase1 - phase0)/(2*np.pi*f_beacon)) # Make a plot if True: - fig, ax = plt.subplots() - ax.set_xlabel("Baseline no.") - ax.set_ylabel("$\\Delta t$[ns]") - if True: # indicate single beacon period span - ax.plot((-1, -1), (0, 1/f_beacon), marker='3', ms=10, label='1/f_beacon') - ax.plot(np.arange(N_base), actual_time_shifts, marker='+', label='actual time shifts') - ax.plot(np.arange(N_base), measured_time_diffs, marker='x', label='calculated') + for i in range(2): + fig, ax = plt.subplots() + ax.set_title("Baseline Time difference reconstruction" + ( '' if i == 0 else ' (wrapped time)')) + ax.set_xlabel("Baseline no.") + ax.set_ylabel("Time $\\Delta t$ [ns]") + if True: + forward = lambda x: x/(2*np.pi*f_beacon) + inverse = lambda x: 2*np.pi*x*f_beacon + secax = ax.secondary_yaxis('right', functions=(inverse, forward)) + secax.set_ylabel('Phase $\\Delta \\varphi$ [rad]') - ax.legend() - if fig_dir: - fig.savefig(path.join(fig_dir, __file__ + f".calculated_shifts.pdf")) + if True: # indicate single beacon period span + ax.plot((-1, -1), (-1/(2*f_beacon), 1/(2*f_beacon)), marker='3', ms=10, label='1/f_beacon') + if i == 0: + ax.plot(np.arange(N_base), actual_baseline_time_shifts, marker='+', label='actual time shifts') + else: + ax.plot(np.arange(N_base), (actual_baseline_time_shifts+1/(2*f_beacon))%(1/f_beacon) - 1/(2*f_beacon), marker='+', label='actual time shifts') + ax.plot(np.arange(N_base), measured_baseline_time_diffs, marker='x', label='calculated') + + ax.legend() + if fig_dir: + extra_name = '' + if i == 1: + extra_name = '.wrapped' + fig.savefig(path.join(fig_dir, __file__ + f".time_comparison{extra_name}.pdf")) if show_plots: plt.show()