mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 17:23:34 +01:00
Simu: 8 moved functions into lib
This commit is contained in:
parent
d629dcc6eb
commit
657d1d1870
1 changed files with 34 additions and 103 deletions
|
@ -18,7 +18,13 @@
|
|||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import scipy.signal as signal\n",
|
||||
"import scipy.fft as ft"
|
||||
"\n",
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"# Append parent directory to import path so lib can be found\n",
|
||||
"sys.path.append(os.path.dirname(os.path.abspath(os.getcwd())))\n",
|
||||
"from lib.util import *\n",
|
||||
"from lib.plotting import *\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -120,89 +126,6 @@
|
|||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### signal generation\n",
|
||||
"def fft_bandpass(signal, band, samplerate):\n",
|
||||
" \"\"\"\n",
|
||||
" Simple bandpassing function employing a FFT.\n",
|
||||
"\n",
|
||||
" Parameters\n",
|
||||
" ----------\n",
|
||||
" signal : arraylike\n",
|
||||
" band : tuple(low, high)\n",
|
||||
" Frequencies for bandpassing\n",
|
||||
" samplerate : float\n",
|
||||
" \"\"\"\n",
|
||||
" signal = np.asarray(signal)\n",
|
||||
"\n",
|
||||
" fft = ft.rfft(signal)\n",
|
||||
" freqs = ft.rfftfreq(signal.size, 1/samplerate)\n",
|
||||
" fft[(freqs < band[0]) | (freqs > band[1])] = 0\n",
|
||||
" \n",
|
||||
" return ft.irfft(fft, signal.size), (fft, freqs)\n",
|
||||
"\n",
|
||||
"def deltapeak(timelength=1e3, samplerate=1, offset=None, peaklength=1):\n",
|
||||
" N_samples = int(timelength * samplerate)\n",
|
||||
" if offset is None:\n",
|
||||
" offset = (np.random.random(1)*N_samples).astype(int) % N_samples\n",
|
||||
" elif isinstance(offset, (tuple, list)):\n",
|
||||
" offset_min = offset[0]\n",
|
||||
" offset_max = offset[-1]\n",
|
||||
" \n",
|
||||
" offset = (np.random.random(1)*(offset_max - offset_min)+offset_min).astype(int) % N_samples\n",
|
||||
" \n",
|
||||
" position = (offset + np.arange(0, peaklength)).astype(int) % N_samples\n",
|
||||
" \n",
|
||||
" signal = np.zeros(N_samples)\n",
|
||||
" signal[position] = 1\n",
|
||||
" \n",
|
||||
" return signal, position\n",
|
||||
"\n",
|
||||
"def sin_delay(f, t, t_delay=0, phase=0):\n",
|
||||
" return np.sin(2*np.pi*f * (t + t_delay) + phase)\n",
|
||||
"\n",
|
||||
"def annotate_width(ax, name, x1, x2, y, text_kw={}, arrow_kw={}):\n",
|
||||
" default_arrow_kw = dict(\n",
|
||||
" xy = (x1, y),\n",
|
||||
" xytext = (x2,y),\n",
|
||||
" arrowprops = dict(\n",
|
||||
" arrowstyle=\"<->\",\n",
|
||||
" shrinkA=False,\n",
|
||||
" shrinkB=False\n",
|
||||
" ),\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" default_text_kw = dict(\n",
|
||||
" va='bottom',\n",
|
||||
" ha='center',\n",
|
||||
" xy=((x1+x2)/2, y)\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" an1 = ax.annotate(\"\", **{**default_arrow_kw, **arrow_kw})\n",
|
||||
" an2 = ax.annotate(name, **{**default_text_kw, **text_kw})\n",
|
||||
"\n",
|
||||
" return [an1, an2]\n",
|
||||
"\n",
|
||||
"def time2phase(time, frequency=1):\n",
|
||||
" return 2*np.pi*frequency*time\n",
|
||||
"\n",
|
||||
"def phase2time(phase, frequency=1):\n",
|
||||
" return phase/(2*np.pi*frequency)\n",
|
||||
"\n",
|
||||
"def time_roll(a, samplerate, time_shift, *roll_args, **roll_kwargs):\n",
|
||||
" \"\"\"\n",
|
||||
" Like np.roll, but use samplerate and time_shift to approximate\n",
|
||||
" the offset to roll.\n",
|
||||
" \"\"\"\n",
|
||||
" shift = np.rint(time_shift*samplerate).astype(int)\n",
|
||||
" return np.roll(a, shift, *roll_args, **roll_kwargs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
|
@ -278,12 +201,13 @@
|
|||
"print(\"Beacon difference [ns]:\", phase2time(beacon_phase_offset, f_beacon)/ns)\n",
|
||||
"print(\"Beacon difference [phase]:\", beacon_phase_offset)\n",
|
||||
"print(\"Impulse offsets [ns]:\", impulses_offsets[:,0]/ns)\n",
|
||||
"print(\"Time difference Impulses [ns]: {}\".format( (impulses_offsets[1,0]-impulses_offsets[0,0])/ns ))"
|
||||
"print(\"Time difference Impulses [ns]: {}\".format( (impulses_offsets[1,0]-impulses_offsets[0,0])/ns ))\n",
|
||||
"print(\"Time difference Impulses [T]: {}\".format( (impulses_offsets[1,0]-impulses_offsets[0,0])*f_beacon ))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -443,18 +367,18 @@
|
|||
"\\quad = \\Delta A + (kT) + t_\\phi\n",
|
||||
"$\n",
|
||||
"\n",
|
||||
", where $\\Delta A < T$ and $k \\in \\mathbb{Z}$ and $t_\\phi$ is minimisable.\n",
|
||||
", where $\\Delta A < T$ and $k \\in \\mathbb{Z}$ and $t_\\phi$ is minimisable by synchronising the beacons.\n",
|
||||
"\n",
|
||||
"Then $\\Delta t$ can be determined by iteratively summing the signals, changing $k$, and finding the $k$ belonging to the maximum of the sums."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def find_best_integer_periods_sum(samplerate, f_beacon, ref_impulse, impulse, k_step=1):\n",
|
||||
"def find_beacon_integer_period_sum(samplerate, f_beacon, ref_impulse, impulse, k_step=1):\n",
|
||||
" max_k = int( len(ref_impulse)*f_beacon/samplerate )\n",
|
||||
" ks = np.arange(-max_k/2, max_k/2, step=k_step)\n",
|
||||
" \n",
|
||||
|
@ -470,12 +394,15 @@
|
|||
" if maxima[i] > maxima[best_i]:\n",
|
||||
" best_i = i\n",
|
||||
" \n",
|
||||
" return ks[best_i], (ks, maxima)"
|
||||
" return ks[best_i], (ks, maxima)\n",
|
||||
"\n",
|
||||
"def find_beacon_integer_period(samplerate, f_beacon, ref_impulse, impulse, k_step=1):\n",
|
||||
" return find_beacon_integer_period_sum(samplerate, f_beacon, ref_impulse, impulse, k_step=k_step)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -510,9 +437,9 @@
|
|||
" my_impulse = time_roll(my_impulse, samplerate, -t_phi)\n",
|
||||
"\n",
|
||||
" # $\\Delta A$ offset\n",
|
||||
" my_impulse = time_roll(my_impulse, samplerate, Delta_A)\n",
|
||||
" my_impulse = time_roll(my_impulse, samplerate, +Delta_A)\n",
|
||||
"\n",
|
||||
"best_k, (ks, maxima) = find_best_integer_periods_sum(samplerate, f_beacon, ref_impulse, my_impulse)\n",
|
||||
"best_k, (ks, maxima) = find_beacon_integer_period(samplerate, f_beacon, ref_impulse, my_impulse)\n",
|
||||
"print(\"Best k: {:0g}\".format(best_k))\n",
|
||||
"print(\"Maximum: {}\".format(maxima[np.where(ks == best_k)][0]))\n",
|
||||
"\n",
|
||||
|
@ -532,7 +459,7 @@
|
|||
" axes[i].plot(time/ns, my_impulse, label='impulse')\n",
|
||||
" axes[i].legend()\n",
|
||||
"\n",
|
||||
"axes[-1].set_ylabel(\"Sum\")\n",
|
||||
"axes[-1].set_ylabel(\"Coherence Sum\")\n",
|
||||
"\n",
|
||||
"best_maximum = np.max(maxima)\n",
|
||||
"axes[-1].axhline(best_maximum, alpha=0.7)\n",
|
||||
|
@ -544,7 +471,7 @@
|
|||
" summed_impulse = ref_impulse + augmented_impulses\n",
|
||||
" if True or k%2 == 1:\n",
|
||||
" axes[-1].plot(time/ns, summed_impulse, label='k={:.0f}'.format(k),\n",
|
||||
" alpha=0.1 + 0.9*1/(1+4*abs(best_maximum-maxima[i]))\n",
|
||||
" alpha=0.1 + 0.9*1/(1+2*abs(best_maximum-maxima[i]))\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
"axes[-1].legend()\n",
|
||||
|
@ -558,12 +485,16 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Solve it"
|
||||
"## 1. Solve it\n",
|
||||
"\n",
|
||||
" 1. Find $t_\\phi$\n",
|
||||
" 2. Find $A_1$, $A_2$\n",
|
||||
" 3. Find $B_1$, $B_2$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -596,7 +527,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -661,12 +592,12 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"##### 1.1 Beacon Phase Delays"
|
||||
"##### 1.1 Beacon Phase Delay ($t_\\phi$)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -679,7 +610,7 @@
|
|||
],
|
||||
"source": [
|
||||
"beacon_phase_delays = np.array([\n",
|
||||
" find_beacon_phase_delay(beacon_samplerate, f_beacon, beacons[0], beacon)\n",
|
||||
" find_beacon_phase_delay(beacon_samplerate, f_beacon, ref_beacon, beacon)\n",
|
||||
" for beacon in beacons\n",
|
||||
"])\n",
|
||||
"\n",
|
||||
|
@ -690,7 +621,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -751,7 +682,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"##### 1.2 Impulse vs beacon delays\n",
|
||||
"##### 1.2 Impulse vs beacon delays ($A_1, A_2$)\n",
|
||||
"\n",
|
||||
"Find the delay within a single beacon period"
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue