Sine fitting figure showing SNR vs residuals

This commit is contained in:
Eric-Teunis de Boone 2022-11-02 19:05:53 +01:00
parent 87d12748e4
commit 68f029f1f7
4 changed files with 394 additions and 9 deletions

View file

@ -66,9 +66,9 @@ def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True, *
return power/bins
def signal_to_noise( samplerate, samples, noise, signal_band, noise_band=None):
def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None):
if noise_band is None:
noise_band = sample_band
noise_band = signal_band
if noise is None:
noise = samples

View file

@ -1,10 +1,14 @@
"""
Functions to simplify plotting of fourier spectra
"""
# vim: fdm=indent ts=4
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
from .fft import ft_spectrum
def plot_spectrum(
spectrum, freqs,
plot_complex=False, plot_power=False, plot_amplitude=None,
@ -49,6 +53,7 @@ def plot_phase(
spectrum, freqs,
ylim_epsilon=0.5, ax=None, grid=True,
freq_unit="Hz", freq_scaler=1, xlabel='Frequency',
major_divider=2, minor_divider=12,
**plot_kwargs
):
"""
@ -65,14 +70,21 @@ def plot_phase(
ax.plot(freqs/freq_scaler, np.angle(spectrum), '.-', **plot_kwargs)
ax.set_ylim(-1*np.pi - ylim_epsilon, np.pi + ylim_epsilon)
major_tick = Multiple(2, np.pi, '\pi')
minor_tick = Multiple(12, np.pi, '\pi')
ax.yaxis.set_major_locator(major_tick.locator())
ax.yaxis.set_major_formatter(major_tick.formatter())
ax.yaxis.set_minor_locator(minor_tick.locator())
axis_pi_ticker(ax.yaxis, major_divider=major_divider, minor_divider=minor_divider)
return ax
def axis_pi_ticker(axis, major_divider=2, minor_divider=12):
major_tick = Multiple(major_divider, np.pi, '\pi')
minor_tick = Multiple(minor_divider, np.pi, '\pi')
axis.set_major_locator(major_tick.locator())
axis.set_major_formatter(major_tick.formatter())
axis.set_minor_locator(minor_tick.locator())
return axis
def plot_signal(
signal, sample_rate = 1,
time=None, ax=None,
@ -139,6 +151,43 @@ def plot_combined_spectrum(
return fig, axes
def plot_signal_and_spectrum(
signal, sample_rate=1, title=None,
signal_kwargs={}, ft_kwargs={},
spectrum_kwargs={}, phase_kwargs={'major_divider':1, 'minor_divider': 6},
**phase_spectrum_kwargs
):
"""
Create a figure showing both the signal and the combined spectrum.
"""
fig = plt.figure(figsize=(16, 4))
if title:
fig.suptitle(title)
# setup plot layout
gs0 = gridspec.GridSpec(1, 2, figure=fig)
gs00 = gs0[0].subgridspec(1, 1)
gs01 = gs0[1].subgridspec(2, 1, height_ratios=[3,1], hspace=0)
# plot the signal
ax1 = fig.add_subplot(gs00[0, 0])
plot_signal(signal, sample_rate, ax=ax1, **signal_kwargs)
# plot spectrum
signal_fft, freqs = ft_spectrum(signal, sample_rate, **ft_kwargs)
_, (ax2, ax3) = plot_combined_spectrum(
signal_fft, freqs,
fig=fig, gs=gs01,
spectrum_kwargs=spectrum_kwargs, phase_kwargs=phase_kwargs,
**phase_spectrum_kwargs
)
# return the axes
axes = np.array([ax1, ax2, ax3])
return fig, axes
def multiple_formatter(denominator=2, number=np.pi, latex='\pi'):
"""
From https://stackoverflow.com/a/53586826

View file

@ -13,13 +13,23 @@ def phasemod(phase, low=np.pi):
"""
return (phase + low) % (2*np.pi) - low
def sine_fitfunc(t, amp=1, freq=1, phase=0, off=0):
# Alias phase_mod to phasemod
phase_mod = phasemod
def sine_fitfunc(t, amp=1, freq=1, phase=0, off=0, t_delay=0):
"""Simple sine wave for fitting purposes"""
return amp*np.cos( 2*np.pi*freq*t + phase) + off
return amp*np.cos( 2*np.pi*freq*(t-t_delay) + phase) + off
def sin_delay(f, t, phase=0):
return sine_fitfunc(t, amp=1, freq=f, phase=phase, off=1, t_delay=0)
def sampled_time(sample_rate=1, start=0, end=1, offset=0):
return offset + np.arange(start, end, 1/sample_rate)
def normalise_sine_params(params):
params[2] = phase_mod(params[2])
return params
def noisy_sine_sampling(time, init_params, noise_sigma=1, rng=rng):
if init_params[2] is None:
init_params[2] = phasemod(2*np.pi*rng.random())
@ -29,3 +39,15 @@ def noisy_sine_sampling(time, init_params, noise_sigma=1, rng=rng):
return samples, noise
# Alias noisy_sine
noisy_sine = noisy_sine_sampling
def find_nearest(value, array, return_idx=True):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
if return_idx:
return idx
else:
return array[idx]