mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-11-13 10:03:32 +01:00
ZH: renaming phase variables III: sigma_phase_*->clock_phase_*
This commit is contained in:
parent
6be1bb129f
commit
75999e6eb3
3 changed files with 26 additions and 26 deletions
|
@ -33,7 +33,7 @@ def read_antenna_clock_repair_offsets(antennas, mode='all', freq_name=None):
|
||||||
|
|
||||||
# phase
|
# phase
|
||||||
if mode in ['all', 'phases']:
|
if mode in ['all', 'phases']:
|
||||||
clock_phase = ant.beacon_info[freq_name]['sigma_phase_mean']
|
clock_phase = ant.beacon_info[freq_name]['clock_phase_mean']
|
||||||
f_beacon = ant.beacon_info[freq_name]['freq']
|
f_beacon = ant.beacon_info[freq_name]['freq']
|
||||||
clock_phase_time = clock_phase/(2*np.pi*f_beacon)
|
clock_phase_time = clock_phase/(2*np.pi*f_beacon)
|
||||||
|
|
||||||
|
|
|
@ -48,19 +48,19 @@ if __name__ == "__main__":
|
||||||
N_ant = len(antennas)
|
N_ant = len(antennas)
|
||||||
|
|
||||||
# reshape time_diffs into N_ant x N_ant matrix
|
# reshape time_diffs into N_ant x N_ant matrix
|
||||||
sigma_phase_matrix = np.full( (N_ant, N_ant), np.nan, dtype=float)
|
clock_phase_matrix = np.full( (N_ant, N_ant), np.nan, dtype=float)
|
||||||
|
|
||||||
## set i=i terms to 0
|
## set i=i terms to 0
|
||||||
for i in range(N_ant):
|
for i in range(N_ant):
|
||||||
sigma_phase_matrix[i,i] = 0
|
clock_phase_matrix[i,i] = 0
|
||||||
|
|
||||||
## fill matrix
|
## fill matrix
|
||||||
name2idx = lambda name: int(name)-1
|
name2idx = lambda name: int(name)-1
|
||||||
for i, b in enumerate(basenames):
|
for i, b in enumerate(basenames):
|
||||||
idx = (name2idx(b[0]), name2idx(b[1]))
|
idx = (name2idx(b[0]), name2idx(b[1]))
|
||||||
|
|
||||||
sigma_phase_matrix[(idx[0], idx[1])] = lib.phase_mod(clock_phase_diffs[i])
|
clock_phase_matrix[(idx[0], idx[1])] = lib.phase_mod(clock_phase_diffs[i])
|
||||||
sigma_phase_matrix[(idx[1], idx[0])] = lib.phase_mod(-1*clock_phase_diffs[i])
|
clock_phase_matrix[(idx[1], idx[0])] = lib.phase_mod(-1*clock_phase_diffs[i])
|
||||||
|
|
||||||
mat_kwargs = dict(
|
mat_kwargs = dict(
|
||||||
norm = Normalize(vmin=-np.pi, vmax=+np.pi),
|
norm = Normalize(vmin=-np.pi, vmax=+np.pi),
|
||||||
|
@ -74,7 +74,7 @@ if __name__ == "__main__":
|
||||||
ax.set_ylabel("Antenna no. i")
|
ax.set_ylabel("Antenna no. i")
|
||||||
ax.set_xlabel("Antenna no. j")
|
ax.set_xlabel("Antenna no. j")
|
||||||
|
|
||||||
im = ax.imshow(sigma_phase_matrix, interpolation='none', **mat_kwargs)
|
im = ax.imshow(clock_phase_matrix, interpolation='none', **mat_kwargs)
|
||||||
fig.colorbar(im, ax=ax)
|
fig.colorbar(im, ax=ax)
|
||||||
|
|
||||||
if fig_dir:
|
if fig_dir:
|
||||||
|
@ -88,7 +88,7 @@ if __name__ == "__main__":
|
||||||
if True:
|
if True:
|
||||||
# for each row j subtract the 0,j element from the whole row
|
# for each row j subtract the 0,j element from the whole row
|
||||||
# and apply phase_mod
|
# and apply phase_mod
|
||||||
first_row = -1*(sigma_phase_matrix[0,:] * np.ones_like(sigma_phase_matrix)).T
|
first_row = -1*(clock_phase_matrix[0,:] * np.ones_like(clock_phase_matrix)).T
|
||||||
|
|
||||||
# Show subtraction Matrix as figure
|
# Show subtraction Matrix as figure
|
||||||
if True:
|
if True:
|
||||||
|
@ -105,18 +105,18 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
|
||||||
sigma_phase_matrix = sigma_phase_matrix - first_row
|
clock_phase_matrix = clock_phase_matrix - first_row
|
||||||
sigma_phase_matrix = lib.phase_mod(sigma_phase_matrix)
|
clock_phase_matrix = lib.phase_mod(clock_phase_matrix)
|
||||||
|
|
||||||
# Except for the first row, these are all separate measurements
|
# Except for the first row, these are all separate measurements
|
||||||
# Condense into phase offset per antenna
|
# Condense into phase offset per antenna
|
||||||
if True: # do not use the first row
|
if True: # do not use the first row
|
||||||
my_mask = np.arange(1, len(sigma_phase_matrix), dtype=int)
|
my_mask = np.arange(1, len(clock_phase_matrix), dtype=int)
|
||||||
else:
|
else:
|
||||||
my_mask = np.arange(0, len(sigma_phase_matrix), dtype=int)
|
my_mask = np.arange(0, len(clock_phase_matrix), dtype=int)
|
||||||
|
|
||||||
mean_sigma_phase = np.nanmean(sigma_phase_matrix[my_mask], axis=0)
|
mean_clock_phase = np.nanmean(clock_phase_matrix[my_mask], axis=0)
|
||||||
std_sigma_phase = np.nanstd( sigma_phase_matrix[my_mask], axis=0)
|
std_clock_phase = np.nanstd( clock_phase_matrix[my_mask], axis=0)
|
||||||
|
|
||||||
|
|
||||||
# Show resulting matrix as figure
|
# Show resulting matrix as figure
|
||||||
|
@ -126,14 +126,14 @@ if __name__ == "__main__":
|
||||||
axs[0].set_ylabel("Antenna no. 0")
|
axs[0].set_ylabel("Antenna no. 0")
|
||||||
axs[-1].set_xlabel("Antenna no. j")
|
axs[-1].set_xlabel("Antenna no. j")
|
||||||
|
|
||||||
im = axs[0].imshow(sigma_phase_matrix, interpolation='none', **mat_kwargs)
|
im = axs[0].imshow(clock_phase_matrix, interpolation='none', **mat_kwargs)
|
||||||
fig.colorbar(im, ax=axs)
|
fig.colorbar(im, ax=axs)
|
||||||
axs[0].set_aspect('auto')
|
axs[0].set_aspect('auto')
|
||||||
|
|
||||||
colours = [mat_kwargs['cmap'](mat_kwargs['norm'](x)) for x in mean_sigma_phase]
|
colours = [mat_kwargs['cmap'](mat_kwargs['norm'](x)) for x in mean_clock_phase]
|
||||||
axs[1].set_ylabel("Mean Baseline Phase (0, j)[rad]")
|
axs[1].set_ylabel("Mean Baseline Phase (0, j)[rad]")
|
||||||
axs[1].errorbar(np.arange(N_ant), mean_sigma_phase, yerr=std_sigma_phase, ls='none')
|
axs[1].errorbar(np.arange(N_ant), mean_clock_phase, yerr=std_clock_phase, ls='none')
|
||||||
axs[1].scatter(np.arange(N_ant), mean_sigma_phase, c=colours,s=4)
|
axs[1].scatter(np.arange(N_ant), mean_clock_phase, c=colours,s=4)
|
||||||
|
|
||||||
if fig_dir:
|
if fig_dir:
|
||||||
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".matrix.modified.pdf"))
|
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".matrix.modified.pdf"))
|
||||||
|
@ -157,8 +157,8 @@ if __name__ == "__main__":
|
||||||
h5attrs = h5beacon_info[freq_name].attrs
|
h5attrs = h5beacon_info[freq_name].attrs
|
||||||
|
|
||||||
idx = name2idx(ant.name)
|
idx = name2idx(ant.name)
|
||||||
h5attrs['sigma_phase_mean'] = mean_sigma_phase[idx]
|
h5attrs['clock_phase_mean'] = mean_clock_phase[idx]
|
||||||
h5attrs['sigma_phase_std'] = std_sigma_phase[idx]
|
h5attrs['clock_phase_std'] = std_clock_phase[idx]
|
||||||
|
|
||||||
|
|
||||||
##############################
|
##############################
|
||||||
|
@ -171,7 +171,7 @@ if __name__ == "__main__":
|
||||||
antenna_names = [int(k)-1 for k,v in actual_antenna_time_shifts.items() ]
|
antenna_names = [int(k)-1 for k,v in actual_antenna_time_shifts.items() ]
|
||||||
|
|
||||||
# Make sure to shift all antennas by a global phase
|
# Make sure to shift all antennas by a global phase
|
||||||
global_phase_shift = actual_antenna_phase_shifts[0] - mean_sigma_phase[0]
|
global_phase_shift = actual_antenna_phase_shifts[0] - mean_clock_phase[0]
|
||||||
actual_antenna_phase_shifts = lib.phase_mod(actual_antenna_phase_shifts - global_phase_shift )
|
actual_antenna_phase_shifts = lib.phase_mod(actual_antenna_phase_shifts - global_phase_shift )
|
||||||
|
|
||||||
for i in range(2):
|
for i in range(2):
|
||||||
|
@ -187,7 +187,7 @@ if __name__ == "__main__":
|
||||||
secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]')
|
secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]')
|
||||||
|
|
||||||
if plot_residuals:
|
if plot_residuals:
|
||||||
phase_residuals = lib.phase_mod(mean_sigma_phase - actual_antenna_phase_shifts)
|
phase_residuals = lib.phase_mod(mean_clock_phase - actual_antenna_phase_shifts)
|
||||||
fig.suptitle("Difference between Measured and Actual phases (minus global phase)\n for Antenna $i$")
|
fig.suptitle("Difference between Measured and Actual phases (minus global phase)\n for Antenna $i$")
|
||||||
axs[-1].set_xlabel("Antenna Phase Residual $\\Delta_\\varphi$")
|
axs[-1].set_xlabel("Antenna Phase Residual $\\Delta_\\varphi$")
|
||||||
else:
|
else:
|
||||||
|
@ -200,7 +200,7 @@ if __name__ == "__main__":
|
||||||
if plot_residuals:
|
if plot_residuals:
|
||||||
axs[i].hist(phase_residuals, bins='sqrt', alpha=0.8, color=colors[0])
|
axs[i].hist(phase_residuals, bins='sqrt', alpha=0.8, color=colors[0])
|
||||||
else:
|
else:
|
||||||
axs[i].hist(mean_sigma_phase, bins='sqrt', density=False, alpha=0.8, color=colors[0], ls='solid' , histtype='step', label='Measured')
|
axs[i].hist(mean_clock_phase, bins='sqrt', density=False, alpha=0.8, color=colors[0], ls='solid' , histtype='step', label='Measured')
|
||||||
axs[i].hist(actual_antenna_phase_shifts, bins='sqrt', density=False, alpha=0.8, color=colors[1], ls='dashed', histtype='step', label='Actual')
|
axs[i].hist(actual_antenna_phase_shifts, bins='sqrt', density=False, alpha=0.8, color=colors[1], ls='dashed', histtype='step', label='Actual')
|
||||||
|
|
||||||
|
|
||||||
|
@ -209,7 +209,7 @@ if __name__ == "__main__":
|
||||||
if plot_residuals:
|
if plot_residuals:
|
||||||
axs[i].plot(phase_residuals, np.arange(N_ant), alpha=0.6, ls='none', marker='x', color=colors[0])
|
axs[i].plot(phase_residuals, np.arange(N_ant), alpha=0.6, ls='none', marker='x', color=colors[0])
|
||||||
else:
|
else:
|
||||||
axs[i].errorbar(mean_sigma_phase, np.arange(N_ant), yerr=std_sigma_phase, marker='4', alpha=0.7, ls='none', color=colors[0], label='Measured')
|
axs[i].errorbar(mean_clock_phase, np.arange(N_ant), yerr=std_clock_phase, marker='4', alpha=0.7, ls='none', color=colors[0], label='Measured')
|
||||||
axs[i].plot(actual_antenna_phase_shifts, antenna_names, ls='none', marker='3', alpha=0.8, color=colors[1], label='Actual')
|
axs[i].plot(actual_antenna_phase_shifts, antenna_names, ls='none', marker='3', alpha=0.8, color=colors[1], label='Actual')
|
||||||
|
|
||||||
axs[i].legend()
|
axs[i].legend()
|
||||||
|
@ -231,10 +231,10 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
actual_baseline_time_shifts.append(actual_baseline_time_shift)
|
actual_baseline_time_shifts.append(actual_baseline_time_shift)
|
||||||
|
|
||||||
# unpack mean_sigma_phase back into a list of time diffs
|
# unpack mean_clock_phase back into a list of time diffs
|
||||||
measured_baseline_time_diffs = []
|
measured_baseline_time_diffs = []
|
||||||
for i,b in enumerate(basenames):
|
for i,b in enumerate(basenames):
|
||||||
phase0, phase1 = mean_sigma_phase[name2idx(b[0])], mean_sigma_phase[name2idx(b[1])]
|
phase0, phase1 = mean_clock_phase[name2idx(b[0])], mean_clock_phase[name2idx(b[1])]
|
||||||
measured_baseline_time_diffs.append(lib.phase_mod(phase1 - phase0)/(2*np.pi*f_beacon))
|
measured_baseline_time_diffs.append(lib.phase_mod(phase1 - phase0)/(2*np.pi*f_beacon))
|
||||||
|
|
||||||
# Make a plot
|
# Make a plot
|
||||||
|
|
|
@ -51,7 +51,7 @@ if __name__ == "__main__":
|
||||||
# TODO: redo matrix sweeping for new timing??
|
# TODO: redo matrix sweeping for new timing??
|
||||||
measured_antenna_time_shifts = {}
|
measured_antenna_time_shifts = {}
|
||||||
for i, ant in enumerate(antennas):
|
for i, ant in enumerate(antennas):
|
||||||
clock_phase_time = ant.beacon_info[freq_name]['sigma_phase_mean']/(2*np.pi*f_beacon)
|
clock_phase_time = ant.beacon_info[freq_name]['clock_phase_mean']/(2*np.pi*f_beacon)
|
||||||
best_k_time = ant.beacon_info[freq_name]['best_k_time']
|
best_k_time = ant.beacon_info[freq_name]['best_k_time']
|
||||||
|
|
||||||
total_clock_time = best_k_time + clock_phase_time
|
total_clock_time = best_k_time + clock_phase_time
|
||||||
|
|
Loading…
Reference in a new issue