mirror of
				https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
				synced 2025-10-31 03:46:44 +01:00 
			
		
		
		
	Merge branch 'rit-joblib' into main
This commit is contained in:
		
						commit
						76b9e99936
					
				
					 2 changed files with 40 additions and 21 deletions
				
			
		| 
						 | 
				
			
			@ -11,6 +11,7 @@ from mpl_toolkits.mplot3d import Axes3D # required for projection='3d' on old ma
 | 
			
		|||
import numpy as np
 | 
			
		||||
from os import path
 | 
			
		||||
import pickle
 | 
			
		||||
import joblib
 | 
			
		||||
 | 
			
		||||
from earsim import REvent
 | 
			
		||||
from atmocal import AtmoCal
 | 
			
		||||
| 
						 | 
				
			
			@ -73,7 +74,8 @@ if __name__ == "__main__":
 | 
			
		|||
        ev.antennas[i].t += total_clock_time
 | 
			
		||||
 | 
			
		||||
    N_X, Xlow, Xhigh = 23, 100, 1200
 | 
			
		||||
    res = rit.reconstruction(ev, outfile=fig_subdir+'/fig.pdf', slice_outdir=fig_subdir+'/', Xlow=Xlow, N_X=N_X, Xhigh=Xhigh)
 | 
			
		||||
    with joblib.parallel_backend("loky"):
 | 
			
		||||
        res = rit.reconstruction(ev, outfile=fig_subdir+'/fig.pdf', slice_outdir=fig_subdir+'/', Xlow=Xlow, N_X=N_X, Xhigh=Xhigh)
 | 
			
		||||
 | 
			
		||||
    ## Save a pickle
 | 
			
		||||
    with open(pickle_fname, 'wb') as fp:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -10,6 +10,12 @@ from scipy.optimize import curve_fit,minimize
 | 
			
		|||
import pandas as pd
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
    from joblib import Parallel, delayed
 | 
			
		||||
except:
 | 
			
		||||
    Parallel = None
 | 
			
		||||
    delayed = lambda x: x
 | 
			
		||||
 | 
			
		||||
plt.rcParams.update({'font.size': 16})
 | 
			
		||||
 | 
			
		||||
atm = AtmoCal()
 | 
			
		||||
| 
						 | 
				
			
			@ -79,26 +85,28 @@ def shower_axis_slice(e,Xb=200,Xe=1200,dX=2,zgr=0):
 | 
			
		|||
    p = np.asanyarray(p)
 | 
			
		||||
    return ds,Xs,locs,p
 | 
			
		||||
 | 
			
		||||
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0):
 | 
			
		||||
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0,n_jobs=None):
 | 
			
		||||
    zgr = zgr + e.core[2]
 | 
			
		||||
    dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
 | 
			
		||||
    x = np.linspace(-wx,wx,Nx)
 | 
			
		||||
    y = np.linspace(-wy,wy,Ny)
 | 
			
		||||
    xx = []
 | 
			
		||||
    yy = []
 | 
			
		||||
    p = []
 | 
			
		||||
    locs = []
 | 
			
		||||
    for x_ in x:
 | 
			
		||||
        for y_ in y:
 | 
			
		||||
 | 
			
		||||
    def loop_func(x_, y_, xoff=xoff, yoff=yoff):
 | 
			
		||||
            loc = (x_+xoff)* e.uAxB + (y_+yoff)*e.uAxAxB + dX *e.uA
 | 
			
		||||
            locs.append(loc)
 | 
			
		||||
            P,t_,pulses_,wav,twav = pow_and_time(loc,e)
 | 
			
		||||
            xx.append(x_+xoff)
 | 
			
		||||
            yy.append(y_+yoff)
 | 
			
		||||
            p.append(P)
 | 
			
		||||
    xx = np.asarray(xx)
 | 
			
		||||
    yy = np.asarray(yy)
 | 
			
		||||
    p = np.asanyarray(p)
 | 
			
		||||
 | 
			
		||||
            return x_+xoff, y_+yoff, P, locs
 | 
			
		||||
 | 
			
		||||
    res = ( delayed(loop_func)(x_, y_) for x_ in x for y_ in y)
 | 
			
		||||
 | 
			
		||||
    if Parallel:
 | 
			
		||||
        #if n_jobs is None change with `with parallel_backend`
 | 
			
		||||
        res = Parallel(n_jobs=n_jobs)(res)
 | 
			
		||||
 | 
			
		||||
    # unpack loop results
 | 
			
		||||
    xx, yy, p, locs = zip(*res)
 | 
			
		||||
 | 
			
		||||
    return xx,yy,p,locs[np.argmax(p)]
 | 
			
		||||
 | 
			
		||||
def slice_figure(e,X,xx,yy,p,mode='horizontal'):
 | 
			
		||||
| 
						 | 
				
			
			@ -146,17 +154,16 @@ def dist_to_line_sum(param,data,weights):
 | 
			
		|||
    # print('%.2e %.2e %.2e %.2e %.2e'%(x0,y0,theta,phi,dsum))
 | 
			
		||||
    return dsum/len(data)
 | 
			
		||||
 | 
			
		||||
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15):
 | 
			
		||||
    axis_points = []
 | 
			
		||||
    max_vals = []
 | 
			
		||||
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15, n_jobs=None):
 | 
			
		||||
    Xsteps = np.linspace(Xlow, Xhigh, N_X)
 | 
			
		||||
    zgr=zgr+e.core[2] #not exact
 | 
			
		||||
    dXref = atm.distance_to_slant_depth(np.deg2rad(e.zenith),750,zgr)
 | 
			
		||||
    scale2d = dXref*np.tan(np.deg2rad(2.))
 | 
			
		||||
    scale4d = dXref*np.tan(np.deg2rad(4.))
 | 
			
		||||
    scale0_2d=dXref*np.tan(np.deg2rad(0.2))
 | 
			
		||||
    for X in Xsteps:
 | 
			
		||||
        print(X)
 | 
			
		||||
 | 
			
		||||
    def loop_func(X):
 | 
			
		||||
        print("Starting", X)
 | 
			
		||||
        x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale2d,scale2d)
 | 
			
		||||
        if savefig:
 | 
			
		||||
            fig,axs = slice_figure(e,X,x,y,p,'sp')
 | 
			
		||||
| 
						 | 
				
			
			@ -175,8 +182,18 @@ def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15):
 | 
			
		|||
            fig,axs = slice_figure(e,X,x,y,p,'sp')
 | 
			
		||||
            fig.savefig(path+'X%d_b.pdf'%(X))
 | 
			
		||||
            plt.close(fig)
 | 
			
		||||
        max_vals.append(np.max(p))
 | 
			
		||||
        axis_points.append(loc_max)
 | 
			
		||||
 | 
			
		||||
        print("Finished", X)
 | 
			
		||||
        return np.max(p), loc_max
 | 
			
		||||
 | 
			
		||||
    res = (delayed(loop_func)(X) for X in Xsteps)
 | 
			
		||||
 | 
			
		||||
    if Parallel:
 | 
			
		||||
        #if n_jobs is None change with `with parallel_backend`
 | 
			
		||||
        res = Parallel(n_jobs=n_jobs)(res)
 | 
			
		||||
 | 
			
		||||
    # unpack loop results
 | 
			
		||||
    max_vals, axis_points = zip(*res)
 | 
			
		||||
 | 
			
		||||
    return Xsteps,axis_points,max_vals
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue