mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 17:23:34 +01:00
Merge branch 'rit-joblib' into main
This commit is contained in:
commit
76b9e99936
2 changed files with 40 additions and 21 deletions
|
@ -11,6 +11,7 @@ from mpl_toolkits.mplot3d import Axes3D # required for projection='3d' on old ma
|
|||
import numpy as np
|
||||
from os import path
|
||||
import pickle
|
||||
import joblib
|
||||
|
||||
from earsim import REvent
|
||||
from atmocal import AtmoCal
|
||||
|
@ -73,7 +74,8 @@ if __name__ == "__main__":
|
|||
ev.antennas[i].t += total_clock_time
|
||||
|
||||
N_X, Xlow, Xhigh = 23, 100, 1200
|
||||
res = rit.reconstruction(ev, outfile=fig_subdir+'/fig.pdf', slice_outdir=fig_subdir+'/', Xlow=Xlow, N_X=N_X, Xhigh=Xhigh)
|
||||
with joblib.parallel_backend("loky"):
|
||||
res = rit.reconstruction(ev, outfile=fig_subdir+'/fig.pdf', slice_outdir=fig_subdir+'/', Xlow=Xlow, N_X=N_X, Xhigh=Xhigh)
|
||||
|
||||
## Save a pickle
|
||||
with open(pickle_fname, 'wb') as fp:
|
||||
|
|
|
@ -10,6 +10,12 @@ from scipy.optimize import curve_fit,minimize
|
|||
import pandas as pd
|
||||
import os
|
||||
|
||||
try:
|
||||
from joblib import Parallel, delayed
|
||||
except:
|
||||
Parallel = None
|
||||
delayed = lambda x: x
|
||||
|
||||
plt.rcParams.update({'font.size': 16})
|
||||
|
||||
atm = AtmoCal()
|
||||
|
@ -79,26 +85,28 @@ def shower_axis_slice(e,Xb=200,Xe=1200,dX=2,zgr=0):
|
|||
p = np.asanyarray(p)
|
||||
return ds,Xs,locs,p
|
||||
|
||||
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0):
|
||||
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0,n_jobs=None):
|
||||
zgr = zgr + e.core[2]
|
||||
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
|
||||
x = np.linspace(-wx,wx,Nx)
|
||||
y = np.linspace(-wy,wy,Ny)
|
||||
xx = []
|
||||
yy = []
|
||||
p = []
|
||||
locs = []
|
||||
for x_ in x:
|
||||
for y_ in y:
|
||||
|
||||
def loop_func(x_, y_, xoff=xoff, yoff=yoff):
|
||||
loc = (x_+xoff)* e.uAxB + (y_+yoff)*e.uAxAxB + dX *e.uA
|
||||
locs.append(loc)
|
||||
P,t_,pulses_,wav,twav = pow_and_time(loc,e)
|
||||
xx.append(x_+xoff)
|
||||
yy.append(y_+yoff)
|
||||
p.append(P)
|
||||
xx = np.asarray(xx)
|
||||
yy = np.asarray(yy)
|
||||
p = np.asanyarray(p)
|
||||
|
||||
return x_+xoff, y_+yoff, P, locs
|
||||
|
||||
res = ( delayed(loop_func)(x_, y_) for x_ in x for y_ in y)
|
||||
|
||||
if Parallel:
|
||||
#if n_jobs is None change with `with parallel_backend`
|
||||
res = Parallel(n_jobs=n_jobs)(res)
|
||||
|
||||
# unpack loop results
|
||||
xx, yy, p, locs = zip(*res)
|
||||
|
||||
return xx,yy,p,locs[np.argmax(p)]
|
||||
|
||||
def slice_figure(e,X,xx,yy,p,mode='horizontal'):
|
||||
|
@ -146,17 +154,16 @@ def dist_to_line_sum(param,data,weights):
|
|||
# print('%.2e %.2e %.2e %.2e %.2e'%(x0,y0,theta,phi,dsum))
|
||||
return dsum/len(data)
|
||||
|
||||
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15):
|
||||
axis_points = []
|
||||
max_vals = []
|
||||
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15, n_jobs=None):
|
||||
Xsteps = np.linspace(Xlow, Xhigh, N_X)
|
||||
zgr=zgr+e.core[2] #not exact
|
||||
dXref = atm.distance_to_slant_depth(np.deg2rad(e.zenith),750,zgr)
|
||||
scale2d = dXref*np.tan(np.deg2rad(2.))
|
||||
scale4d = dXref*np.tan(np.deg2rad(4.))
|
||||
scale0_2d=dXref*np.tan(np.deg2rad(0.2))
|
||||
for X in Xsteps:
|
||||
print(X)
|
||||
|
||||
def loop_func(X):
|
||||
print("Starting", X)
|
||||
x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale2d,scale2d)
|
||||
if savefig:
|
||||
fig,axs = slice_figure(e,X,x,y,p,'sp')
|
||||
|
@ -175,8 +182,18 @@ def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15):
|
|||
fig,axs = slice_figure(e,X,x,y,p,'sp')
|
||||
fig.savefig(path+'X%d_b.pdf'%(X))
|
||||
plt.close(fig)
|
||||
max_vals.append(np.max(p))
|
||||
axis_points.append(loc_max)
|
||||
|
||||
print("Finished", X)
|
||||
return np.max(p), loc_max
|
||||
|
||||
res = (delayed(loop_func)(X) for X in Xsteps)
|
||||
|
||||
if Parallel:
|
||||
#if n_jobs is None change with `with parallel_backend`
|
||||
res = Parallel(n_jobs=n_jobs)(res)
|
||||
|
||||
# unpack loop results
|
||||
max_vals, axis_points = zip(*res)
|
||||
|
||||
return Xsteps,axis_points,max_vals
|
||||
|
||||
|
|
Loading…
Reference in a new issue