Pulse: fit gaussian

This commit is contained in:
Eric Teunis de Boone 2023-04-24 17:52:19 +02:00
parent 8f42db2a99
commit 81b3502de5

View file

@ -2,9 +2,10 @@
from lib import util
from scipy import signal, interpolate
from scipy import signal, interpolate, stats
import matplotlib.pyplot as plt
import numpy as np
from itertools import zip_longest
try:
from tqdm import tqdm
@ -203,8 +204,6 @@ if __name__ == "__main__":
antenna.peak_sample = antenna.peak_time/antenna.dt
antenna_true_signal = antenna.signal
true_time_offset = antenna.peak_time - template.peak_time
if do_plots:
@ -296,6 +295,9 @@ if __name__ == "__main__":
best_time_lag = best_sample_lag * lag_dt
time_residuals[j] = best_time_lag - true_time_offset
if not do_plots:
continue
if do_plots and axs2:
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
@ -368,13 +370,59 @@ if __name__ == "__main__":
# Make a plot of the time residuals
if len(time_residuals) > 1:
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
fig, ax = plt.subplots()
ax.set_title("Template Correlation Lag finding")
ax.set_title(
"Template Correlation Lag finding"
+ f"\n template dt: {template.dt*1e3: .1e}ps"
+ f"; antenna dt: {antenna.dt: .1e}ns"
+ f"; noise_factor: {noise_sigma_factor: .1e}"
)
ax.set_xlabel("Time Residual [ns]")
ax.set_ylabel("#")
ax.hist(time_residuals, bins='sqrt', density=False)
ax.legend(title=f"template dt: {template.dt: .1e}ns\nantenna dt: {antenna.dt: .1e}ns")
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
if True: # fit gaussian to histogram
min_x = min(time_residuals)
max_x = max(time_residuals)
dx = bins[1] - bins[0]
scale = len(time_residuals) * dx
xs = np.linspace(min_x, max_x)
# do the fit
name = "Norm"
param_names = [ "$\\mu$", "$\\sigma$" ]
distr_func = stats.norm
label = name +"(" + ','.join(param_names) + ')'
# plot
fit_params = distr_func.fit(time_residuals)
fit_ys = scale * distr_func.pdf(xs, *fit_params)
ax.plot(xs, fit_ys, label=label)
# chisq
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
if True:
ct *= np.sum(counts)/np.sum(ct)
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
chisq_strs = [
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
]
# text on plot
text_str = "\n".join(
[label]
+
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
+
chisq_strs
)
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
fig.savefig("figures/11_time_residual_hist.pdf")