mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-11-13 10:03:32 +01:00
Pulse: fit gaussian
This commit is contained in:
parent
8f42db2a99
commit
81b3502de5
1 changed files with 54 additions and 6 deletions
|
@ -2,9 +2,10 @@
|
|||
|
||||
|
||||
from lib import util
|
||||
from scipy import signal, interpolate
|
||||
from scipy import signal, interpolate, stats
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from itertools import zip_longest
|
||||
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
|
@ -203,8 +204,6 @@ if __name__ == "__main__":
|
|||
|
||||
antenna.peak_sample = antenna.peak_time/antenna.dt
|
||||
antenna_true_signal = antenna.signal
|
||||
|
||||
|
||||
true_time_offset = antenna.peak_time - template.peak_time
|
||||
|
||||
if do_plots:
|
||||
|
@ -296,6 +295,9 @@ if __name__ == "__main__":
|
|||
best_time_lag = best_sample_lag * lag_dt
|
||||
time_residuals[j] = best_time_lag - true_time_offset
|
||||
|
||||
if not do_plots:
|
||||
continue
|
||||
|
||||
if do_plots and axs2:
|
||||
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
|
||||
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
|
||||
|
@ -368,13 +370,59 @@ if __name__ == "__main__":
|
|||
|
||||
# Make a plot of the time residuals
|
||||
if len(time_residuals) > 1:
|
||||
|
||||
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Template Correlation Lag finding")
|
||||
ax.set_title(
|
||||
"Template Correlation Lag finding"
|
||||
+ f"\n template dt: {template.dt*1e3: .1e}ps"
|
||||
+ f"; antenna dt: {antenna.dt: .1e}ns"
|
||||
+ f"; noise_factor: {noise_sigma_factor: .1e}"
|
||||
)
|
||||
ax.set_xlabel("Time Residual [ns]")
|
||||
ax.set_ylabel("#")
|
||||
ax.hist(time_residuals, bins='sqrt', density=False)
|
||||
|
||||
ax.legend(title=f"template dt: {template.dt: .1e}ns\nantenna dt: {antenna.dt: .1e}ns")
|
||||
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
|
||||
if True: # fit gaussian to histogram
|
||||
min_x = min(time_residuals)
|
||||
max_x = max(time_residuals)
|
||||
|
||||
dx = bins[1] - bins[0]
|
||||
scale = len(time_residuals) * dx
|
||||
|
||||
xs = np.linspace(min_x, max_x)
|
||||
|
||||
# do the fit
|
||||
name = "Norm"
|
||||
param_names = [ "$\\mu$", "$\\sigma$" ]
|
||||
distr_func = stats.norm
|
||||
|
||||
label = name +"(" + ','.join(param_names) + ')'
|
||||
|
||||
# plot
|
||||
fit_params = distr_func.fit(time_residuals)
|
||||
fit_ys = scale * distr_func.pdf(xs, *fit_params)
|
||||
ax.plot(xs, fit_ys, label=label)
|
||||
|
||||
# chisq
|
||||
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
|
||||
if True:
|
||||
ct *= np.sum(counts)/np.sum(ct)
|
||||
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
|
||||
chisq_strs = [
|
||||
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
|
||||
]
|
||||
|
||||
# text on plot
|
||||
text_str = "\n".join(
|
||||
[label]
|
||||
+
|
||||
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
|
||||
+
|
||||
chisq_strs
|
||||
)
|
||||
|
||||
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
|
||||
|
||||
fig.savefig("figures/11_time_residual_hist.pdf")
|
||||
|
||||
|
|
Loading…
Reference in a new issue