mirror of
				https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
				synced 2025-10-31 03:46:44 +01:00 
			
		
		
		
	Script for SNR determination: somethings up here
This commit is contained in:
		
							parent
							
								
									a195bb99d2
								
							
						
					
					
						commit
						820f58d901
					
				
					 1 changed files with 426 additions and 0 deletions
				
			
		
							
								
								
									
										426
									
								
								fourier/signal_to_noise.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										426
									
								
								fourier/signal_to_noise.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,426 @@
 | 
			
		|||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
__doc__ = \
 | 
			
		||||
"""
 | 
			
		||||
Show 
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
from collections import namedtuple
 | 
			
		||||
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import matplotlib.gridspec as gridspec
 | 
			
		||||
import numpy as np
 | 
			
		||||
import scipy.fftpack as ft
 | 
			
		||||
 | 
			
		||||
rng = np.random.default_rng()
 | 
			
		||||
 | 
			
		||||
passband = namedtuple("Band", ['low', 'high'], defaults=[0, np.inf])
 | 
			
		||||
 | 
			
		||||
def get_freq_spec(val,dt):
 | 
			
		||||
    """From earsim/tools.py"""
 | 
			
		||||
    fval = np.abs(np.fft.fft(val))[:len(val)//2]
 | 
			
		||||
    freq =  np.fft.fftfreq(len(val),dt)[:len(val)//2]
 | 
			
		||||
    return fval, freq
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def ft_spectrum( signal, sample_rate=1, ftfunc=None, freqfunc=None, mask_bias=False, normalise_amplitude=False):
 | 
			
		||||
    """Return a FT of $signal$, with corresponding frequencies"""
 | 
			
		||||
 | 
			
		||||
    if True:
 | 
			
		||||
        return get_freq_spec(signal, 1/sample_rate)
 | 
			
		||||
 | 
			
		||||
    n_samples = len(signal)
 | 
			
		||||
    
 | 
			
		||||
    if ftfunc is None:
 | 
			
		||||
        real_signal = np.isrealobj(signal)
 | 
			
		||||
        if False and real_signal:
 | 
			
		||||
            ftfunc = ft.rfft 
 | 
			
		||||
            freqfunc = ft.rfftfreq
 | 
			
		||||
        else:
 | 
			
		||||
            ftfunc = ft.fft
 | 
			
		||||
            freqfunc = ft.fftfreq
 | 
			
		||||
 | 
			
		||||
    if freqfunc is None:
 | 
			
		||||
        freqfunc = ft.fftfreq
 | 
			
		||||
 | 
			
		||||
    normalisation = 2/len(signal) if normalise_amplitude else 1
 | 
			
		||||
    
 | 
			
		||||
    spectrum = normalisation * ftfunc(signal)
 | 
			
		||||
    freqs = freqfunc(n_samples, 1/sample_rate)
 | 
			
		||||
    
 | 
			
		||||
    if not mask_bias:
 | 
			
		||||
        return spectrum, freqs
 | 
			
		||||
    else:
 | 
			
		||||
        return spectrum[1:], freqs[1:]
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
def plot_spectrum( spectrum, freqs, plot_complex=False, plot_power=False, plot_amplitude=None, ax=None, freq_unit="Hz", freq_scaler=1):
 | 
			
		||||
    """ Plot a signal's spectrum on an Axis object"""
 | 
			
		||||
    plot_amplitude = plot_amplitude or (not plot_power and not plot_complex)
 | 
			
		||||
    alpha = 1
 | 
			
		||||
 | 
			
		||||
    if ax is None:
 | 
			
		||||
        ax = plt.gca()
 | 
			
		||||
    
 | 
			
		||||
    ax.set_title("Spectrum")
 | 
			
		||||
    ax.set_xlabel("f" + (" ["+freq_unit+"]" if freq_unit else "" ))
 | 
			
		||||
    ylabel = ""
 | 
			
		||||
    if plot_amplitude or plot_complex:
 | 
			
		||||
        ylabel = "Amplitude"
 | 
			
		||||
    if plot_power:
 | 
			
		||||
        if ylabel:
 | 
			
		||||
            ylabel += "|"
 | 
			
		||||
        ylabel += "Power"
 | 
			
		||||
    ax.set_ylabel(ylabel)
 | 
			
		||||
 | 
			
		||||
    if plot_complex:
 | 
			
		||||
        alpha = 0.5
 | 
			
		||||
        ax.plot(freqs/freq_scaler, np.real(spectrum), '.-', label='Real', alpha=alpha)
 | 
			
		||||
        ax.plot(freqs/freq_scaler, np.imag(spectrum), '.-', label='Imag', alpha=alpha)
 | 
			
		||||
 | 
			
		||||
    if plot_power:
 | 
			
		||||
        ax.plot(freqs/freq_scaler, np.abs(spectrum)**2, '.-', label='Power', alpha=alpha)
 | 
			
		||||
    
 | 
			
		||||
    if plot_amplitude:
 | 
			
		||||
        ax.plot(freqs/freq_scaler, np.abs(spectrum), '.-', label='Abs', alpha=alpha)
 | 
			
		||||
 | 
			
		||||
    ax.legend()
 | 
			
		||||
 | 
			
		||||
    return ax
 | 
			
		||||
 | 
			
		||||
def plot_phase( spectrum, freqs, ylim_epsilon=0.5, ax=None, freq_unit="Hz", freq_scaler=1):
 | 
			
		||||
    if ax is None:
 | 
			
		||||
        ax = plt.gca()
 | 
			
		||||
 | 
			
		||||
    ax.set_ylabel("Phase")
 | 
			
		||||
    ax.set_xlabel("f" + (" ["+freq_unit+"]" if freq_unit else "" ))
 | 
			
		||||
 | 
			
		||||
    ax.plot(freqs/freq_scaler, np.angle(spectrum), '.-')
 | 
			
		||||
    ax.set_ylim(-1*np.pi - ylim_epsilon, np.pi + ylim_epsilon)
 | 
			
		||||
    
 | 
			
		||||
    return ax
 | 
			
		||||
 | 
			
		||||
def plot_signal( signal, sample_rate = 1, ax=None, time=None, time_unit="s", **kwargs):
 | 
			
		||||
    if ax is None:
 | 
			
		||||
        ax = plt.gca()
 | 
			
		||||
 | 
			
		||||
    if time is None:
 | 
			
		||||
        time = np.arange(len(signal))/sample_rate
 | 
			
		||||
 | 
			
		||||
    ax.set_title("Signal")
 | 
			
		||||
    ax.set_xlabel("t" + (" ["+time_unit+"]" if time_unit else "" ))
 | 
			
		||||
    ax.set_ylabel("A(t)")
 | 
			
		||||
 | 
			
		||||
    ax.plot(time, signal, **kwargs)
 | 
			
		||||
    
 | 
			
		||||
    return ax
 | 
			
		||||
 | 
			
		||||
def plot_combined_spectrum(spectrum, freqs, 
 | 
			
		||||
                           spectrum_kwargs={}, fig=None, gs=None, freq_scaler=1, freq_unit="Hz"):
 | 
			
		||||
    """Plot both the frequencies and phase in one figure."""
 | 
			
		||||
    
 | 
			
		||||
    # configure plotting layout
 | 
			
		||||
    if fig is None:
 | 
			
		||||
        fig = plt.figure(figsize=(8, 16))
 | 
			
		||||
 | 
			
		||||
    if gs is None:
 | 
			
		||||
        gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios=[3,1], hspace=0)
 | 
			
		||||
 | 
			
		||||
    ax1 = fig.add_subplot(gs[:-1, -1])
 | 
			
		||||
    ax2 = fig.add_subplot(gs[-1, -1], sharex=ax1)
 | 
			
		||||
 | 
			
		||||
    axes = np.array([ax1, ax2])
 | 
			
		||||
    
 | 
			
		||||
    # plot the spectrum 
 | 
			
		||||
    plot_spectrum(spectrum, freqs, ax=ax1, freq_scaler=freq_scaler, freq_unit=freq_unit, **spectrum_kwargs)
 | 
			
		||||
 | 
			
		||||
    # plot the phase
 | 
			
		||||
    plot_phase(spectrum, freqs, ax=ax2, freq_scaler=freq_scaler, freq_unit=freq_unit)
 | 
			
		||||
 | 
			
		||||
    ax1.xaxis.tick_top()
 | 
			
		||||
    [label.set_visible(False) for label in ax1.get_xticklabels()]
 | 
			
		||||
    
 | 
			
		||||
    return fig, axes
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def phasemod(phase, low=np.pi):
 | 
			
		||||
    """
 | 
			
		||||
    Modulo phase such that it falls within the 
 | 
			
		||||
    interval $[-low, 2\pi - low)$.
 | 
			
		||||
    """
 | 
			
		||||
    return (phase + low) % (2*np.pi) - low
 | 
			
		||||
 | 
			
		||||
def save_all_figs_to_path(fnames, figs=None, default_basename=__file__, default_extensions=['.pdf', '.png']):
 | 
			
		||||
    if figs is None:
 | 
			
		||||
        figs = [plt.figure(i) for i in plt.get_fignums()]
 | 
			
		||||
    
 | 
			
		||||
    default_basename = path.basename(default_basename)
 | 
			
		||||
 | 
			
		||||
    # singular value
 | 
			
		||||
    if isinstance(fnames, (str, True)):
 | 
			
		||||
        fnames = [fnames]
 | 
			
		||||
 | 
			
		||||
    if len(fnames) == len(figs):
 | 
			
		||||
        fnames_list = zip(figs, fnames, False)
 | 
			
		||||
    elif len(fnames) == 1:
 | 
			
		||||
        fnames_list = ( (fig, fnames[0], len(figs) > 1) for fig in figs)
 | 
			
		||||
    else:
 | 
			
		||||
        # outer product magic
 | 
			
		||||
        fnames_list = ( (fig,fname, False) for fname in fnames for fig in figs )
 | 
			
		||||
    del fnames
 | 
			
		||||
    # format fnames
 | 
			
		||||
    pad_width = max(2, int(np.floor(np.log10(len(figs))+1)))
 | 
			
		||||
 | 
			
		||||
    fig_fnames = []
 | 
			
		||||
    for fig, fnames, append_num in fnames_list:
 | 
			
		||||
        if not hasattr(fnames, '__len__') or isinstance(fnames, str):
 | 
			
		||||
            # single name
 | 
			
		||||
            fnames = [fnames]
 | 
			
		||||
 | 
			
		||||
        new_fnames = []
 | 
			
		||||
        for fname in fnames:
 | 
			
		||||
            if path.isdir(fname):
 | 
			
		||||
                fname = path.join(fname, path.splitext(default_basename)[0]) # leave off extension
 | 
			
		||||
            if append_num is True:
 | 
			
		||||
               fname += ("_fig{:0"+str(pad_width)+"d}").format(fig.number)
 | 
			
		||||
 | 
			
		||||
            if not path.splitext(fname)[1]: # no extension
 | 
			
		||||
                for ext in default_extensions:
 | 
			
		||||
                    new_fnames.append(fname+ext)
 | 
			
		||||
            else:
 | 
			
		||||
                new_fnames.append(fname)
 | 
			
		||||
 | 
			
		||||
        fig_fnames.append(new_fnames)
 | 
			
		||||
 | 
			
		||||
    # save files
 | 
			
		||||
    for fnames, fig in zip(fig_fnames, figs):
 | 
			
		||||
        for fname in fnames:
 | 
			
		||||
            fig.savefig(fname, transparent=True)
 | 
			
		||||
 | 
			
		||||
def sine_fitfunc(t, amp=1, freq=1, phase=0, off=0):
 | 
			
		||||
    """Simple sine wave for fitting purposes"""
 | 
			
		||||
    return amp*np.sin( 2*np.pi*freq*t + phase) + off
 | 
			
		||||
 | 
			
		||||
def sampled_time(sample_rate=1, start=0, end=1, offset=0):
 | 
			
		||||
    return offset + np.arange(start, end, 1/sample_rate)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def bandpass_mask(freqs, band=passband()):
 | 
			
		||||
    low_pass = abs(freqs) <= band[1]
 | 
			
		||||
    high_pass = abs(freqs) >= band[0]
 | 
			
		||||
 | 
			
		||||
    return low_pass & high_pass
 | 
			
		||||
 | 
			
		||||
def bandsize(band = passband()):
 | 
			
		||||
    return band[1] - band[0]
 | 
			
		||||
 | 
			
		||||
def bandlevel(samples, samplerate=1, band=passband(), normalise_bandsize=True, **ft_kwargs):
 | 
			
		||||
    fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
 | 
			
		||||
 | 
			
		||||
    bandmask = bandpass_mask(freqs, band=band)
 | 
			
		||||
 | 
			
		||||
    if normalise_bandsize:
 | 
			
		||||
        bins = np.count_nonzero(bandmask, axis=-1)
 | 
			
		||||
    else:
 | 
			
		||||
        bins = 1
 | 
			
		||||
 | 
			
		||||
    level = np.sum(np.abs(fft[bandmask]))
 | 
			
		||||
 | 
			
		||||
    return level/bins
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def noisy_sine_sampling(time, init_params, noise_sigma=1, rng=rng):
 | 
			
		||||
    if init_params[2] is None:
 | 
			
		||||
        init_params[2] = phasemod(2*np.pi*rng.random())
 | 
			
		||||
 | 
			
		||||
    samples = sine_fitfunc(time, *init_params)
 | 
			
		||||
    noise = rng.normal(0, noise_sigma, size=len(samples))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    return samples, noise
 | 
			
		||||
 | 
			
		||||
def main(
 | 
			
		||||
        N = 1,
 | 
			
		||||
        f_sample = 250e6, # Hz
 | 
			
		||||
        t_length = 1e4 * 1e-9, # s
 | 
			
		||||
 | 
			
		||||
        noise_band = passband(30e6, 80e6),
 | 
			
		||||
        noise_sigma = 1,
 | 
			
		||||
 | 
			
		||||
    # signal properties
 | 
			
		||||
        f_sine = 50e6,
 | 
			
		||||
        signal_band = passband(50e6 - 1e6, 50e6 + 1e6),
 | 
			
		||||
        sine_amp = 0.2,
 | 
			
		||||
        sine_offset = 0,
 | 
			
		||||
        return_ranges_plot = False,
 | 
			
		||||
        cut_signal_band_from_noise_band = False
 | 
			
		||||
    ):
 | 
			
		||||
    N = int(N)
 | 
			
		||||
 | 
			
		||||
    init_params = np.array([sine_amp, f_sine, None, sine_offset])
 | 
			
		||||
 | 
			
		||||
    axs = None
 | 
			
		||||
    snrs = np.zeros( N )
 | 
			
		||||
    time = sampled_time(f_sample, end=t_length)
 | 
			
		||||
    for j in range(N):
 | 
			
		||||
        samples, noise = noisy_sine_sampling(time, init_params, noise_sigma)
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        # determine signal to noise
 | 
			
		||||
        noise_level = bandlevel(noise, f_sample, noise_band)
 | 
			
		||||
        if cut_signal_band_from_noise_band:
 | 
			
		||||
            lower_noise_band = passband(noise_band[0], signal_band[0])
 | 
			
		||||
            upper_noise_band = passband(signal_band[1], noise_band[1])
 | 
			
		||||
 | 
			
		||||
            noise_level = bandlevel(noise, f_sample, lower_noise_band)
 | 
			
		||||
            noise_level += bandlevel(noise, f_sample, upper_noise_band)
 | 
			
		||||
 | 
			
		||||
        signal_level = bandlevel(samples, f_sample, signal_band)
 | 
			
		||||
 | 
			
		||||
        snrs[j] = signal_level/noise_level
 | 
			
		||||
 | 
			
		||||
        # make a nice plot showing what ranges were taken
 | 
			
		||||
        # and the bandlevels associated with them
 | 
			
		||||
        if return_ranges_plot and j == 0:
 | 
			
		||||
            combined_fft, freqs = ft_spectrum(samples+noise, f_sample)
 | 
			
		||||
 | 
			
		||||
            # plot the original signal
 | 
			
		||||
            if False:
 | 
			
		||||
                _, ax = plt.subplots()
 | 
			
		||||
                ax = plot_signal(samples+noise, sample_rate=f_sample/1e6, time_unit='us', ax=ax)
 | 
			
		||||
 | 
			
		||||
            # plot the spectrum
 | 
			
		||||
            if True:
 | 
			
		||||
                freq_scaler=1e6
 | 
			
		||||
                _, axs = plot_combined_spectrum(combined_fft, freqs, freq_scaler=freq_scaler, freq_unit='MHz')
 | 
			
		||||
    
 | 
			
		||||
                # indicate band ranges and frequency
 | 
			
		||||
                for ax in axs:
 | 
			
		||||
                    ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4)
 | 
			
		||||
                    ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='purple', alpha=0.3, label='noiseband')
 | 
			
		||||
                    ax.axvspan(signal_band[0]/freq_scaler, signal_band[1]/freq_scaler, color='orange', alpha=0.3, label='signalband')
 | 
			
		||||
    
 | 
			
		||||
                # indicate initial phase
 | 
			
		||||
                axs[1].axhline(init_params[2], color='r', alpha=0.4)
 | 
			
		||||
    
 | 
			
		||||
                # plot the band levels
 | 
			
		||||
                levelax = axs[0].twinx()
 | 
			
		||||
                levelax.set_ylabel("Bandlevel")
 | 
			
		||||
                levelax.hlines(signal_level, noise_band[0]/freq_scaler, signal_band[1]/freq_scaler, colors=['orange'])
 | 
			
		||||
                levelax.hlines(noise_level, noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, colors=['purple'])
 | 
			
		||||
                levelax.set_ylim(bottom=0)
 | 
			
		||||
    
 | 
			
		||||
            axs[0].legend()
 | 
			
		||||
 | 
			
		||||
            # plot signal_band pass signal
 | 
			
		||||
            if False:
 | 
			
		||||
                freqs = np.fft.fftfreq(len(samples), 1/f_sample)
 | 
			
		||||
                bandmask = bandpass_mask(freqs, band=signal_band)
 | 
			
		||||
                fft = np.fft.fft(samples)
 | 
			
		||||
                fft[ ~bandmask ] = 0
 | 
			
		||||
                bandpassed_samples = np.fft.ifft(fft)
 | 
			
		||||
    
 | 
			
		||||
                _, ax3 = plt.subplots()
 | 
			
		||||
                ax3 = plot_signal(bandpassed_samples, sample_rate=f_sample/1e6, time_unit='us', ax=ax3)
 | 
			
		||||
                ax3.set_title("Bandpassed Signal")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    return snrs, axs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    from argparse import ArgumentParser
 | 
			
		||||
    import os.path as path
 | 
			
		||||
 | 
			
		||||
    rng = np.random.default_rng(1)
 | 
			
		||||
 | 
			
		||||
    parser = ArgumentParser(description=__doc__)
 | 
			
		||||
    parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    default_extensions = ['.pdf', '.png']
 | 
			
		||||
 | 
			
		||||
    if args.fname == 'none':
 | 
			
		||||
        args.fname = None
 | 
			
		||||
 | 
			
		||||
    ###
 | 
			
		||||
    t_lengths = np.linspace(1e3, 5e4)* 1e-9 # s
 | 
			
		||||
    N = 10e1
 | 
			
		||||
    f_sine = 53e6 # Hz
 | 
			
		||||
    f_sample = 250e6 # Hz
 | 
			
		||||
 | 
			
		||||
    if True:
 | 
			
		||||
        N = 2 # Note: keep this low, N figures will be displayed!
 | 
			
		||||
        N_t_length = 2
 | 
			
		||||
        for t_length in t_lengths[-N_t_length-1:-1]:
 | 
			
		||||
            snrs = np.zeros( int(N))
 | 
			
		||||
            for i in range(int(N)):
 | 
			
		||||
                delta_f = 1/t_length
 | 
			
		||||
                snrs[i], axs = main(
 | 
			
		||||
                        N=1,
 | 
			
		||||
                        t_length=t_length,
 | 
			
		||||
                        f_sample=f_sample,
 | 
			
		||||
    
 | 
			
		||||
                        # signal properties
 | 
			
		||||
                        f_sine = f_sine,
 | 
			
		||||
                        sine_amp = 1,
 | 
			
		||||
                        noise_sigma = 1,
 | 
			
		||||
                        
 | 
			
		||||
                        noise_band = passband(30e6, 80e6),
 | 
			
		||||
                        signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f),
 | 
			
		||||
        
 | 
			
		||||
                        return_ranges_plot=True
 | 
			
		||||
                        )
 | 
			
		||||
    
 | 
			
		||||
                axs[0].set_title("SNR: {}, N:{}".format(snrs[i], t_length*f_sample))
 | 
			
		||||
                axs[0].set_xlim(
 | 
			
		||||
                        (f_sine - 20*delta_f)/1e6,
 | 
			
		||||
                        (f_sine + 20*delta_f)/1e6
 | 
			
		||||
                        )
 | 
			
		||||
 | 
			
		||||
            print(snrs, "M:",np.mean(snrs))
 | 
			
		||||
 | 
			
		||||
            plt.show(block=True)
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        #original code
 | 
			
		||||
        my_snrs = np.zeros( (len(t_lengths), int(N)) )
 | 
			
		||||
        for j, t_length in enumerate(t_lengths):
 | 
			
		||||
            return_ranges_plot = ((j==0) and True) or ( (j==(len(t_lengths)-1)) and True)
 | 
			
		||||
    
 | 
			
		||||
            delta_f = 1/t_length
 | 
			
		||||
    
 | 
			
		||||
            my_snrs[j], axs = main(
 | 
			
		||||
                    N=N,
 | 
			
		||||
                    t_length=t_length,
 | 
			
		||||
                    f_sample = f_sample,
 | 
			
		||||
    
 | 
			
		||||
                    # signal properties
 | 
			
		||||
                    f_sine = f_sine,
 | 
			
		||||
                    sine_amp = 1,
 | 
			
		||||
                    noise_sigma = 1,
 | 
			
		||||
                    
 | 
			
		||||
                    noise_band = passband(30e6, 80e6),
 | 
			
		||||
                    signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f),
 | 
			
		||||
    
 | 
			
		||||
                    return_ranges_plot=return_ranges_plot,
 | 
			
		||||
                    )
 | 
			
		||||
    
 | 
			
		||||
            if return_ranges_plot:
 | 
			
		||||
                ranges_axs = axs
 | 
			
		||||
    
 | 
			
		||||
        fig, axs2 = plt.subplots()
 | 
			
		||||
        axs2.set_xlabel("N = T*$f_s$")
 | 
			
		||||
        axs2.set_ylabel("SNR")
 | 
			
		||||
    
 | 
			
		||||
        for j, t_length in enumerate(t_lengths):
 | 
			
		||||
            t_length = t_length * f_sample
 | 
			
		||||
            axs2.plot(np.repeat(t_length, my_snrs.shape[1]), my_snrs[j], ls='none', color='blue', marker='o', alpha=max(0.01, 1/my_snrs.shape[1]))
 | 
			
		||||
            axs2.plot(t_length, np.mean(my_snrs[j]), color='green', marker='*', ls='none')
 | 
			
		||||
 | 
			
		||||
    ### Save or show figures
 | 
			
		||||
    if not args.fname:
 | 
			
		||||
        # empty list, False, None
 | 
			
		||||
        plt.show()
 | 
			
		||||
    else:
 | 
			
		||||
        save_all_figs_to_path(args.fname, default_basename=__file__)
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue