WIP on Pulse Detection

This commit is contained in:
Eric Teunis de Boone 2023-04-11 14:51:08 +02:00
parent 5ea4a0df17
commit 83811bbd1a
3 changed files with 261 additions and 3 deletions

View file

@ -3,7 +3,10 @@ Various useful utilities (duh)
"""
import numpy as np
import scipy.fft as ft
try:
import scipy.fft as ft
except ImportError:
import numpy.fft as ft
def sampled_time(sample_rate=1, start=0, end=1, offset=0):
return offset + np.arange(start, end, 1/sample_rate)
@ -82,7 +85,7 @@ def fft_bandpass(signal, band, samplerate):
return ft.irfft(fft, signal.size), (fft, freqs)
def deltapeak(timelength=1e3, samplerate=1, offset=None, peaklength=1):
def deltapeak(timelength=1e3, samplerate=1, offset=None, peaklength=1, rng=None):
"""
Generate a series of zeroes with a deltapeak.
@ -108,7 +111,19 @@ def deltapeak(timelength=1e3, samplerate=1, offset=None, peaklength=1):
offset_min = 0 if offset[0] is None else offset[0]
offset_max = N_samples if offset[-1] is None else offset[-1]
offset = (np.random.random(1)*(offset_max - offset_min)+offset_min).astype(int) % N_samples
if 0 < offset_min < 1:
offset_min *= N_samples
if 0 < offset_max < 1:
offset_max *= N_samples
if rng is not None:
rand = rng.random(1)
else:
rand = np.random.random(1)
rand = np.asarray(rand)
offset = (rand * (offset_max - offset_min)+offset_min).astype(int) % N_samples
position = (offset + np.arange(0, peaklength)).astype(int) % N_samples

242
simulations/11_pulsed_timing.py Executable file
View file

@ -0,0 +1,242 @@
#!/usr/bin/env python3
from lib import util
from scipy import signal, interpolate
import matplotlib.pyplot as plt
import numpy as np
rng = np.random.default_rng()
class Waveform:
name = None
time = None
signal = None
def __init__(signal, time=None, name=None, dt=None):
self.signal = signal
self.time = time
self.name = name
if self.time is None and dt is not None:
self.time = dt * len(signal)
def white_noise_realisation(N_samples, noise_sigma=1, rng=rng):
return rng.normal(0, noise_sigma or 0, size=N_samples)
def antenna_bp(trace, low_bp, high_bp, dt, order=3):
# order < 6 for stability
fs = 1/dt
nyq = 1* fs
low_bp = low_bp / nyq
high_bp = high_bp / nyq
bp_filter = signal.butter(order, [low_bp, high_bp], 'band', fs=fs)
bandpassed = signal.lfilter(*bp_filter, trace)
return bandpassed
def my_correlation(in1, template):
#
in1_long = np.zeros( (len(in1)+2*len(template)) )
in1_long[len(template):-len(template)] = in1
# fill the template with zeros and copy template
template_long = np.zeros_like(in1_long)
template_long[len(template):2*len(template)] = template
lags = np.arange(-len(template), len(in1) ) - len(template)
# do the correlation jig
corrs = np.zeros_like(lags, dtype=float)
for i, l in enumerate(lags):
lagged_template = np.roll(template_long, l)
corrs[i] = np.dot(lagged_template, in1_long)
return corrs, (in1_long, template_long, lags)
def trace_upsampler(template_signal, trace, template_t, trace_t):
template_dt = template_t[1] - template_t[0]
trace_dt = trace_t[1] - trace_t[0]
upsample_factor = trace_dt/template_dt
upsampled_trace_N = np.ceil(len(trace) * upsample_factor)
upsample_factor = int(upsample_factor)
upsampled_trace_N = int(upsampled_trace_N)
# upsample trace
upsampled_trace = np.zeros(upsampled_trace_N)
upsampled_trace[::upsample_factor] = trace
#upsampled_t = np.arange(trace_t[0], trace_t[-1], template_dt)
upsampled_t = template_dt * np.arange(len(upsampled_trace)) + trace_t[0]
return upsampled_trace, upsampled_t
def template_downsampler(template_signal, trace, template_t, trace_t, offset):
pass
if __name__ == "__main__":
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
template_dt = 5e-2 # ns
bp_freq = (30e-3, 80e-3) # GHz
template_length = 100 # ns
noise_sigma_factor = 1e1 # keep between 10 and 0.1
antenna_dt = 2 # ns
antenna_timelength = 2048 # ns
_deltapeak = util.deltapeak(timelength=template_length, samplerate=1/template_dt, offset=10/template_dt)
template_t = util.sampled_time(1/template_dt, start=0, end=template_length)
template_signal = antenna_bp(_deltapeak[0], *bp_freq, (np.sqrt(antenna_dt/template_dt))*template_dt) # TODO: fix sqrt constant
template_peak_time = template_t[_deltapeak[1]]
if False: # show template
fig, ax = plt.subplots()
ax.set_title("Deltapeak and Bandpassed Template")
ax.set_xlabel("Time [ns]")
ax.set_ylabel("Amplitude")
ax.plot(template_t, max(template_signal)*_deltapeak[0])
ax.plot(template_t, template_signal)
fig.savefig('figures/11_template_deltapeak.pdf')
# receive at antenna
antenna_t = util.sampled_time(1/antenna_dt, start=0, end=antenna_timelength)
antenna_samplelength = len(antenna_t)
## place the deltapeak signal at a random location
antenna_true_signal, antenna_peak_location = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna_dt, offset=[0.2, 0.8], rng=rng)
antenna_peak_time = antenna_t[antenna_peak_location]
if not True: # flip polarisation
antenna_true_signal *= -1
## Add noise
noise_amplitude = max(template_signal) * noise_sigma_factor
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna_true_signal))
antenna_unfiltered_signal = antenna_true_signal + noise_realisation
antenna_signal = antenna_bp(antenna_unfiltered_signal, *bp_freq, antenna_dt)
true_time_offset = antenna_peak_time - template_peak_time
if True: # show signals
fig, axs = plt.subplots(2, sharex=True)
axs[0].set_title("Antenna Waveform")
axs[-1].set_xlabel("Time [ns]")
axs[0].set_ylabel("Amplitude")
axs[0].plot(antenna_t, antenna_signal, label='bandpassed w/ noise')
axs[0].plot(antenna_t, antenna_unfiltered_signal, label='true signal w/ noise')
axs[0].plot(antenna_t, antenna_true_signal, label='true signal w/o noise')
axs[0].legend()
axs[1].set_title("Template")
axs[1].set_ylabel("Amplitude")
axs[1].plot(template_t, template_signal, label='orig')
axs[1].plot(template_t + true_time_offset, template_signal, label='moved orig')
axs[1].legend()
fig.savefig('figures/11_antenna_signals.pdf')
if True: # zoom
wx = 100
x0 = true_time_offset
old_xlims = axs[0].get_xlim()
axs[0].set_xlim( x0-wx, x0+wx)
fig.savefig('figures/11_antenna_signals_zoom.pdf')
# restore
axs[0].set_xlim(*old_xlims)
if True: # upsampled trace
upsampled_trace, upsampled_t = trace_upsampler(template_signal, antenna_signal, template_t, antenna_t)
if True: # Show upsampled traces
fig2, axs2 = plt.subplots(1, sharex=True)
if not hasattr(axs2, '__len__'):
axs2 = [axs2]
axs2[-1].set_xlabel("Time [ns]")
axs2[0].set_ylabel("Amplitude")
axs2[0].plot(antenna_t, antenna_signal, marker='o', label='orig')
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
axs2[0].legend(loc='upper right')
fig2.savefig('figures/11_upsampled.pdf')
wx = 1e2
x0 = upsampled_t[0] + wx - 5
axs2[0].set_xlim(x0-wx, x0+wx)
fig2.savefig('figures/11_upsampled_zoom.pdf')
# determine correlations with arguments
lag_dt = upsampled_t[1] - upsampled_t[0]
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template_signal)
else: # downsampled template
raise NotImplementedError
corrs, (out1_signal, out2_signal, lags) = my_downsampling_correlation(template_signal, antenna_signal, template_t, antenna_t)
lag_dt = upsampled_t[1] - upsampled_t[0]
# Determine best correlation time
idx = np.argmax(abs(corrs))
best_sample_lag = lags[idx]
best_time_lag = best_sample_lag * lag_dt
if axs2:
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
# Show the final signals correlated
if True:
fig, axs = plt.subplots(3, sharex=True)
ylabel_kwargs = dict(
rotation=0,
ha='right',
va='center'
)
axs[-1].set_xlabel("Time [ns]")
# Signal
i=0
axs[i].set_ylabel("Signal\nAmplitude", **ylabel_kwargs)
axs[i].plot(antenna_t, antenna_signal)
# Template
i=1
axs[i].set_ylabel("Template\nAmplitude", **ylabel_kwargs)
for offset in [0, best_time_lag]:
axs[i].axvline(offset + len(template_signal) * (template_t[1] - template_t[0]), color='g')
axs[i].axvline(offset, color='g')
axs[i].plot(offset + template_t, template_signal)
# Correlation
i=2
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
axs[i].plot(lags * lag_dt, corrs)
axs[i].axvline(best_time_lag, color='r', ls='--')
if True: # zoom
wx = len(template_signal) * (template_t[1] - template_t[0])/2
t0 = best_time_lag
for t in [t0-wx, t0+wx]:
axs[2].axvline(t, color='g')
fig.tight_layout()
fig.legend()
fig.savefig('figures/11_corrs.pdf')
#
time_residual = best_time_lag - true_time_offset
print(time_residual, template_dt, antenna_dt)
plt.show()

1
simulations/lib Symbolic link
View file

@ -0,0 +1 @@
../lib/