mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-11-12 17:43:33 +01:00
ZH: find beacon multiple by reconstructing shower amplitudes
This commit is contained in:
parent
6c0ae17b07
commit
83dafb0cc6
1 changed files with 184 additions and 0 deletions
184
simulations/airshower_beacon_simulation/bc_period_shower_plane.py
Executable file
184
simulations/airshower_beacon_simulation/bc_period_shower_plane.py
Executable file
|
@ -0,0 +1,184 @@
|
|||
#!/usr/bin/env python3
|
||||
# vim: fdm=indent ts=4
|
||||
|
||||
"""
|
||||
Find the best integer multiple to shift
|
||||
antennas to be able to resolve
|
||||
"""
|
||||
|
||||
import h5py
|
||||
from itertools import combinations, zip_longest, product
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from scipy.interpolate import interp1d
|
||||
|
||||
from earsim import REvent
|
||||
from atmocal import AtmoCal
|
||||
import aa_generate_beacon as beacon
|
||||
import lib
|
||||
from lib import rit
|
||||
|
||||
def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_sample_shifts, dt=1):
|
||||
"""
|
||||
Find the best sample_shift for each antenna by summing the antenna traces
|
||||
and seeing how to get the best alignment.
|
||||
"""
|
||||
a_ = []
|
||||
t_ = []
|
||||
t_min = 1e9
|
||||
t_max = -1e9
|
||||
|
||||
# propagate to test location
|
||||
for i, ant in enumerate(antennas):
|
||||
aloc = [ant.x, ant.y, ant.z]
|
||||
delta, dist = atm.light_travel_time(test_loc, aloc)
|
||||
delta = delta*1e9
|
||||
|
||||
t__ = np.subtract(ant.t_AxB, delta)
|
||||
t_.append(t__)
|
||||
a_.append(ant.E_AxB)
|
||||
|
||||
if t__[0] < t_min:
|
||||
t_min = t__[0]
|
||||
if t__[-1] > t_max:
|
||||
t_max = t__[-1]
|
||||
|
||||
# Interpolate and find best sample shift
|
||||
max_neg_shift = np.min(allowed_sample_shifts) * dt
|
||||
max_pos_shift = np.max(allowed_sample_shifts) * dt
|
||||
|
||||
t_sum = np.arange(t_min+1+max_neg_shift, t_max-1+max_pos_shift, dt)
|
||||
a_sum = np.zeros(len(t_sum))
|
||||
|
||||
best_sample_shifts = np.zeros( (len(antennas)) ,dtype=int)
|
||||
for i, (t_r, E_) in enumerate(zip(t_, a_)):
|
||||
t_min = t_r[0]
|
||||
f = interp1d(t_r, E_, assume_sorted=True, bounds_error=False, fill_value=0)
|
||||
a_int = f(t_sum)
|
||||
|
||||
if i == 0:
|
||||
a_sum += a_int
|
||||
best_sample_shifts[i] = 0
|
||||
continue
|
||||
|
||||
shift_maxima = np.zeros( len(allowed_sample_shifts) )
|
||||
for j, shift in enumerate(allowed_sample_shifts):
|
||||
augmented_a = np.roll(a_int, shift)
|
||||
|
||||
shift_maxima[j] = np.max(augmented_a + a_sum)
|
||||
|
||||
# transform maximum into best_sample_shift
|
||||
best_idx = np.argmax(shift_maxima)
|
||||
best_sample_shifts[i] = allowed_sample_shifts[best_idx]
|
||||
a_sum += np.roll(a_int, best_sample_shifts[i])
|
||||
|
||||
# Return ks
|
||||
return best_sample_shifts, np.max(a_sum)
|
||||
|
||||
if __name__ == "__main__":
|
||||
from os import path
|
||||
import sys
|
||||
|
||||
atm = AtmoCal()
|
||||
|
||||
fname = "ZH_airshower/mysim.sry"
|
||||
|
||||
allowed_ks = np.arange(-2, 3, 1)
|
||||
Xref = 450
|
||||
|
||||
x_coarse = np.linspace(-2e3, 2e3, 11)
|
||||
y_coarse = np.linspace(-2e3, 2e3, 11)
|
||||
|
||||
####
|
||||
fname_dir = path.dirname(fname)
|
||||
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
||||
time_diffs_fname = 'time_diffs.hdf5' if not True else antennas_fname
|
||||
|
||||
# Read in antennas from file
|
||||
_, __, antennas = beacon.read_beacon_hdf5(antennas_fname)
|
||||
# Read original REvent
|
||||
ev = REvent(fname)
|
||||
# .. patch in our antennas
|
||||
ev.antennas = antennas
|
||||
|
||||
# For now only implement using one freq_name
|
||||
freq_names = antennas[0].beacon_info.keys()
|
||||
if len(freq_names) > 1:
|
||||
raise NotImplementedError
|
||||
|
||||
freq_name = next(iter(freq_names))
|
||||
f_beacon = ev.antennas[0].beacon_info[freq_name]['freq']
|
||||
|
||||
# determine best ks per location
|
||||
dt = ev.antennas[0].t[1] - ev.antennas[0].t[0]
|
||||
allowed_sample_shifts = np.ceil(allowed_ks/f_beacon /dt).astype(int)
|
||||
|
||||
|
||||
# Remove time due to true phase
|
||||
for i, ant in enumerate(ev.antennas):
|
||||
true_phase = ant.beacon_info[freq_name]['phase']
|
||||
true_phase_time = true_phase/(2*np.pi*f_beacon)
|
||||
|
||||
ev.antennas[i].t -= true_phase_time
|
||||
|
||||
# Prepare polarisation and passbands
|
||||
rit.set_pol_and_bp(ev, low=0.03, high=0.08)
|
||||
|
||||
dXref = atm.distance_to_slant_depth(np.deg2rad(ev.zenith),Xref,0)
|
||||
scale2d = dXref*np.tan(np.deg2rad(2.))
|
||||
|
||||
# Setup Plane grid to test
|
||||
for r in range(6):
|
||||
xoff, yoff = 0,0
|
||||
if r == 0:
|
||||
x = x_coarse
|
||||
y = y_coarse
|
||||
else:
|
||||
best_idx = np.argmax(maxima_per_loc)
|
||||
xoff = xx[best_idx]
|
||||
yoff = yy[best_idx]
|
||||
x /= 4
|
||||
y /= 4
|
||||
|
||||
print(f"Testing grid {r} centered on {xoff}, {yoff}")
|
||||
|
||||
ks_per_loc = np.zeros( (len(x)*len(y), len(ev.antennas)) )
|
||||
maxima_per_loc = np.zeros( (len(x)*len(y)))
|
||||
|
||||
## Check each location on grid
|
||||
xx = []
|
||||
yy = []
|
||||
N_loc = len(maxima_per_loc)
|
||||
for i, (x_, y_) in enumerate(product(x,y)):
|
||||
if i % 10 ==0:
|
||||
print(f"Testing location {i} out of {N_loc}")
|
||||
test_loc = (x_+xoff)* ev.uAxB + (y_+yoff)*ev.uAxAxB + dXref *ev.uA
|
||||
xx.append(x_+xoff)
|
||||
yy.append(y_+yoff)
|
||||
|
||||
# Find best k for each antenna
|
||||
shifts, maximum = find_best_sample_shifts_summing_at_location(test_loc, ev.antennas, allowed_sample_shifts, dt)
|
||||
|
||||
# Translate sample shifts back into period multiple k
|
||||
ks = shifts*f_beacon*dt
|
||||
|
||||
ks_per_loc[i] = ks
|
||||
maxima_per_loc[i] = maximum
|
||||
|
||||
xx = np.array(xx)
|
||||
yy = np.array(yy)
|
||||
|
||||
best_idx = np.argmax(maxima_per_loc)
|
||||
np.savetxt(__file__+f'.run{r}.txt')
|
||||
print(ks_per_loc[best_idx])
|
||||
|
||||
if True: #plot maximum at test locations
|
||||
fig, axs = plt.subplots()
|
||||
axs.set_title(f"Grid Run {r}")
|
||||
axs.set_ylabel("vxvxB [km]")
|
||||
axs.set_xlabel(" vxB [km]")
|
||||
sc = axs.scatter(xx/1e3, yy/1e3, c=maxima_per_loc, cmap='Spectral_r', alpha=0.6)
|
||||
fig.colorbar(sc, ax=axs)
|
||||
|
||||
fig.savefig(__file__+f'.run{r}.pdf')
|
||||
plt.show()
|
Loading…
Reference in a new issue