mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 17:23:34 +01:00
ZH: total time_diffs saved to file
This commit is contained in:
parent
0ffdee4496
commit
8da9d55c56
3 changed files with 60 additions and 34 deletions
|
@ -167,14 +167,15 @@ def read_baseline_time_diffs_hdf5(fname):
|
|||
names = group[base_dset_name][:]
|
||||
|
||||
dset = group[dset_name]
|
||||
f_beacon = dset[:,0]
|
||||
true_phase_diffs = dset[:,1]
|
||||
k_periods = dset[:,2]
|
||||
time_diffs = dset[:,0]
|
||||
f_beacon = dset[:,1]
|
||||
true_phase_diffs = dset[:,2]
|
||||
k_periods = dset[:,3]
|
||||
|
||||
return names, f_beacon, true_phase_diffs, k_periods
|
||||
return names, time_diffs, f_beacon, true_phase_diffs, k_periods
|
||||
|
||||
|
||||
def write_baseline_time_diffs_hdf5(fname, baselines, true_phase_diffs, k_periods, f_beacon, overwrite=True):
|
||||
def write_baseline_time_diffs_hdf5(fname, baselines, true_phase_diffs, k_periods, f_beacon, time_diffs=None, overwrite=True):
|
||||
"""
|
||||
Write a combination of baselines, phase_diff, k_period and f_beacon to file.
|
||||
|
||||
|
@ -187,14 +188,17 @@ def write_baseline_time_diffs_hdf5(fname, baselines, true_phase_diffs, k_periods
|
|||
baselines = [baselines]
|
||||
true_phase_diffs = [true_phase_diffs]
|
||||
k_periods = [k_periods]
|
||||
f_beacon = [f_beacon]
|
||||
f_beacon = np.array([f_beacon])
|
||||
|
||||
else:
|
||||
N_baselines = len(baselines)
|
||||
|
||||
# Expand the f_beacon list
|
||||
if not hasattr(f_beacon, '__len__'):
|
||||
f_beacon = [f_beacon]*N_baselines
|
||||
f_beacon = np.array([f_beacon]*N_baselines)
|
||||
|
||||
if time_diffs is None:
|
||||
time_diffs = k_periods/f_beacon + true_phase_diffs/(2*np.pi*f_beacon)
|
||||
|
||||
assert len(baselines) == len(true_phase_diffs) == len(k_periods) == len(f_beacon)
|
||||
|
||||
|
@ -220,7 +224,7 @@ def write_baseline_time_diffs_hdf5(fname, baselines, true_phase_diffs, k_periods
|
|||
|
||||
base_dset = group.create_dataset(base_dset_name, data=basenames)
|
||||
|
||||
data = np.vstack( (f_beacon, true_phase_diffs, k_periods) ).T
|
||||
data = np.vstack( (time_diffs, f_beacon, true_phase_diffs, k_periods) ).T
|
||||
dset = group.create_dataset(dset_name, data=data)
|
||||
|
||||
|
||||
|
|
|
@ -31,7 +31,8 @@ if __name__ == "__main__":
|
|||
baselines = list(combinations(antennas,2))
|
||||
# use ref_ant
|
||||
else:
|
||||
ref_ant = antennas[ref_ant_idx]
|
||||
ref_ant = antennas[ref_ant_id]
|
||||
print(f"Doing all baselines with {ref_ant.name}")
|
||||
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
|
||||
|
||||
freq_names = antennas[0].beacon_info.keys()
|
||||
|
@ -47,38 +48,41 @@ if __name__ == "__main__":
|
|||
# which traces to keep track of
|
||||
traces = [ base[0].E_AxB, base[1].E_AxB ]
|
||||
|
||||
sampling_dt = (base[1].t[1] - base[1].t[0]) # ns
|
||||
# how many samples do we need to shift
|
||||
ks, maxima = lib.coherence_sum_maxima(traces[0], traces[1])
|
||||
max_idx = np.argmax(maxima)
|
||||
best_k = ks[max_idx]
|
||||
delta_t_coherence = sampling_dt*best_k # ns
|
||||
# read f_beacon from the first antenna
|
||||
f_beacon = base[0].beacon_info[freq_name]['freq']
|
||||
|
||||
print('A1:', base[0].name, 'A2:', base[1].name, "K:", best_k, '= [ns]', delta_t_coherence)
|
||||
# how many samples do we need to shift
|
||||
sample_shifts, maxima = lib.coherence_sum_maxima(traces[0], traces[1], periodic=False)
|
||||
best_sample_shift = sample_shifts[np.argmax(maxima)]
|
||||
|
||||
# turn sample_shift into time
|
||||
sampling_dt = (base[1].t[1] - base[1].t[0]) # ns
|
||||
delta_t_coherence = sampling_dt*best_sample_shift # ns
|
||||
|
||||
# get the amount of periods to move
|
||||
f_beacon = base[0].beacon_info[freq_name]['freq']
|
||||
k_period, rest = np.divmod(delta_t_coherence, 1/f_beacon)
|
||||
k_period, t_rest = np.divmod(delta_t_coherence, 1/f_beacon)
|
||||
|
||||
# always keep the reference before traces[1]
|
||||
if rest < 0:
|
||||
if t_rest < 0: # np.divmod already does this
|
||||
k_period -= 1
|
||||
t_rest = 1/f_beacon + t_rest
|
||||
|
||||
# Get true phase diffs
|
||||
try:
|
||||
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
|
||||
true_phases_diff = lib.phase_mod(true_phases[0] - true_phases[1])
|
||||
except IndexError:
|
||||
# freq_name not in beacon_info
|
||||
# or true_phase not determined yet
|
||||
# true_phase not determined yet
|
||||
print(f"Missing true_phases for {freq_name} in baseline {base[0].name},{base[1].name}")
|
||||
true_phases_diff = np.nan
|
||||
|
||||
# save k_period with antenna names
|
||||
time_diffs[i] = [true_phases_diff, k_period, f_beacon]
|
||||
|
||||
# Plotting for one or two iterations
|
||||
if show_plots and i in [ 0, 1 ]:
|
||||
print('i',i,'k[T]',k_period, 'rest[ns]',rest, 'T[ns]',1/f_beacon)
|
||||
if show_plots and (i in [ 0, 1 ] or k_period > 3):
|
||||
# More than three periods is quite much so report it
|
||||
print('i',i,'k[T]',k_period, 'rest[ns]',t_rest, 'T[ns]',1/f_beacon, 'dT_coher[ns]', delta_t_coherence)
|
||||
|
||||
# Show correlation maxima plot
|
||||
if not True:
|
||||
|
@ -97,21 +101,29 @@ if __name__ == "__main__":
|
|||
true_phases_diff = 0
|
||||
delta_t_beacon = true_phases_diff/(2*np.pi*f_beacon)
|
||||
|
||||
print("t0[ns]", delta_t_antennas, "t_beacon[ns]", delta_t_beacon, "phase", true_phases_diff)
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel('t')
|
||||
ax.plot(base[0].t, traces[0], label=f'Reference {base[0].name}', alpha=0.5)
|
||||
ax.set_title(
|
||||
", ".join([
|
||||
f"$\\Delta$t0 [ns] : {delta_t_antennas:.2f}",
|
||||
f"$\\Delta$t_beacon [ns]: {delta_t_beacon:.2f}",
|
||||
f"$\\Delta\\sigma_\\varphi$: {true_phases_diff:.4f}",
|
||||
f"",
|
||||
])
|
||||
)
|
||||
ax.set_xlabel('Sampling t [ns]')
|
||||
ax.set_ylabel('Amplitude [a.u.]')
|
||||
ax.plot(base[0].t, traces[0], label=f'Reference: {base[0].name}', alpha=0.5)
|
||||
# plot vertical lines indicating f_beacon
|
||||
min_t, max_t = base[0].t[0], base[0].t[-1]
|
||||
N_lines = int( (max_t - min_t)*f_beacon) +1
|
||||
for i, t in enumerate(np.arange(N_lines)/f_beacon):
|
||||
ax.axvline( min_t + t, color='k', alpha=0.5, label=None if i!=0 else 'P_beacon')
|
||||
ax.axvline( min_t + t, color='k', alpha=0.3)
|
||||
|
||||
ax.plot(base[1].t + delta_t_antennas, traces[1], label=f'Original {base[1].name} (t0 removed)', alpha=0.4, marker='+', ms=5)
|
||||
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5)
|
||||
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + delta_t_beacon, traces[1], label='Beacon only + Periods', alpha=0.6)
|
||||
ax.plot(base[1].t + delta_t_antennas, traces[1], label=f'Original: {base[1].name} (t0 removed)', alpha=0.4, marker='+', ms=5)
|
||||
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + t_rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5)
|
||||
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + delta_t_beacon, traces[1], label=f'$\\Delta t_\\varphi$ + $k={k_period:.0f}$ Periods', alpha=0.6)
|
||||
|
||||
ax.legend()
|
||||
ax.legend(fancybox=True, framealpha=0.5)
|
||||
|
||||
# Save integer periods to antennas
|
||||
beacon.write_baseline_time_diffs_hdf5(antennas_fname, baselines, time_diffs[:,0], time_diffs[:,1], time_diffs[:,2])
|
||||
|
|
|
@ -200,16 +200,26 @@ def find_beacon_in_traces(
|
|||
|
||||
return frequencies, phases, amplitudes
|
||||
|
||||
def coherence_sum_maxima(ref_x, y, k_step=1):
|
||||
def coherence_sum_maxima(ref_x, y, k_step=1, k_start=0, k_end=None, periodic=True):
|
||||
"""
|
||||
Use the maximum of a coherent sum to determine
|
||||
the best number of samples to move
|
||||
"""
|
||||
max_k = int( len(ref_x) )
|
||||
ks = np.arange(0, max_k, step=k_step)
|
||||
N_samples = int( len(ref_x) )
|
||||
k_end = N_samples if k_end is None or k_end > max_k else k_end
|
||||
|
||||
ks = np.arange(k_start, k_end, step=k_step)
|
||||
|
||||
maxima = np.empty(len(ks))
|
||||
|
||||
if periodic is False:
|
||||
# prepend zeros
|
||||
N_zeros = N_samples
|
||||
preshift = 0 # only required for testing purposes
|
||||
|
||||
ref_x = np.pad(ref_x, (N_zeros-0,0), 'constant')
|
||||
y = np.pad(y, (N_zeros-preshift,preshift), 'constant')
|
||||
|
||||
for i,k in enumerate(ks, 0):
|
||||
augmented_y = np.roll(y, k)
|
||||
maxima[i] = max(ref_x + augmented_y)
|
||||
|
|
Loading…
Reference in a new issue