mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-04 17:03:32 +01:00
Rit: squashed commits
This commit is contained in:
parent
42236b03a8
commit
8e5a8b608d
1 changed files with 37 additions and 19 deletions
|
@ -7,9 +7,14 @@ from scipy.signal import hilbert
|
||||||
from scipy import signal
|
from scipy import signal
|
||||||
from scipy.interpolate import interp1d
|
from scipy.interpolate import interp1d
|
||||||
from scipy.optimize import curve_fit,minimize
|
from scipy.optimize import curve_fit,minimize
|
||||||
import pandas as pd
|
#import pandas as pd
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
try:
|
||||||
|
from tqdm import tqdm
|
||||||
|
except:
|
||||||
|
tqdm = lambda x: x
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from joblib import Parallel, delayed
|
from joblib import Parallel, delayed
|
||||||
except:
|
except:
|
||||||
|
@ -113,11 +118,11 @@ def shower_axis_slice(e,Xb=200,Xe=1200,dX=2,zgr=0):
|
||||||
p = np.asanyarray(p)
|
p = np.asanyarray(p)
|
||||||
return ds,Xs,locs,p
|
return ds,Xs,locs,p
|
||||||
|
|
||||||
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0,n_jobs=None):
|
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0,n_jobs=None, xs=None, ys=None):
|
||||||
zgr = zgr + e.core[2]
|
zgr = zgr + e.core[2]
|
||||||
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
|
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
|
||||||
x = np.linspace(-wx,wx,Nx)
|
x = xs if xs is not None else np.linspace(-wx,wx,Nx)
|
||||||
y = np.linspace(-wy,wy,Ny)
|
y = ys if ys is not None else np.linspace(-wy,wy,Ny)
|
||||||
|
|
||||||
def loop_func(x_, y_, xoff=xoff, yoff=yoff):
|
def loop_func(x_, y_, xoff=xoff, yoff=yoff):
|
||||||
loc = (x_+xoff)* e.uAxB + (y_+yoff)*e.uAxAxB + dX *e.uA
|
loc = (x_+xoff)* e.uAxB + (y_+yoff)*e.uAxAxB + dX *e.uA
|
||||||
|
@ -140,7 +145,7 @@ def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0,n_
|
||||||
|
|
||||||
return xx,yy,p,locs[np.argmax(p)]
|
return xx,yy,p,locs[np.argmax(p)]
|
||||||
|
|
||||||
def slice_figure(e,X,xx,yy,p,mode='horizontal', scatter_kwargs={}, colorbar_kwargs={'label':'Power'}):
|
def slice_figure(e,X,xx,yy,p,mode='horizontal', scatter_kwargs={}, colorbar_kwargs={'label':'Power'},suptitle=True, figsize=(10,8)):
|
||||||
scatter_kwargs = {
|
scatter_kwargs = {
|
||||||
**dict(
|
**dict(
|
||||||
cmap='Spectral_r',
|
cmap='Spectral_r',
|
||||||
|
@ -149,26 +154,39 @@ def slice_figure(e,X,xx,yy,p,mode='horizontal', scatter_kwargs={}, colorbar_kwar
|
||||||
),
|
),
|
||||||
**scatter_kwargs
|
**scatter_kwargs
|
||||||
}
|
}
|
||||||
|
crosshair_kwargs = dict(ms=30, mew=3)
|
||||||
|
|
||||||
|
|
||||||
fig, axs = plt.subplots(1,figsize=(10,8))
|
fig, axs = plt.subplots(1,figsize=figsize)
|
||||||
fig.suptitle(r'E = %.1f EeV, $\theta$ = %.1f$^\circ$, $\phi$ = %.1f$^\circ$ X = %.f'%(e.energy,e.zenith,e.azimuth,X))
|
if suptitle:
|
||||||
|
fig.suptitle(r'E = %.1g PeV, $\theta$ = %.1f$^\circ$, $\phi$ = %.1f$^\circ$ X = %.f'%(e.energy*10**3,e.zenith,e.azimuth,X))
|
||||||
sc = axs.scatter(xx/1e3,yy/1e3,c=p,**scatter_kwargs)
|
sc = axs.scatter(xx/1e3,yy/1e3,c=p,**scatter_kwargs)
|
||||||
fig.colorbar(sc,ax=axs, **colorbar_kwargs)
|
cbar = fig.colorbar(sc,ax=axs, **colorbar_kwargs)
|
||||||
zgr = 0 + e.core[2]
|
zgr = 0 + e.core[2]
|
||||||
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
|
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
|
||||||
xc = np.sin(np.deg2rad(e.zenith))*np.cos(np.deg2rad(e.azimuth))* dX
|
xc = np.sin(np.deg2rad(e.zenith))*np.cos(np.deg2rad(e.azimuth))* dX
|
||||||
yc = np.sin(np.deg2rad(e.zenith))*np.sin(np.deg2rad(e.azimuth))* dX
|
yc = np.sin(np.deg2rad(e.zenith))*np.sin(np.deg2rad(e.azimuth))* dX
|
||||||
if mode == 'horizontal':
|
if mode == 'horizontal':
|
||||||
axs.plot(xc/1e3,yc/1e3,'r+',ms=30)
|
axs.plot(xc/1e3,yc/1e3,'r+', **crosshair_kwargs)
|
||||||
axs.set_xlabel('x (km)')
|
axs.set_xlabel('x [km]')
|
||||||
axs.set_ylabel('y (km)')
|
axs.set_ylabel('y [km]')
|
||||||
elif mode == "sp":
|
elif mode == "sp":
|
||||||
axs.plot(0,0,'r+',ms=30)
|
axs.plot(0,0, 'r+', **crosshair_kwargs)
|
||||||
axs.set_xlabel('-v x B (km)')
|
axs.set_xlabel('-v x B [km]')
|
||||||
axs.set_ylabel(' vxvxB (km)')
|
axs.set_ylabel(' vxvxB [km]')
|
||||||
|
|
||||||
|
# indicate maximum power
|
||||||
im = np.argmax(p)
|
im = np.argmax(p)
|
||||||
axs.plot(xx[im]/1e3,yy[im]/1e3,'bx',ms=30)
|
im_color = 'blue'
|
||||||
|
im_norm = cbar.norm(p[im])
|
||||||
|
if im_norm < 0.4:
|
||||||
|
im_color = '#4488FF'
|
||||||
|
if True:
|
||||||
|
cbar.add_lines(levels=[p[im]], colors=[im_color], linewidths=[crosshair_kwargs['mew']])
|
||||||
|
#cbar.lines[-1].set_linestyles('dotted')
|
||||||
|
|
||||||
|
axs.plot(xx[im]/1e3,yy[im]/1e3, 'x', color=im_color, **crosshair_kwargs)
|
||||||
|
#cbar.ax.axhline(cbar.norm(p[im]), color='b')
|
||||||
fig.tight_layout()
|
fig.tight_layout()
|
||||||
return fig,axs
|
return fig,axs
|
||||||
|
|
||||||
|
@ -195,7 +213,7 @@ def dist_to_line_sum(param,data,weights):
|
||||||
# print('%.2e %.2e %.2e %.2e %.2e'%(x0,y0,theta,phi,dsum))
|
# print('%.2e %.2e %.2e %.2e %.2e'%(x0,y0,theta,phi,dsum))
|
||||||
return dsum/len(data)
|
return dsum/len(data)
|
||||||
|
|
||||||
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15, n_jobs=None):
|
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15, n_jobs=None, tqdm=tqdm):
|
||||||
Xsteps = np.linspace(Xlow, Xhigh, N_X)
|
Xsteps = np.linspace(Xlow, Xhigh, N_X)
|
||||||
zgr=zgr+e.core[2] #not exact
|
zgr=zgr+e.core[2] #not exact
|
||||||
dXref = atm.distance_to_slant_depth(np.deg2rad(e.zenith),750,zgr)
|
dXref = atm.distance_to_slant_depth(np.deg2rad(e.zenith),750,zgr)
|
||||||
|
@ -227,7 +245,7 @@ def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15, n
|
||||||
print("Finished", X)
|
print("Finished", X)
|
||||||
return np.max(p), loc_max
|
return np.max(p), loc_max
|
||||||
|
|
||||||
res = (delayed(loop_func)(X) for X in Xsteps)
|
res = tqdm((delayed(loop_func)(X) for X in Xsteps), total=len(Xsteps))
|
||||||
|
|
||||||
if Parallel:
|
if Parallel:
|
||||||
#if n_jobs is None change with `with parallel_backend`
|
#if n_jobs is None change with `with parallel_backend`
|
||||||
|
@ -376,7 +394,7 @@ def fill_stations_propeties(e,res):
|
||||||
res.station_ids.append(ids)
|
res.station_ids.append(ids)
|
||||||
#res.has_pulse.append(has_pulse)
|
#res.has_pulse.append(has_pulse)
|
||||||
|
|
||||||
def reconstruction(e,outfile='', slice_outdir=None, Xlow=300, Xhigh=1000, N_X=15, disable_pol_and_bp=False):
|
def reconstruction(e,outfile='', slice_outdir=None, Xlow=300, Xhigh=1000, N_X=15, disable_pol_and_bp=False, tqdm=tqdm):
|
||||||
res = RITResult()
|
res = RITResult()
|
||||||
res.isMC.append(True)
|
res.isMC.append(True)
|
||||||
res.zenith_ini.append(e.zenith)
|
res.zenith_ini.append(e.zenith)
|
||||||
|
@ -388,7 +406,7 @@ def reconstruction(e,outfile='', slice_outdir=None, Xlow=300, Xhigh=1000, N_X=15
|
||||||
|
|
||||||
#only use signal that have a signal in data
|
#only use signal that have a signal in data
|
||||||
fill_stations_propeties(e,res)
|
fill_stations_propeties(e,res)
|
||||||
Xs,axis_points,max_vals = get_axis_points(e,savefig=(slice_outdir is not None), path=slice_outdir, Xlow=Xlow, Xhigh=Xhigh, N_X=N_X)
|
Xs,axis_points,max_vals = get_axis_points(e,savefig=(slice_outdir is not None), path=slice_outdir, Xlow=Xlow, Xhigh=Xhigh, N_X=N_X, tqdm=tqdm)
|
||||||
zen,azi,core = fit_track(e,axis_points,max_vals,1e2)
|
zen,azi,core = fit_track(e,axis_points,max_vals,1e2)
|
||||||
fig = figure_3D(axis_points,max_vals,zen,azi,core,res)
|
fig = figure_3D(axis_points,max_vals,zen,azi,core,res)
|
||||||
fig.savefig(outfile)
|
fig.savefig(outfile)
|
||||||
|
|
Loading…
Reference in a new issue