mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 11:33:32 +01:00
Pulse finding for multiple SNR
This commit is contained in:
parent
81b3502de5
commit
a011aee28e
1 changed files with 241 additions and 211 deletions
|
@ -136,9 +136,9 @@ if __name__ == "__main__":
|
||||||
bp_freq = (30e-3, 80e-3) # GHz
|
bp_freq = (30e-3, 80e-3) # GHz
|
||||||
template_dt = 5e-2 # ns
|
template_dt = 5e-2 # ns
|
||||||
template_length = 500 # ns
|
template_length = 500 # ns
|
||||||
noise_sigma_factor = 1e-1 # amplitude factor
|
|
||||||
|
|
||||||
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
|
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
|
||||||
|
noise_factors = [1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 5e-1, 7e-1] # amplitude factor
|
||||||
|
|
||||||
antenna_dt = 2 # ns
|
antenna_dt = 2 # ns
|
||||||
antenna_timelength = 2048 # ns
|
antenna_timelength = 2048 # ns
|
||||||
|
@ -176,254 +176,284 @@ if __name__ == "__main__":
|
||||||
if True:
|
if True:
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
|
||||||
#
|
time_accuracies = np.zeros(len(noise_factors))
|
||||||
# Find difference between true and templated times
|
for k, noise_sigma_factor in tqdm(enumerate(noise_factors)):
|
||||||
#
|
print() #separating tqdm
|
||||||
time_residuals = np.zeros(N_residuals)
|
#
|
||||||
for j in tqdm(range(N_residuals)):
|
# Find difference between true and templated times
|
||||||
do_plots = j==0
|
#
|
||||||
|
time_residuals = np.zeros(N_residuals)
|
||||||
|
for j in tqdm(range(N_residuals)):
|
||||||
|
do_plots = j==0
|
||||||
|
|
||||||
# receive at antenna
|
# receive at antenna
|
||||||
## place the deltapeak signal at a random location
|
## place the deltapeak signal at a random location
|
||||||
antenna = Waveform(None, dt=antenna_dt, name='Signal')
|
antenna = Waveform(None, dt=antenna_dt, name='Signal')
|
||||||
|
|
||||||
if not True: # Create antenna trace without template
|
if not True: # Create antenna trace without template
|
||||||
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=[0.2, 0.8], rng=rng)
|
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=[0.2, 0.8], rng=rng)
|
||||||
|
|
||||||
antenna.peak_sample = antenna_peak_sample
|
antenna.peak_sample = antenna_peak_sample
|
||||||
antenna.peak_time = antenna.dt * antenna.peak_sample
|
antenna.peak_time = antenna.dt * antenna.peak_sample
|
||||||
antenna.signal = antenna_bp(antenna.signal, *bp_freq, antenna.dt)
|
antenna.signal = antenna_bp(antenna.signal, *bp_freq, antenna.dt)
|
||||||
|
print(f"Antenna Peak Time: {antenna.peak_time}")
|
||||||
|
print(f"Antenna Peak Sample: {antenna.peak_sample}")
|
||||||
|
|
||||||
else: # Sample the template at some offset
|
else: # Sample the template at some offset
|
||||||
antenna.peak_time = antenna_timelength * ((0.8 - 0.2) *rng.random(1) + 0.2)
|
antenna.peak_time = antenna_timelength * ((0.8 - 0.2) *rng.random(1) + 0.2)
|
||||||
sampling_offset = rng.random(1)*antenna.dt
|
sampling_offset = rng.random(1)*antenna.dt
|
||||||
|
|
||||||
antenna.t = util.sampled_time(1/antenna.dt, start=0, end=antenna_timelength)
|
antenna.t = util.sampled_time(1/antenna.dt, start=0, end=antenna_timelength)
|
||||||
|
|
||||||
antenna.signal = interp1d_template(antenna.t - antenna.peak_time)
|
antenna.signal = interp1d_template(antenna.t - antenna.peak_time)
|
||||||
|
|
||||||
antenna.peak_sample = antenna.peak_time/antenna.dt
|
antenna.peak_sample = antenna.peak_time/antenna.dt
|
||||||
antenna_true_signal = antenna.signal
|
antenna_true_signal = antenna.signal
|
||||||
true_time_offset = antenna.peak_time - template.peak_time
|
|
||||||
|
|
||||||
if do_plots:
|
true_time_offset = antenna.peak_time - template.peak_time
|
||||||
print(f"Antenna Peak Time: {antenna.peak_time}")
|
|
||||||
print(f"Antenna Peak Sample: {antenna.peak_sample}")
|
|
||||||
|
|
||||||
if False: # flip polarisation
|
if False: # flip polarisation
|
||||||
antenna.signal *= -1
|
antenna.signal *= -1
|
||||||
|
|
||||||
## Add noise
|
## Add noise
|
||||||
noise_amplitude = max(template.signal) * noise_sigma_factor
|
noise_amplitude = max(template.signal) * noise_sigma_factor
|
||||||
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal))
|
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal))
|
||||||
filtered_noise = antenna_bp(noise_realisation, *bp_freq, antenna.dt)
|
filtered_noise = antenna_bp(noise_realisation, *bp_freq, antenna.dt)
|
||||||
|
|
||||||
antenna.signal += filtered_noise
|
antenna.signal += filtered_noise
|
||||||
|
|
||||||
if do_plots: # show signals
|
if do_plots: # show signals
|
||||||
fig, axs = plt.subplots(2, sharex=True)
|
fig, axs = plt.subplots(2, sharex=True)
|
||||||
axs[0].set_title("Antenna Waveform")
|
axs[0].set_title("Antenna Waveform")
|
||||||
axs[-1].set_xlabel("Time [ns]")
|
axs[-1].set_xlabel("Time [ns]")
|
||||||
axs[0].set_ylabel("Amplitude")
|
axs[0].set_ylabel("Amplitude")
|
||||||
axs[0].plot(antenna.t, antenna.signal, label='bandpassed w/ noise', alpha=0.9)
|
axs[0].plot(antenna.t, antenna.signal, label='bandpassed w/ noise', alpha=0.9)
|
||||||
axs[0].plot(antenna.t, antenna.signal - filtered_noise, label='bandpassed w/o noise', alpha=0.9)
|
axs[0].plot(antenna.t, antenna.signal - filtered_noise, label='bandpassed w/o noise', alpha=0.9)
|
||||||
axs[0].legend()
|
axs[0].legend()
|
||||||
|
|
||||||
axs[1].set_title("Template")
|
axs[1].set_title("Template")
|
||||||
axs[1].set_ylabel("Amplitude")
|
axs[1].set_ylabel("Amplitude")
|
||||||
axs[1].plot(template.t, template.signal, label='orig')
|
axs[1].plot(template.t, template.signal, label='orig')
|
||||||
axs[1].plot(template.t + true_time_offset, template.signal, label='true moved orig')
|
axs[1].plot(template.t + true_time_offset, template.signal, label='true moved orig')
|
||||||
axs[1].legend()
|
axs[1].legend()
|
||||||
|
|
||||||
axs[0].grid()
|
axs[0].grid()
|
||||||
axs[1].grid()
|
axs[1].grid()
|
||||||
|
|
||||||
fig.savefig('figures/11_antenna_signals.pdf')
|
fig.savefig('figures/11_antenna_signals.pdf')
|
||||||
|
|
||||||
if True: # zoom
|
if True: # zoom
|
||||||
wx = 100
|
wx = 100
|
||||||
x0 = true_time_offset
|
x0 = true_time_offset
|
||||||
|
|
||||||
old_xlims = axs[0].get_xlim()
|
old_xlims = axs[0].get_xlim()
|
||||||
axs[0].set_xlim( x0-wx, x0+wx)
|
axs[0].set_xlim( x0-wx, x0+wx)
|
||||||
fig.savefig('figures/11_antenna_signals_zoom.pdf')
|
fig.savefig('figures/11_antenna_signals_zoom.pdf')
|
||||||
|
|
||||||
# restore
|
# restore
|
||||||
axs[0].set_xlim(*old_xlims)
|
axs[0].set_xlim(*old_xlims)
|
||||||
|
|
||||||
if False:
|
|
||||||
plt.close(fig)
|
|
||||||
|
|
||||||
axs2 = None
|
|
||||||
if True: # upsampled trace
|
|
||||||
upsampled_trace, upsampled_t = trace_upsampler(antenna.signal, template.t, antenna.t)
|
|
||||||
|
|
||||||
if do_plots: # Show upsampled traces
|
|
||||||
fig2, axs2 = plt.subplots(1, sharex=True)
|
|
||||||
if not hasattr(axs2, '__len__'):
|
|
||||||
axs2 = [axs2]
|
|
||||||
|
|
||||||
axs2[-1].set_xlabel("Time [ns]")
|
|
||||||
axs2[0].set_ylabel("Amplitude")
|
|
||||||
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='orig')
|
|
||||||
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
|
|
||||||
axs2[0].legend(loc='upper right')
|
|
||||||
|
|
||||||
fig2.savefig('figures/11_upsampled.pdf')
|
|
||||||
|
|
||||||
wx = 1e2
|
|
||||||
x0 = upsampled_t[0] + wx - 5
|
|
||||||
axs2[0].set_xlim(x0-wx, x0+wx)
|
|
||||||
fig2.savefig('figures/11_upsampled_zoom.pdf')
|
|
||||||
|
|
||||||
if True:
|
if True:
|
||||||
plt.close(fig2)
|
plt.close(fig)
|
||||||
|
|
||||||
# determine correlations with arguments
|
axs2 = None
|
||||||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
if True: # upsampled trace
|
||||||
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
|
upsampled_trace, upsampled_t = trace_upsampler(antenna.signal, template.t, antenna.t)
|
||||||
|
|
||||||
else: # downsampled template
|
if do_plots: # Show upsampled traces
|
||||||
raise NotImplementedError
|
fig2, axs2 = plt.subplots(1, sharex=True)
|
||||||
|
if not hasattr(axs2, '__len__'):
|
||||||
|
axs2 = [axs2]
|
||||||
|
|
||||||
corrs, (out1_signal, out2_template, lags) = my_downsampling_correlation(template.signal, antenna.signal, template.t, antenna.t)
|
axs2[-1].set_xlabel("Time [ns]")
|
||||||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
axs2[0].set_ylabel("Amplitude")
|
||||||
|
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='orig')
|
||||||
|
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
|
||||||
|
axs2[0].legend(loc='upper right')
|
||||||
|
|
||||||
# Determine best correlation time
|
fig2.savefig('figures/11_upsampled.pdf')
|
||||||
idx = np.argmax(abs(corrs))
|
|
||||||
best_sample_lag = lags[idx]
|
|
||||||
best_time_lag = best_sample_lag * lag_dt
|
|
||||||
time_residuals[j] = best_time_lag - true_time_offset
|
|
||||||
|
|
||||||
if not do_plots:
|
wx = 1e2
|
||||||
continue
|
x0 = upsampled_t[0] + wx - 5
|
||||||
|
axs2[0].set_xlim(x0-wx, x0+wx)
|
||||||
|
fig2.savefig('figures/11_upsampled_zoom.pdf')
|
||||||
|
|
||||||
if do_plots and axs2:
|
if True:
|
||||||
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
|
plt.close(fig2)
|
||||||
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
|
|
||||||
|
|
||||||
# Show the final signals correlated
|
# determine correlations with arguments
|
||||||
if do_plots:
|
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||||
# amplitude scaling required for single axis plotting
|
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
|
||||||
template_amp_scaler = max(abs(template.signal)) / max(abs(antenna.signal))
|
|
||||||
|
|
||||||
# start the figure
|
else: # downsampled template
|
||||||
fig, axs = plt.subplots(2, sharex=True)
|
raise NotImplementedError
|
||||||
ylabel_kwargs = dict(
|
|
||||||
#rotation=0,
|
|
||||||
ha='right',
|
|
||||||
va='center'
|
|
||||||
)
|
|
||||||
axs[-1].set_xlabel("Time [ns]")
|
|
||||||
|
|
||||||
offset_list = [
|
corrs, (out1_signal, out2_template, lags) = my_downsampling_correlation(template.signal, antenna.signal, template.t, antenna.t)
|
||||||
[best_time_lag, dict(label=template.name, color='orange')],
|
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||||
[true_time_offset, dict(label='True offset', color='green')],
|
|
||||||
]
|
|
||||||
|
|
||||||
# Signal
|
# Determine best correlation time
|
||||||
i=0
|
idx = np.argmax(abs(corrs))
|
||||||
axs[i].set_ylabel("Amplitude", **ylabel_kwargs)
|
best_sample_lag = lags[idx]
|
||||||
axs[i].plot(antenna.t, antenna.signal, label=antenna.name)
|
best_time_lag = best_sample_lag * lag_dt
|
||||||
|
time_residuals[j] = best_time_lag - true_time_offset
|
||||||
|
|
||||||
# Plot the template
|
if not do_plots:
|
||||||
for offset_args in offset_list:
|
continue
|
||||||
this_kwargs = offset_args[1]
|
|
||||||
offset = offset_args[0]
|
|
||||||
|
|
||||||
l = axs[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
|
if do_plots and axs2:
|
||||||
|
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
|
||||||
|
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
|
||||||
|
|
||||||
axs[i].legend()
|
# Show the final signals correlated
|
||||||
|
if do_plots:
|
||||||
|
# amplitude scaling required for single axis plotting
|
||||||
|
template_amp_scaler = max(abs(template.signal)) / max(abs(antenna.signal))
|
||||||
|
|
||||||
# Correlation
|
# start the figure
|
||||||
i=1
|
fig, axs = plt.subplots(2, sharex=True)
|
||||||
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
|
ylabel_kwargs = dict(
|
||||||
axs[i].plot(lags * lag_dt, corrs)
|
#rotation=0,
|
||||||
|
ha='right',
|
||||||
|
va='center'
|
||||||
|
)
|
||||||
|
axs[-1].set_xlabel("Time [ns]")
|
||||||
|
|
||||||
# Lines across both axes
|
offset_list = [
|
||||||
for offset_args in offset_list:
|
[best_time_lag, dict(label=template.name, color='orange')],
|
||||||
this_kwargs = offset_args[1]
|
[true_time_offset, dict(label='True offset', color='green')],
|
||||||
offset = offset_args[0]
|
|
||||||
|
|
||||||
for i in [0,1]:
|
|
||||||
axs[i].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
|
|
||||||
|
|
||||||
axs[0].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
|
|
||||||
|
|
||||||
|
|
||||||
if True: # zoom
|
|
||||||
wx = len(template.signal) * (template.dt)/2
|
|
||||||
t0 = best_time_lag
|
|
||||||
|
|
||||||
old_xlims = axs[0].get_xlim()
|
|
||||||
axs[i].set_xlim( x0-wx, x0+3*wx)
|
|
||||||
fig.savefig('figures/11_corrs_zoom.pdf')
|
|
||||||
|
|
||||||
# restore
|
|
||||||
axs[i].set_xlim(*old_xlims)
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
fig.savefig('figures/11_corrs.pdf')
|
|
||||||
|
|
||||||
if False:
|
|
||||||
plt.close(fig)
|
|
||||||
|
|
||||||
# Make a plot of the time residuals
|
|
||||||
if len(time_residuals) > 1:
|
|
||||||
|
|
||||||
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
ax.set_title(
|
|
||||||
"Template Correlation Lag finding"
|
|
||||||
+ f"\n template dt: {template.dt*1e3: .1e}ps"
|
|
||||||
+ f"; antenna dt: {antenna.dt: .1e}ns"
|
|
||||||
+ f"; noise_factor: {noise_sigma_factor: .1e}"
|
|
||||||
)
|
|
||||||
ax.set_xlabel("Time Residual [ns]")
|
|
||||||
ax.set_ylabel("#")
|
|
||||||
|
|
||||||
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
|
|
||||||
if True: # fit gaussian to histogram
|
|
||||||
min_x = min(time_residuals)
|
|
||||||
max_x = max(time_residuals)
|
|
||||||
|
|
||||||
dx = bins[1] - bins[0]
|
|
||||||
scale = len(time_residuals) * dx
|
|
||||||
|
|
||||||
xs = np.linspace(min_x, max_x)
|
|
||||||
|
|
||||||
# do the fit
|
|
||||||
name = "Norm"
|
|
||||||
param_names = [ "$\\mu$", "$\\sigma$" ]
|
|
||||||
distr_func = stats.norm
|
|
||||||
|
|
||||||
label = name +"(" + ','.join(param_names) + ')'
|
|
||||||
|
|
||||||
# plot
|
|
||||||
fit_params = distr_func.fit(time_residuals)
|
|
||||||
fit_ys = scale * distr_func.pdf(xs, *fit_params)
|
|
||||||
ax.plot(xs, fit_ys, label=label)
|
|
||||||
|
|
||||||
# chisq
|
|
||||||
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
|
|
||||||
if True:
|
|
||||||
ct *= np.sum(counts)/np.sum(ct)
|
|
||||||
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
|
|
||||||
chisq_strs = [
|
|
||||||
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
|
|
||||||
]
|
]
|
||||||
|
|
||||||
# text on plot
|
# Signal
|
||||||
text_str = "\n".join(
|
i=0
|
||||||
[label]
|
axs[i].set_ylabel("Amplitude", **ylabel_kwargs)
|
||||||
+
|
axs[i].plot(antenna.t, antenna.signal, label=antenna.name)
|
||||||
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
|
|
||||||
+
|
|
||||||
chisq_strs
|
|
||||||
)
|
|
||||||
|
|
||||||
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
|
# Plot the template
|
||||||
|
for offset_args in offset_list:
|
||||||
|
this_kwargs = offset_args[1]
|
||||||
|
offset = offset_args[0]
|
||||||
|
|
||||||
fig.savefig("figures/11_time_residual_hist.pdf")
|
l = axs[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
|
||||||
|
|
||||||
|
axs[i].legend()
|
||||||
|
|
||||||
|
# Correlation
|
||||||
|
i=1
|
||||||
|
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
|
||||||
|
axs[i].plot(lags * lag_dt, corrs)
|
||||||
|
|
||||||
|
# Lines across both axes
|
||||||
|
for offset_args in offset_list:
|
||||||
|
this_kwargs = offset_args[1]
|
||||||
|
offset = offset_args[0]
|
||||||
|
|
||||||
|
for i in [0,1]:
|
||||||
|
axs[i].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
|
||||||
|
|
||||||
|
axs[0].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
|
||||||
|
|
||||||
|
|
||||||
|
if True: # zoom
|
||||||
|
wx = len(template.signal) * (template.dt)/2
|
||||||
|
t0 = best_time_lag
|
||||||
|
|
||||||
|
old_xlims = axs[0].get_xlim()
|
||||||
|
axs[i].set_xlim( x0-wx, x0+3*wx)
|
||||||
|
fig.savefig('figures/11_corrs_zoom.pdf')
|
||||||
|
|
||||||
|
# restore
|
||||||
|
axs[i].set_xlim(*old_xlims)
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
fig.savefig('figures/11_corrs.pdf')
|
||||||
|
|
||||||
|
if True:
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
print()# separating tqdm
|
||||||
|
# Make a plot of the time residuals
|
||||||
|
if len(time_residuals) > 1:
|
||||||
|
time_accuracies[k] = np.std(time_residuals)
|
||||||
|
|
||||||
|
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.set_title(
|
||||||
|
"Template Correlation Lag finding"
|
||||||
|
+ f"\n template dt: {template.dt*1e3: .1e}ps"
|
||||||
|
+ f"; antenna dt: {antenna.dt: .1e}ns"
|
||||||
|
+ f"; noise_factor: {noise_sigma_factor: .1e}"
|
||||||
|
)
|
||||||
|
ax.set_xlabel("Time Residual [ns]")
|
||||||
|
ax.set_ylabel("#")
|
||||||
|
|
||||||
|
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
|
||||||
|
if True: # fit gaussian to histogram
|
||||||
|
min_x = min(time_residuals)
|
||||||
|
max_x = max(time_residuals)
|
||||||
|
|
||||||
|
dx = bins[1] - bins[0]
|
||||||
|
scale = len(time_residuals) * dx
|
||||||
|
|
||||||
|
xs = np.linspace(min_x, max_x)
|
||||||
|
|
||||||
|
# do the fit
|
||||||
|
name = "Norm"
|
||||||
|
param_names = [ "$\\mu$", "$\\sigma$" ]
|
||||||
|
distr_func = stats.norm
|
||||||
|
|
||||||
|
label = name +"(" + ','.join(param_names) + ')'
|
||||||
|
|
||||||
|
# plot
|
||||||
|
fit_params = distr_func.fit(time_residuals)
|
||||||
|
fit_ys = scale * distr_func.pdf(xs, *fit_params)
|
||||||
|
ax.plot(xs, fit_ys, label=label)
|
||||||
|
|
||||||
|
# chisq
|
||||||
|
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
|
||||||
|
if True:
|
||||||
|
ct *= np.sum(counts)/np.sum(ct)
|
||||||
|
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
|
||||||
|
chisq_strs = [
|
||||||
|
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
|
||||||
|
]
|
||||||
|
|
||||||
|
# text on plot
|
||||||
|
text_str = "\n".join(
|
||||||
|
[label]
|
||||||
|
+
|
||||||
|
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
|
||||||
|
+
|
||||||
|
chisq_strs
|
||||||
|
)
|
||||||
|
|
||||||
|
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
|
||||||
|
|
||||||
|
fig.savefig("figures/11_time_residual_hist_{noise_sigma_factor: .1e}.pdf")
|
||||||
|
|
||||||
|
if True:
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
# SNR time accuracy plot
|
||||||
|
if True:
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.set_title("Template matching SNR vs time accuracy")
|
||||||
|
ax.set_xlabel("Signal to Noise Factor")
|
||||||
|
ax.set_ylabel("Time Accuracy [ns]")
|
||||||
|
|
||||||
|
if True:
|
||||||
|
ax.set_xscale('log')
|
||||||
|
ax.set_yscale('log')
|
||||||
|
|
||||||
|
# plot the values
|
||||||
|
ax.plot(1/np.asarray(noise_factors), time_accuracies, ls='none', marker='o')
|
||||||
|
|
||||||
|
|
||||||
|
# Set horizontal line at 1 ns
|
||||||
|
if True:
|
||||||
|
ax.axhline(1, ls='--', alpha=0.8, color='g')
|
||||||
|
ax.grid()
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
fig.savefig("figures/11_time_res_vs_snr.pdf")
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
Loading…
Reference in a new issue