mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 11:33:32 +01:00
ZH: integer period plotting
This commit is contained in:
parent
eeca9f91bc
commit
a169c2a5e2
1 changed files with 68 additions and 49 deletions
|
@ -30,64 +30,83 @@ if __name__ == "__main__":
|
||||||
ref_ant = antennas[0]
|
ref_ant = antennas[0]
|
||||||
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
|
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
|
||||||
|
|
||||||
integer_periods = None
|
freq_names = antennas[0].beacon_info.keys()
|
||||||
# read integer ks from file if possible
|
if len(freq_names) > 1:
|
||||||
# and save beacon_phase_true
|
raise NotImplementedError
|
||||||
with h5py.File(antennas_fname, 'a') as fp:
|
|
||||||
for i, ant in enumerate(antennas):
|
|
||||||
name = ant.name
|
|
||||||
# set true beacon_phase
|
|
||||||
fp['antennas'][name].attrs['beacon_phase_true'] = true_phases[i]
|
|
||||||
|
|
||||||
# read integer period from file
|
freq_name = next(iter(freq_names))
|
||||||
if True and 'beacon_ks' in fp:
|
|
||||||
integer_periods = np.array(fp['beacon_ks'])
|
|
||||||
|
|
||||||
|
|
||||||
# Determine integer multiple of periods to shift
|
# Determine integer multiple of periods to shift
|
||||||
if integer_periods is None:
|
integer_periods = np.empty( (len(baselines), 3) )
|
||||||
integer_periods = np.empty( (len(baselines), 3) )
|
for i, base in enumerate(baselines):
|
||||||
for i, base in enumerate(baselines):
|
if i not in [98, 99]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# which traces to keep track of
|
||||||
|
traces = [ base[0].E_AxB, base[1].E_AxB ]
|
||||||
|
|
||||||
|
# how many samples do we need to shift
|
||||||
|
sampling_dt = (base[1].t[1] - base[1].t[0]) # ns
|
||||||
|
ks, maxima = lib.coherence_sum_maxima(traces[0], traces[1])
|
||||||
|
max_idx = np.argmax(maxima)
|
||||||
|
best_k = ks[max_idx]
|
||||||
|
delta_t_coherence = sampling_dt*best_k # ns
|
||||||
|
|
||||||
|
print("K", best_k, sampling_dt, '=', delta_t_coherence)
|
||||||
|
|
||||||
|
|
||||||
|
# get the amount of periods to move
|
||||||
|
f_beacon = base[0].beacon_info[freq_name]['freq']
|
||||||
|
k_period, rest = np.divmod(delta_t_coherence, 1/f_beacon)
|
||||||
|
|
||||||
|
# always keep the reference before traces[1]
|
||||||
|
if rest < 0:
|
||||||
|
k_period -= 1
|
||||||
|
|
||||||
|
# save k_period with antenna names
|
||||||
|
integer_periods[i] = [int(base[0].name), int(base[1].name), k_period]
|
||||||
|
|
||||||
|
if i in [ 98, 99 ]:
|
||||||
|
print('i',i,'k[T]',k_period, 'rest[ns]',rest, 'T[ns]',1/f_beacon)
|
||||||
|
|
||||||
|
# Show correlation maxima plot
|
||||||
|
if True:
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.set_title(f"Correlation Maxima {i}")
|
||||||
|
ax.set_xlabel("k")
|
||||||
|
ax.set_ylabel("Maximum correlation")
|
||||||
|
ax.plot(ks, maxima)
|
||||||
|
ax.plot(best_k, maxima[max_idx], marker='X')
|
||||||
|
|
||||||
# Delta between first timestamp from both antennas
|
# Delta between first timestamp from both antennas
|
||||||
delta_t_a = base[0].t[0] - base[1].t[0]
|
delta_t_antennas = base[0].t[0] - base[1].t[0]
|
||||||
# + phase difference
|
|
||||||
delta_t_p = np.diff([ant.attrs['beacon_phase_true'] for ant in base])[0]/(2*np.pi*f_beacon)
|
|
||||||
|
|
||||||
sampling_dt = (base[1].t[1] - base[1].t[0])
|
# Delta t due to the beacon
|
||||||
|
try:
|
||||||
print("DT(A,P)", delta_t_a, delta_t_p, 1/f_beacon)
|
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
|
||||||
|
delta_true_phases = lib.phase_mod(true_phases[0] - true_phases[1])
|
||||||
# which traces to keep track of
|
delta_t_beacon = delta_true_phases/(2*np.pi*f_beacon)
|
||||||
traces = [ base[0].Ex, base[1].Ex ]
|
except e:
|
||||||
|
# freq_name not found
|
||||||
# how many samples to shift
|
# simply continue and set it them 0
|
||||||
ks, maxima = lib.coherence_sum_maxima(-1*traces[0], -1*traces[1])
|
print("No beacon")
|
||||||
max_idx = np.argmax(maxima)
|
delta_true_phases = 0
|
||||||
delta_t_c = sampling_dt*ks[max_idx] # ns
|
delta_t_beacon = 0
|
||||||
print("K", ks[max_idx], sampling_dt, '=', delta_t_c)
|
|
||||||
|
|
||||||
k, rest = np.divmod(delta_t_c, f_beacon)
|
|
||||||
integer_periods[i] = [int(base[0].name), int(base[1].name), k]
|
|
||||||
|
|
||||||
|
|
||||||
print(k, rest*f_beacon, delta_t_p)
|
|
||||||
|
|
||||||
# Only continue for two random combinations
|
|
||||||
if i not in [ 50, 51 ]:
|
|
||||||
continue
|
|
||||||
|
|
||||||
|
print("t0[ns]", delta_t_antennas, "t_beacon[ns]", delta_t_beacon, "phase", delta_true_phases)
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_xlabel("k")
|
|
||||||
ax.set_ylabel("Maximum correlation")
|
|
||||||
ax.plot(ks, maxima)
|
|
||||||
ax.plot(ks[max_idx], maxima[max_idx], marker='X')
|
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
dt = base[1].t[1] - base[1].t[0]
|
|
||||||
ax.set_xlabel('t')
|
ax.set_xlabel('t')
|
||||||
ax.plot(base[0].t, traces[0], label='Reference')
|
ax.plot(base[0].t, traces[0], label=f'Reference {base[0].name}', alpha=0.5)
|
||||||
ax.plot(base[1].t, traces[1], label='Original', alpha=0.4)
|
# plot vertical lines indicating f_beacon
|
||||||
ax.plot(base[1].t + delta_t_a + delta_t_c, traces[1], label='Coherence', alpha=0.6)
|
min_t, max_t = base[0].t[0], base[0].t[-1]
|
||||||
|
N_lines = int( (max_t - min_t)*f_beacon) +1
|
||||||
|
for i, t in enumerate(np.arange(N_lines)/f_beacon):
|
||||||
|
ax.axvline( min_t + t, color='k', alpha=0.5, label=None if i!=0 else 'P_beacon')
|
||||||
|
|
||||||
|
ax.plot(base[1].t + delta_t_antennas, traces[1], label=f'Original {base[1].name} (t0 removed)', alpha=0.4, marker='+', ms=5)
|
||||||
|
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5)
|
||||||
|
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + delta_t_beacon, traces[1], label='Beacon only + Periods', alpha=0.6)
|
||||||
|
|
||||||
ax.legend()
|
ax.legend()
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue