mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
PDFs: modified script from Harm for PhasorSum distributions
This commit is contained in:
parent
4462d4ef2e
commit
a32ae6b2ef
1 changed files with 154 additions and 0 deletions
154
simulations/12_noise_phase.py
Normal file
154
simulations/12_noise_phase.py
Normal file
|
@ -0,0 +1,154 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
__doc__ = """
|
||||
Phase and Amplitude distributions for a phasor in the presence of noise.
|
||||
|
||||
Author: Harm Schoorlemmer
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
import scipy.stats as stat
|
||||
from scipy import special
|
||||
|
||||
from lib.util import MethodMappingProxy as MethodProxy
|
||||
|
||||
def expectation(x,pdfx):
|
||||
dx = x[1]-x[0]
|
||||
return np.sum(x*pdfx*dx)
|
||||
|
||||
def variance(x,pdfx):
|
||||
mu = expectation(x,pdfx)
|
||||
dx = x[1]-x[0]
|
||||
return np.sum((x**2*pdfx*dx))-mu**2
|
||||
|
||||
def phase_distribution(theta,sigma,s):
|
||||
theta = np.asarray(theta)
|
||||
ct = np.cos(theta)
|
||||
st = np.sin(theta)
|
||||
k=s/sigma
|
||||
pipi=2*np.pi
|
||||
return (np.exp(-k**2/2)/pipi) + (
|
||||
(pipi**-0.5)*k*np.exp(-(k*st)**2/2)) * (
|
||||
(1.+special.erf(k*ct*2**-0.5))*ct/2)
|
||||
|
||||
def phase_distribution_gauss(theta,sigma,s):
|
||||
theta = np.asarray(theta)
|
||||
k=s/sigma
|
||||
return (2*np.pi)**-0.5*k*np.exp(-(k*theta)**2/2)
|
||||
|
||||
def amplitude_distribution(a,sigma,s):
|
||||
a = np.asarray(a)
|
||||
k = s/sigma
|
||||
return stat.rice.pdf(a,s/sigma,scale=sigma)
|
||||
|
||||
def amplitude_distribution_gauss(a,sigma,s):
|
||||
a = np.asarray(a)
|
||||
k=s/sigma
|
||||
return (2*np.pi)**-0.5*np.exp(-((a-s)/sigma)**2/2)
|
||||
|
||||
signal_max= 4
|
||||
amp_max = signal_max*2
|
||||
thetas = np.linspace(-np.pi,np.pi,500)
|
||||
amplitudes = np.linspace(0,amp_max,500)
|
||||
signals = np.linspace(0,signal_max,5)
|
||||
sigma = 1
|
||||
|
||||
|
||||
## figure 1
|
||||
if True:
|
||||
fig, ax = plt.subplots(1,2,figsize=(2*8,1*8))
|
||||
_fig1, _ax0 =plt.subplots(1,1, figsize=(1*8, 1*8))
|
||||
_fig2, _ax1 =plt.subplots(1,1, figsize=(1*8, 1*8))
|
||||
|
||||
ax0 = MethodProxy(ax[0], _ax0)
|
||||
ax1 = MethodProxy(ax[1], _ax1)
|
||||
for s in signals:
|
||||
pdfs_label='s/$\sigma$ ='+str(s)
|
||||
phase_vals= phase_distribution(thetas,sigma,s)
|
||||
amp_vals= amplitude_distribution(amplitudes,sigma,s)
|
||||
phase_vals_g = phase_distribution_gauss(thetas,sigma,s)
|
||||
|
||||
ax0.plot(amplitudes,amp_vals, label=pdfs_label)
|
||||
ax1.plot(thetas,phase_vals, label=pdfs_label)
|
||||
ax0.legend()
|
||||
_ax1.legend()# only in the separate figure
|
||||
ax0.set_xlabel(r'$a$')
|
||||
ax0.set_xlabel(r'$\theta$')
|
||||
ax1.set_ylabel(r'$p(a)$')
|
||||
ax1.set_ylabel(r'$p(\theta)$')
|
||||
# ax[0].grid()
|
||||
# ax[1].grid()
|
||||
MethodProxy(fig, _fig1, _fig2).tight_layout()
|
||||
|
||||
fig.savefig('pdfs.pdf')
|
||||
_fig1.savefig('pdfs-amplitudes.pdf')
|
||||
_fig2.savefig('pdfs-phases.pdf')
|
||||
|
||||
plt.close(_fig1)
|
||||
plt.close(_fig2)
|
||||
|
||||
## figure 2
|
||||
amplitudes = np.linspace(0,amp_max*5,500)
|
||||
signals = np.linspace(0.1,signal_max*5,101)
|
||||
if False:
|
||||
fig2, ax2 = plt.subplots(2,2,figsize=(2*8,2*8))
|
||||
ax2 = fig2.get_axes()
|
||||
V_theta = [variance(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
|
||||
E_theta=[expectation(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
|
||||
V_theta_g = [variance(thetas,phase_distribution_gauss(thetas,sigma,s)) for s in signals ]
|
||||
E_theta_g=[expectation(thetas,phase_distribution_gauss(thetas,sigma,s)) for s in signals ]
|
||||
V_a = [variance(amplitudes,amplitude_distribution(amplitudes,sigma,s)) for s in signals ]
|
||||
E_a=[expectation(amplitudes,amplitude_distribution(amplitudes,sigma,s)) for s in signals ]
|
||||
V_a_g = [variance(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
|
||||
E_a_g=[expectation(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
|
||||
|
||||
ax2[0].plot(signals,E_a,label='$p(a)$')
|
||||
ax2[0].plot(signals,E_a_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[0].set_xscale('log')
|
||||
ax2[0].set_yscale('log')
|
||||
ax2[0].set_ylabel('$\mu_a$')
|
||||
|
||||
ax2[1].plot(signals,V_a,label='$p(a)$')
|
||||
ax2[1].plot(signals,V_a_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[1].set_xscale('log')
|
||||
ax2[1].set_ylabel('$\sigma_a^2$')
|
||||
|
||||
ax2[2].plot(signals,E_theta,label=r'$p(\theta)$')
|
||||
ax2[2].plot(signals,E_theta_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[2].set_xscale('log')
|
||||
ax2[2].set_ylim(-1.1,1.1)
|
||||
ax2[2].set_ylabel(r'$\mu_\theta$')
|
||||
|
||||
ax2[3].plot(signals,V_theta,label=r'$p(\theta)$')
|
||||
ax2[3].plot(signals,V_theta_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[3].set_xscale('log')
|
||||
ax2[3].set_yscale('log')
|
||||
ax2[3].set_ylabel(r'$\sigma_\theta^2$')
|
||||
for a in ax2:
|
||||
a.grid(which='both')
|
||||
a.set_xlabel(r'$s/\sigma$')
|
||||
a.legend()
|
||||
|
||||
fig2.tight_layout()
|
||||
fig2.savefig('expectation_variance.pdf')
|
||||
|
||||
## figure 3, beacon timing accuracy
|
||||
if True:
|
||||
fig3, ax3 = plt.subplots(1,1,figsize=(1*8,1*8))
|
||||
ax3 = fig3.get_axes()
|
||||
sigma_t = [variance(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
|
||||
lfs=np.linspace(np.log10(50.),4,1)
|
||||
for lf in lfs:
|
||||
freq = (10**lf)*1e6
|
||||
sigma_t = np.asarray(sigma_t)**0.5/(2*np.pi*freq)
|
||||
ax3[0].plot(signals,sigma_t/1e-9,'o-')
|
||||
ax3[0].set_ylim(0,2.5)
|
||||
ax3[0].set_xlabel(r'$s/\sigma$')
|
||||
ax3[0].set_ylabel(r'$\Delta t$(ns)')
|
||||
|
||||
fig3.tight_layout()
|
||||
fig3.savefig('timing_accuracy.pdf')
|
||||
|
||||
plt.show()
|
Loading…
Reference in a new issue