This commit is contained in:
Eric Teunis de Boone 2022-11-14 20:49:35 +01:00
parent feccf64293
commit bb776d358c
4 changed files with 302 additions and 14 deletions

View file

@ -1,4 +1,10 @@
#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Add a beacon measurement on top of the
simulated airshower.
"""
import numpy as np
import json
@ -36,7 +42,7 @@ def read_tx_file(fname):
return tx, f_beacon
def read_beacon_hdf5(fname):
def read_beacon_hdf5(fname, traces_key='traces'):
with h5py.File(fname, 'r') as h5:
tx_attrs = h5['tx'].attrs
f_beacon = tx_attrs.get('f_beacon')
@ -48,12 +54,15 @@ def read_beacon_hdf5(fname):
for k, ant in h5['antennas'].items():
mydict = { k:ant.attrs.get(k) for k in ['x', 'y', 'z', 'name'] }
antenna = Antenna(**mydict)
antenna.t = ant['traces'][0]
antenna.Ex = ant['traces'][1]
antenna.Ey = ant['traces'][2]
antenna.Ez = ant['traces'][3]
if len(ant['traces']) > 4:
antenna.beacon = ant['traces'][4]
antenna.t = ant[traces_key][0]
antenna.Ex = ant[traces_key][1]
antenna.Ey = ant[traces_key][2]
antenna.Ez = ant[traces_key][3]
if len(ant[traces_key]) > 4:
antenna.beacon = ant[traces_key][4]
if ant.attrs:
antenna.attrs = {**ant.attrs}
antennas.append(antenna)
@ -118,13 +127,23 @@ def append_antenna_hdf5(fname, antenna, columns = [], name='traces', prepend_tim
if __name__ == "__main__":
from os import path
remake_tx = False
remake_tx = True
fname = "ZH_airshower/mysim.sry"
tx = Antenna(x=-500,y=0,z=0,name='tx')
f_beacon = 50e-3 # GHz
tx = Antenna(x=-500,y=0,z=0,name='tx') # m
f_beacon = 51.53e-3 # GHz
beacon_amplitudes = 1e-6*np.array([1e2, 0, 0]) # mu V/m
beacon_radiate_rsq = True
if beacon_radiate_rsq:
# Move tx out, and magnify beacon_amplitude (at tx)
tx = Antenna(x=-20e3,y=0,z=0,name='tx') # m
dist = lib.distance(tx, Antenna(x=0, y=0, z=0))
ampl = dist**2
beacon_amplitudes *= ampl
####
fname_dir = path.dirname(fname)
@ -145,14 +164,15 @@ if __name__ == "__main__":
# make beacon per antenna
for i, antenna in enumerate(ev.antennas):
beacon = lib.beacon_from(tx, antenna, f_beacon, antenna.t)
beacon = lib.beacon_from(tx, antenna, f_beacon, antenna.t, radiate_rsq=beacon_radiate_rsq)
E = np.array([antenna.Ex, antenna.Ey, antenna.Ez, beacon])
append_antenna_hdf5( antennas_fname, antenna, E, name='orig_traces', prepend_time=True)
# add to relevant polarisation
for i, _ in enumerate(beacon_amplitudes):
E[i] += beacon_amplitudes[i]*beacon
for j, _ in enumerate(beacon_amplitudes):
E[j] += beacon_amplitudes[j]*beacon
append_antenna_hdf5( antennas_fname, antenna, E, name='traces', prepend_time=True)

View file

@ -1,4 +1,10 @@
#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Add a uniformly sampled time offset
to the clock of each antenna.
"""
import numpy as np
import json
@ -21,7 +27,7 @@ if __name__ == "__main__":
import sys
max_clock_offset = 100# ns
remake_clock_offsets = False
remake_clock_offsets = True
seed = 12345
rng = np.random.default_rng(seed)

View file

@ -0,0 +1,197 @@
#!/usr/bin/env python3
# vim: fdm=indent ts=4
import numpy as np
import h5py
import lib
import aa_generate_beacon as beacon
from lib import direct_fourier_transform
from numpy.polynomial import Polynomial
def find_beacon_in_traces(
traces,
t_trace,
f_beacon_estimate = 50e6,
frequency_fit = False,
N_test_freqs = 5e2,
f_beacon_estimate_band = 0.01,
amp_cut = 0.8
):
"""
f_beacon_band is inclusive
traces is [trace, trace, trace, .. ]
"""
amplitudes = np.zeros(len(traces))
phases = np.zeros(len(traces))
frequencies = np.zeros(len(traces))
if frequency_fit: # fit frequency
test_freqs = f_beacon_estimate + f_beacon_estimate_band * np.linspace(-1, 1, int(N_test_freqs)+1)
ft_amp_gen = direct_fourier_transform(test_freqs, t_trace, (x for x in traces))
n_samples = len(t_trace)
for i, ft_amp in enumerate(ft_amp_gen):
real, imag = ft_amp
amps = 1/n_samples * ( real**2 + imag**2)**0.5
# find frequency peak and surrounding
# bins valid for parabola fitting
max_amp_idx = np.argmax(amps)
max_amp = amps[max_amp_idx]
if True:
frequencies[i] = test_freqs[max_amp_idx]
continue
valid_mask = amps >= amp_cut*max_amp
if True: # make sure not to use other peaks
lower_mask = valid_mask[0:max_amp_idx]
upper_mask = valid_mask[max_amp_idx:]
if any(lower_mask):
lower_end = np.argmin(lower_mask[::-1])
else:
lower_end = max_amp_idx
if any(upper_mask):
upper_end = np.argmin(upper_mask)
else:
upper_end = 0
valid_mask[0:(max_amp_idx - lower_end)] = False
valid_mask[(max_amp_idx + upper_end):] = False
if all(~valid_mask):
frequencies[i] = np.nan
continue
# fit Parabola
parafit = Polynomial.fit(test_freqs[valid_mask], amps[valid_mask], 2)
func = parafit.convert()
# find frequency where derivative is 0
deriv = func.deriv(1)
freq = deriv.roots()[0]
frequencies[i] = freq
else:
frequencies[:] = f_beacon_estimate
# evaluate fourier transform at freq for each trace
for i, freq in enumerate(frequencies):
if freq is np.nan:
phases[i] = np.nan
amplitudes[i] = np.nan
continue
real, imag = direct_fourier_transform(freq, t_trace, traces[i])
phases[i] = np.arctan2(real, imag)
amplitudes[i] = 1/len(t_trace) * (real**2 + imag**2)**0.5
return frequencies, phases, amplitudes
if __name__ == "__main__":
from os import path
import sys
f_beacon_band = (49e-3,55e-3) #GHz
allow_frequency_fitting = True
read_frequency_from_file = True
fname = "ZH_airshower/mysim.sry"
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
# read in antennas
with h5py.File(antennas_fname, 'a') as fp:
if 'antennas' not in fp.keys():
print("Antenna file corrupted? no antennas")
sys.exit(1)
group = fp['antennas']
f_beacon = None
if read_frequency_from_file and 'tx' in fp:
tx = fp['tx']
if 'f_beacon' in tx.attrs:
f_beacon = tx.attrs['f_beacon']
else:
print("No frequency found in file.")
sys.exit(2)
f_beacon_estimate_band = 0.01*f_beacon
elif allow_frequency_fitting:
f_beacon_estimate_band = (f_beacon_band[1] - f_beacon_band[0])/2
f_beacon = f_beacon_band[1] - f_beacon_estimate_band
else:
print("Not allowed to fit frequency and no tx group found in file.")
sys.exit(2)
N_antennas = len(group.keys())
# just for funzies
found_data = np.zeros((N_antennas, 3))
# Determine frequency and phase
for i, name in enumerate(group.keys()):
ant_group = group[name]
if 'traces' not in ant_group.keys():
print(f"Antenna file corrupted? no 'traces' in {name}")
sys.exit(1)
traces = ant_group['traces']
freqs, phases, amps = find_beacon_in_traces(
traces[1:-1], traces[0],
f_beacon_estimate=f_beacon,
frequency_fit=allow_frequency_fitting,
f_beacon_estimate_band=f_beacon_estimate_band
)
# only take Ex for now
frequency = freqs[-1]
phase = phases[-1]
amplitude = amps[-1]
print(frequency, phase, amplitude)
ant_group.attrs['beacon_freq'] = frequency
ant_group.attrs['beacon_phase'] = phase
ant_group.attrs['beacon_amplitude'] = amplitude
ant_group.attrs['beacon_orientation'] = 'Ex'
found_data[i] = frequency, phase, amplitude
# show histogram of found frequencies
if True:
import matplotlib.pyplot as plt
if True or allow_frequency_fitting:
fig, ax = plt.subplots()
ax.set_xlabel("Frequency")
ax.set_ylabel("Counts")
ax.hist(found_data[:,0], bins='auto', density=False)
if True:
fig, ax = plt.subplots()
ax.set_xlabel("Amplitudes")
ax.set_ylabel("Counts")
ax.hist(found_data[:,2], bins='auto', density=False)
plt.show()

View file

@ -0,0 +1,65 @@
#!/usr/bin/env python3
# vim: fdm=indent ts=4
__doc__ = \
"""
Show the beacon amplitude per antenna.
"""
import numpy as np
import h5py
import matplotlib.pyplot as plt
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
import os.path as path
fname = "ZH_airshower/mysim.sry"
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
beacon_frequencies = np.array([ant.attrs['beacon_freq'] for ant in antennas])
beacon_amplitudes = np.array([ant.attrs['beacon_amplitude'] for ant in antennas])
beacon_phases = np.array([ant.attrs['beacon_phase'] for ant in antennas])
#####
sizes = 64
if True:
vals = beacon_phases
colorlabel = '$\\varphi$'
sizes = 64*(beacon_amplitudes/np.max(beacon_amplitudes))**2
else:
vals = beacon_amplitudes
colorlabel = "[$\\mu$V/m]"
x = [ a.x for a in antennas ]
y = [ a.y for a in antennas ]
#####
fig, axs = plt.subplots()
axs.set_title("Amplitude at beacon frequency at each antenna")
axs.set_aspect('equal', 'datalim')
axs.set_xlabel('[m]')
axs.set_ylabel('[m]')
if True:
# underlie a calculate phase field
xs = np.linspace( np.min(x), np.max(x), 50)
ys = np.linspace( np.min(y), np.max(y), 50)
phases, (xs, ys) = lib.phase_field_from_tx(xs, ys, tx, f_beacon, return_meshgrid=False)
sc2 = axs.scatter(xs, ys, c=phases, alpha=0.5, zorder=-5)
fig.colorbar(sc2, ax=axs)
sc = axs.scatter(x, y, c=vals, s=sizes)
axs.plot(tx.x, tx.y, marker='X', color='k')
fig.colorbar(sc, ax=axs, label=colorlabel)
plt.show()