mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-11-14 02:23:32 +01:00
Faster template correlation for pulsed_timing
This commit is contained in:
parent
b415786806
commit
bca924cdc2
1 changed files with 35 additions and 13 deletions
|
@ -65,24 +65,46 @@ def antenna_bp(trace, low_bp, high_bp, dt, order=3):
|
||||||
|
|
||||||
return bandpassed
|
return bandpassed
|
||||||
|
|
||||||
def my_correlation(in1, template):
|
def my_correlation(in1, template, lags=None):
|
||||||
#
|
template_length = len(template)
|
||||||
in1_long = np.zeros( (len(in1)+2*len(template)) )
|
in1_length = len(in1)
|
||||||
in1_long[len(template):-len(template)] = in1
|
|
||||||
|
|
||||||
# fill the template with zeros and copy template
|
if lags is None:
|
||||||
template_long = np.zeros_like(in1_long)
|
lags = np.arange(-template_length+1, in1_length + 1)
|
||||||
template_long[len(template):2*len(template)] = template
|
|
||||||
|
|
||||||
lags = np.arange(-len(template), len(in1) ) - len(template)
|
|
||||||
|
|
||||||
# do the correlation jig
|
# do the correlation jig
|
||||||
corrs = np.zeros_like(lags, dtype=float)
|
corrs = np.zeros_like(lags, dtype=float)
|
||||||
for i, l in enumerate(lags):
|
for i, l in enumerate(lags):
|
||||||
lagged_template = np.roll(template_long, l)
|
if l <= 0: # shorten template at the front
|
||||||
corrs[i] = np.dot(lagged_template, in1_long)
|
in1_start = 0
|
||||||
|
template_end = template_length
|
||||||
|
|
||||||
return corrs, (in1_long, template_long, lags)
|
template_start = -template_length - l
|
||||||
|
in1_end = max(0, min(in1_length, -template_start)) # 0 =< l + template_length =< in1_lengt
|
||||||
|
|
||||||
|
elif l > in1_length - template_length:
|
||||||
|
# shorten template from the back
|
||||||
|
in1_end = in1_length
|
||||||
|
template_start = 0
|
||||||
|
|
||||||
|
in1_start = min(l, in1_length)
|
||||||
|
template_end = max(0, in1_length - l)
|
||||||
|
|
||||||
|
else:
|
||||||
|
in1_start = min(l, in1_length)
|
||||||
|
in1_end = min(in1_start + template_length, in1_length)
|
||||||
|
|
||||||
|
# full template
|
||||||
|
template_start = 0
|
||||||
|
template_end = template_length
|
||||||
|
|
||||||
|
# Slice in1 and template
|
||||||
|
in1_slice = in1[in1_start:in1_end]
|
||||||
|
template_slice = template[template_start:template_end]
|
||||||
|
|
||||||
|
corrs[i] = np.dot(in1_slice, template_slice)
|
||||||
|
|
||||||
|
return corrs, (in1, template, lags)
|
||||||
|
|
||||||
def trace_upsampler(template_signal, trace, template_t, trace_t):
|
def trace_upsampler(template_signal, trace, template_t, trace_t):
|
||||||
template_dt = template.t[1] - template.t[0]
|
template_dt = template.t[1] - template.t[0]
|
||||||
|
@ -297,7 +319,7 @@ if __name__ == "__main__":
|
||||||
axs[i].axvline(offset, ls='--', **this_kwargs)
|
axs[i].axvline(offset, ls='--', **this_kwargs)
|
||||||
|
|
||||||
if True: # zoom
|
if True: # zoom
|
||||||
wx = len(template.signal) * (template.t[1] - template.t[0])/2
|
wx = len(template.signal) * (template.dt)/2
|
||||||
t0 = best_time_lag
|
t0 = best_time_lag
|
||||||
|
|
||||||
old_xlims = axs[0].get_xlim()
|
old_xlims = axs[0].get_xlim()
|
||||||
|
|
Loading…
Reference in a new issue