ZH: move ac_* function definitions into lib/snr.py

This commit is contained in:
Eric Teunis de Boone 2023-01-12 13:46:18 +01:00
parent c29bb2ee50
commit c09bb6563c
3 changed files with 61 additions and 59 deletions

View file

@ -10,67 +10,12 @@ import numpy as np
import h5py
import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple
from earsim import REvent
import aa_generate_beacon as beacon
import lib
passband = namedtuple("passband", ['low', 'high'], defaults=[0, np.inf])
def get_freq_spec(val,dt):
"""From earsim/tools.py"""
fval = np.fft.fft(val)[:len(val)//2]
freq = np.fft.fftfreq(len(val),dt)[:len(val)//2]
return fval, freq
def bandpass_samples(samples, samplerate, band=passband()):
"""
Bandpass the samples with this passband.
This is a hard filter.
"""
fft, freqs = get_freq_spec(samples, samplerate)
fft[ ~ self.freq_mask(freqs) ] = 0
return np.fft.irfft(fft)
def bandpass_mask(freqs, band=passband()):
low_pass = abs(freqs) <= band[1]
high_pass = abs(freqs) >= band[0]
return low_pass & high_pass
def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True):
fft, freqs = get_freq_spec(samples, samplerate)
bandmask = bandpass_mask(freqs, band=band)
if normalise_bandsize:
bins = np.count_nonzero(bandmask, axis=-1)
else:
bins = 1
power = np.sum(np.abs(fft[bandmask])**2)
return power/bins
def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None):
if noise_band is None:
noise_band = signal_band
if noise is None:
noise = samples
noise_power = bandpower(noise, samplerate, noise_band)
signal_power = bandpower(samples, samplerate, signal_band)
return (signal_power/noise_power)**0.5
if __name__ == "__main__":
from os import path
import sys
@ -99,8 +44,8 @@ if __name__ == "__main__":
# general properties
dt = antennas[0].t[1] - antennas[0].t[0] # ns
pb = passband(30e-3, 80e-3) # GHz
beacon_pb = passband(f_beacon-1e-3, f_beacon+1e-3) # GHz
pb = lib.passband(30e-3, 80e-3) # GHz
beacon_pb = lib.passband(f_beacon-1e-3, f_beacon+1e-3) # GHz
beacon_amp = np.max(txdata['amplitudes'])# mu V/m
@ -108,7 +53,7 @@ if __name__ == "__main__":
## Beacon vs Noise SNR
##
if True:
beacon_snrs = [ signal_to_noise(beacon_amp*ant.beacon, ant.noise, samplerate=1/dt, signal_band=beacon_pb) for ant in antennas ]
beacon_snrs = [ lib.signal_to_noise(beacon_amp*ant.beacon, ant.noise, samplerate=1/dt, signal_band=beacon_pb) for ant in antennas ]
fig, ax = plt.subplots()
ax.set_title("Maximum Beacon SNR")
@ -123,7 +68,7 @@ if __name__ == "__main__":
## Airshower signal vs Noise SNR
##
if True:
shower_snrs = [ signal_to_noise(ant.E_AxB, ant.noise, samplerate=1/dt, signal_band=pb) for ant in antennas ]
shower_snrs = [ lib.signal_to_noise(ant.E_AxB, ant.noise, samplerate=1/dt, signal_band=pb) for ant in antennas ]
fig, ax = plt.subplots()
ax.set_title("Total (Signal+Beacon+Noise) SNR")

View file

@ -1,2 +1,3 @@
from .lib import *
from . import rit
from .snr import *

View file

@ -0,0 +1,56 @@
import numpy as np
from collections import namedtuple
passband = namedtuple("passband", ['low', 'high'], defaults=[0, np.inf])
def get_freq_spec(val,dt):
"""From earsim/tools.py"""
fval = np.fft.fft(val)[:len(val)//2]
freq = np.fft.fftfreq(len(val),dt)[:len(val)//2]
return fval, freq
def bandpass_samples(samples, samplerate, band=passband()):
"""
Bandpass the samples with this passband.
This is a hard filter.
"""
fft, freqs = get_freq_spec(samples, samplerate)
fft[ ~ self.freq_mask(freqs) ] = 0
return np.fft.irfft(fft)
def bandpass_mask(freqs, band=passband()):
low_pass = abs(freqs) <= band[1]
high_pass = abs(freqs) >= band[0]
return low_pass & high_pass
def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True):
fft, freqs = get_freq_spec(samples, samplerate)
bandmask = bandpass_mask(freqs, band=band)
if normalise_bandsize:
bins = np.count_nonzero(bandmask, axis=-1)
else:
bins = 1
power = np.sum(np.abs(fft[bandmask])**2)
return power/bins
def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None):
if noise_band is None:
noise_band = signal_band
if noise is None:
noise = samples
noise_power = bandpower(noise, samplerate, noise_band)
signal_power = bandpower(samples, samplerate, signal_band)
return (signal_power/noise_power)**0.5