mirror of
				https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
				synced 2025-10-31 03:46:44 +01:00 
			
		
		
		
	Pulse: show residuals in SNR vs accuracy plot: WIP
This commit is contained in:
		
							parent
							
								
									cc4b545260
								
							
						
					
					
						commit
						c8ac1fa50e
					
				
					 1 changed files with 20 additions and 12 deletions
				
			
		| 
						 | 
				
			
			@ -506,9 +506,11 @@ if __name__ == "__main__":
 | 
			
		|||
    #
 | 
			
		||||
    # Find time accuracies as a function of signal strength
 | 
			
		||||
    #
 | 
			
		||||
    time_accuracies = np.zeros((len(template_dts), len(snr_factors)))
 | 
			
		||||
    mask_counts = np.zeros_like(time_accuracies)
 | 
			
		||||
    for l, template_dt in tqdm(enumerate(template_dts)):
 | 
			
		||||
    time_residuals_data = []
 | 
			
		||||
 | 
			
		||||
    for a, template_dt in tqdm(enumerate(template_dts)):
 | 
			
		||||
 | 
			
		||||
        time_residuals_data.append(np.zeros( (len(snr_factors), 3, N_residuals)))# res, snr, masked
 | 
			
		||||
 | 
			
		||||
        # Create the template
 | 
			
		||||
        # This is sampled at a lower samplerate than the interpolation template
 | 
			
		||||
| 
						 | 
				
			
			@ -526,26 +528,29 @@ if __name__ == "__main__":
 | 
			
		|||
            print()# separating tqdm
 | 
			
		||||
            print()# separating tqdm
 | 
			
		||||
 | 
			
		||||
            # Make a plot of the time residuals
 | 
			
		||||
            if N_residuals > 1:
 | 
			
		||||
            wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*4
 | 
			
		||||
            mask = wrong_peak_condition(time_residuals)
 | 
			
		||||
 | 
			
		||||
            # Save directly to large data array
 | 
			
		||||
            time_residuals_data[a][k] = time_residuals, snrs, ~mask
 | 
			
		||||
 | 
			
		||||
            # Make a plot of the time residuals <<<
 | 
			
		||||
            if True and N_residuals > 1:
 | 
			
		||||
                for i in range(1 + cut_wrong_peak_matches):
 | 
			
		||||
                    mask_count = 0
 | 
			
		||||
 | 
			
		||||
                    if i==1: # if cut_wrong_peak_matches:
 | 
			
		||||
                        wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*4
 | 
			
		||||
 | 
			
		||||
                        mask = wrong_peak_condition(time_residuals)
 | 
			
		||||
 | 
			
		||||
                        mask_count = np.count_nonzero(mask)
 | 
			
		||||
 | 
			
		||||
                        print("Masking {} residuals".format(mask_count))
 | 
			
		||||
                        time_residuals = time_residuals[~mask]
 | 
			
		||||
 | 
			
		||||
                        # None masked
 | 
			
		||||
                        if not mask_count:
 | 
			
		||||
                            continue
 | 
			
		||||
 | 
			
		||||
                    time_accuracies[l, k] = np.std(time_residuals)
 | 
			
		||||
                    mask_counts[l, k] = mask_count
 | 
			
		||||
                        # All masked
 | 
			
		||||
                        if not len(time_residuals):
 | 
			
		||||
                            continue
 | 
			
		||||
 | 
			
		||||
                    hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
 | 
			
		||||
                    fig, ax = plt.subplots()
 | 
			
		||||
| 
						 | 
				
			
			@ -614,8 +619,11 @@ if __name__ == "__main__":
 | 
			
		|||
 | 
			
		||||
                    if True:
 | 
			
		||||
                        plt.close(fig)
 | 
			
		||||
                # >>> End of plot
 | 
			
		||||
 | 
			
		||||
    #
 | 
			
		||||
    # SNR time accuracy plot
 | 
			
		||||
    #
 | 
			
		||||
    if True:
 | 
			
		||||
        threshold_markers = ['^', 'v', '8', 'o']
 | 
			
		||||
        mask_thresholds = [np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue