mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 11:33:32 +01:00
Pulse: Filter Response Figure
This commit is contained in:
parent
4e96342342
commit
d1c89547b1
1 changed files with 9 additions and 5 deletions
|
@ -470,13 +470,13 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
if True: # show interpolation template
|
if True: # show interpolation template
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_title("Deltapeak and Bandpassed Template")
|
ax.set_title("Filter Response")
|
||||||
ax.set_xlabel("Time [ns]")
|
ax.set_xlabel("Time [ns]")
|
||||||
ax.set_ylabel("Amplitude")
|
ax.set_ylabel("Amplitude")
|
||||||
ax.plot(interp_template.t, max(interp_template.signal)*_deltapeak[0], label='Impulse Template')
|
ax.plot(interp_template.t, max(interp_template.signal)*_deltapeak[0], label='Impulse')
|
||||||
ax.plot(interp_template.t, interp_template.signal, label='Filtered Template')
|
ax.plot(interp_template.t, interp_template.signal, label='Filtered Signal')
|
||||||
ax.legend()
|
ax.legend()
|
||||||
fig.savefig('figures/11_interpolation_deltapeak.pdf')
|
fig.savefig('figures/11_filter_response.pdf')
|
||||||
|
|
||||||
if True: # show filtering equivalence samplerates
|
if True: # show filtering equivalence samplerates
|
||||||
_deltapeak = util.deltapeak(timelength=template_length, samplerate=1/antenna_dt, offset=0)
|
_deltapeak = util.deltapeak(timelength=template_length, samplerate=1/antenna_dt, offset=0)
|
||||||
|
@ -492,7 +492,6 @@ if __name__ == "__main__":
|
||||||
if True:
|
if True:
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# Find time accuracies as a function of signal strength
|
# Find time accuracies as a function of signal strength
|
||||||
#
|
#
|
||||||
|
@ -550,6 +549,11 @@ if __name__ == "__main__":
|
||||||
ax.set_xlabel("Time Residual [ns]")
|
ax.set_xlabel("Time Residual [ns]")
|
||||||
ax.set_ylabel("#")
|
ax.set_ylabel("#")
|
||||||
|
|
||||||
|
if True:
|
||||||
|
# indicate boxcar accuracy limits
|
||||||
|
for sign in [-1, 1]:
|
||||||
|
ax.axvline( sign*template_dt/np.sqrt(12), ls='--', alpha=0.5, color='green')
|
||||||
|
|
||||||
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
|
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
|
||||||
if True: # fit gaussian to histogram
|
if True: # fit gaussian to histogram
|
||||||
min_x = min(time_residuals)
|
min_x = min(time_residuals)
|
||||||
|
|
Loading…
Reference in a new issue