mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 19:43:30 +01:00
Lib: add simple util functions
This commit is contained in:
parent
631fb6a398
commit
d629dcc6eb
3 changed files with 99 additions and 0 deletions
|
@ -1,6 +1,7 @@
|
||||||
from . import signals
|
from . import signals
|
||||||
from . import location
|
from . import location
|
||||||
from . import sampling
|
from . import sampling
|
||||||
|
from .plotting import *
|
||||||
from .util import *
|
from .util import *
|
||||||
|
|
||||||
|
|
||||||
|
|
25
lib/plotting.py
Normal file
25
lib/plotting.py
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
"""
|
||||||
|
Routines to assist in plotting
|
||||||
|
"""
|
||||||
|
|
||||||
|
def annotate_width(ax, name, x1, x2, y, text_kw={}, arrow_kw={}):
|
||||||
|
default_arrow_kw = dict(
|
||||||
|
xy = (x1, y),
|
||||||
|
xytext = (x2,y),
|
||||||
|
arrowprops = dict(
|
||||||
|
arrowstyle="<->",
|
||||||
|
shrinkA=False,
|
||||||
|
shrinkB=False
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
default_text_kw = dict(
|
||||||
|
va='bottom',
|
||||||
|
ha='center',
|
||||||
|
xy=((x1+x2)/2, y)
|
||||||
|
)
|
||||||
|
|
||||||
|
an1 = ax.annotate("", **{**default_arrow_kw, **arrow_kw})
|
||||||
|
an2 = ax.annotate(name, **{**default_text_kw, **text_kw})
|
||||||
|
|
||||||
|
return [an1, an2]
|
73
lib/util.py
73
lib/util.py
|
@ -3,6 +3,7 @@ Various useful utilities (duh)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import scipy.fft as ft
|
||||||
|
|
||||||
def sampled_time(sample_rate=1, start=0, end=1, offset=0):
|
def sampled_time(sample_rate=1, start=0, end=1, offset=0):
|
||||||
return offset + np.arange(start, end, 1/sample_rate)
|
return offset + np.arange(start, end, 1/sample_rate)
|
||||||
|
@ -36,3 +37,75 @@ def detect_edges(threshold, data, rising=True, falling=False):
|
||||||
mask |= (data[:-1] > threshold) & (data[1:] < threshold)
|
mask |= (data[:-1] > threshold) & (data[1:] < threshold)
|
||||||
|
|
||||||
return np.flatnonzero(mask)+1
|
return np.flatnonzero(mask)+1
|
||||||
|
|
||||||
|
def sin_delay(f, t, t_delay=0, phase=0):
|
||||||
|
return np.sin( 2*np.pi*f*(t - t_delay) + phase )
|
||||||
|
|
||||||
|
def time2phase(time, frequency=1):
|
||||||
|
return 2*np.pi*frequency*time
|
||||||
|
|
||||||
|
def phase2time(phase, frequency=1):
|
||||||
|
return phase/(2*np.pi*frequency)
|
||||||
|
|
||||||
|
def time_roll(a, samplerate, time_shift, *roll_args, int_func=lambda x: np.rint(x).astype(int), **roll_kwargs):
|
||||||
|
"""
|
||||||
|
Like np.roll, but use samplerate and time_shift to approximate
|
||||||
|
the offset to roll.
|
||||||
|
"""
|
||||||
|
shift = int_func(time_shift*samplerate)
|
||||||
|
return np.roll(a, shift, *roll_args, **roll_kwargs)
|
||||||
|
|
||||||
|
### signal generation
|
||||||
|
def fft_bandpass(signal, band, samplerate):
|
||||||
|
"""
|
||||||
|
Simple bandpassing function employing a FFT.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
signal : arraylike
|
||||||
|
band : tuple(low, high)
|
||||||
|
Frequencies for bandpassing
|
||||||
|
samplerate : float
|
||||||
|
"""
|
||||||
|
signal = np.asarray(signal)
|
||||||
|
|
||||||
|
fft = ft.rfft(signal)
|
||||||
|
freqs = ft.rfftfreq(signal.size, 1/samplerate)
|
||||||
|
fft[(freqs < band[0]) | (freqs > band[1])] = 0
|
||||||
|
|
||||||
|
return ft.irfft(fft, signal.size), (fft, freqs)
|
||||||
|
|
||||||
|
def deltapeak(timelength=1e3, samplerate=1, offset=None, peaklength=1):
|
||||||
|
"""
|
||||||
|
Generate a series of zeroes with a deltapeak.
|
||||||
|
|
||||||
|
If offset is not specified, it puts it at a random location.
|
||||||
|
|
||||||
|
Note: the series is regarded as periodic.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
timelength : float
|
||||||
|
samplerate : float
|
||||||
|
offset : float or tuple(float, float)
|
||||||
|
Start of the peak
|
||||||
|
peaklength : int
|
||||||
|
Length of the peak
|
||||||
|
"""
|
||||||
|
|
||||||
|
N_samples = int(timelength * samplerate)
|
||||||
|
if offset is None:
|
||||||
|
offset = (None,None)
|
||||||
|
|
||||||
|
if isinstance(offset, (tuple, list)):
|
||||||
|
offset_min = 0 if offset[0] is None else offset[0]
|
||||||
|
offset_max = N_samples if offset[-1] is None else offset[-1]
|
||||||
|
|
||||||
|
offset = (np.random.random(1)*(offset_max - offset_min)+offset_min).astype(int) % N_samples
|
||||||
|
|
||||||
|
position = (offset + np.arange(0, peaklength)).astype(int) % N_samples
|
||||||
|
|
||||||
|
signal = np.zeros(N_samples)
|
||||||
|
signal[position] = 1
|
||||||
|
|
||||||
|
return signal, position
|
||||||
|
|
Loading…
Reference in a new issue