Lib: add simple util functions

This commit is contained in:
Eric Teunis de Boone 2022-08-04 16:50:11 +02:00
parent 631fb6a398
commit d629dcc6eb
3 changed files with 99 additions and 0 deletions

View file

@ -1,6 +1,7 @@
from . import signals from . import signals
from . import location from . import location
from . import sampling from . import sampling
from .plotting import *
from .util import * from .util import *

25
lib/plotting.py Normal file
View file

@ -0,0 +1,25 @@
"""
Routines to assist in plotting
"""
def annotate_width(ax, name, x1, x2, y, text_kw={}, arrow_kw={}):
default_arrow_kw = dict(
xy = (x1, y),
xytext = (x2,y),
arrowprops = dict(
arrowstyle="<->",
shrinkA=False,
shrinkB=False
),
)
default_text_kw = dict(
va='bottom',
ha='center',
xy=((x1+x2)/2, y)
)
an1 = ax.annotate("", **{**default_arrow_kw, **arrow_kw})
an2 = ax.annotate(name, **{**default_text_kw, **text_kw})
return [an1, an2]

View file

@ -3,6 +3,7 @@ Various useful utilities (duh)
""" """
import numpy as np import numpy as np
import scipy.fft as ft
def sampled_time(sample_rate=1, start=0, end=1, offset=0): def sampled_time(sample_rate=1, start=0, end=1, offset=0):
return offset + np.arange(start, end, 1/sample_rate) return offset + np.arange(start, end, 1/sample_rate)
@ -36,3 +37,75 @@ def detect_edges(threshold, data, rising=True, falling=False):
mask |= (data[:-1] > threshold) & (data[1:] < threshold) mask |= (data[:-1] > threshold) & (data[1:] < threshold)
return np.flatnonzero(mask)+1 return np.flatnonzero(mask)+1
def sin_delay(f, t, t_delay=0, phase=0):
return np.sin( 2*np.pi*f*(t - t_delay) + phase )
def time2phase(time, frequency=1):
return 2*np.pi*frequency*time
def phase2time(phase, frequency=1):
return phase/(2*np.pi*frequency)
def time_roll(a, samplerate, time_shift, *roll_args, int_func=lambda x: np.rint(x).astype(int), **roll_kwargs):
"""
Like np.roll, but use samplerate and time_shift to approximate
the offset to roll.
"""
shift = int_func(time_shift*samplerate)
return np.roll(a, shift, *roll_args, **roll_kwargs)
### signal generation
def fft_bandpass(signal, band, samplerate):
"""
Simple bandpassing function employing a FFT.
Parameters
----------
signal : arraylike
band : tuple(low, high)
Frequencies for bandpassing
samplerate : float
"""
signal = np.asarray(signal)
fft = ft.rfft(signal)
freqs = ft.rfftfreq(signal.size, 1/samplerate)
fft[(freqs < band[0]) | (freqs > band[1])] = 0
return ft.irfft(fft, signal.size), (fft, freqs)
def deltapeak(timelength=1e3, samplerate=1, offset=None, peaklength=1):
"""
Generate a series of zeroes with a deltapeak.
If offset is not specified, it puts it at a random location.
Note: the series is regarded as periodic.
Parameters
----------
timelength : float
samplerate : float
offset : float or tuple(float, float)
Start of the peak
peaklength : int
Length of the peak
"""
N_samples = int(timelength * samplerate)
if offset is None:
offset = (None,None)
if isinstance(offset, (tuple, list)):
offset_min = 0 if offset[0] is None else offset[0]
offset_max = N_samples if offset[-1] is None else offset[-1]
offset = (np.random.random(1)*(offset_max - offset_min)+offset_min).astype(int) % N_samples
position = (offset + np.arange(0, peaklength)).astype(int) % N_samples
signal = np.zeros(N_samples)
signal[position] = 1
return signal, position