mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 11:33:32 +01:00
ZH: improve some plots
This commit is contained in:
parent
9debde9d02
commit
f6b474373d
3 changed files with 50 additions and 22 deletions
|
@ -134,7 +134,7 @@ if __name__ == "__main__":
|
||||||
myt = np.linspace(min(traces[0]), max(traces[0]), 10*len(traces[0]))
|
myt = np.linspace(min(traces[0]), max(traces[0]), 10*len(traces[0]))
|
||||||
ax.plot(t_trace, traces[-1], marker='.', label='trace')
|
ax.plot(t_trace, traces[-1], marker='.', label='trace')
|
||||||
ax.plot(myt, lib.sine_beacon(frequency, myt, amplitude=amplitude, phase=phase), ls='dashed', label='simulated')
|
ax.plot(myt, lib.sine_beacon(frequency, myt, amplitude=amplitude, phase=phase), ls='dashed', label='simulated')
|
||||||
ax.set_title(f"Beacon at antenna {h5ant}\nF:{frequency}, P:{phase}, A:{amplitude}")
|
ax.set_title(f"Beacon at antenna {h5ant.attrs['name']}\nF:{frequency:.2e}, P:{phase:.4f}, A:{amplitude:.1e}")
|
||||||
ax.legend()
|
ax.legend()
|
||||||
|
|
||||||
# save to file
|
# save to file
|
||||||
|
|
|
@ -18,17 +18,24 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
fname = "ZH_airshower/mysim.sry"
|
fname = "ZH_airshower/mysim.sry"
|
||||||
|
|
||||||
|
plot_phase_field = True
|
||||||
|
plot_tx = False
|
||||||
|
|
||||||
####
|
####
|
||||||
fname_dir = path.dirname(fname)
|
fname_dir = path.dirname(fname)
|
||||||
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
||||||
|
|
||||||
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
|
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
|
||||||
|
|
||||||
subtitle = ""
|
pretitle = ""
|
||||||
if True:
|
if True:
|
||||||
beacon_frequencies = np.array([ant.attrs['beacon_freq'] for ant in antennas])
|
freq_name = list(antennas[0].beacon_info.keys())[0]
|
||||||
beacon_amplitudes = np.array([ant.attrs['beacon_amplitude'] for ant in antennas])
|
beacon_frequencies = np.array([ant.beacon_info[freq_name]['freq'] for ant in antennas])
|
||||||
beacon_phases = np.array([lib.phase_mod(ant.attrs['beacon_phase_measured']) for ant in antennas])
|
beacon_amplitudes = np.array([ant.beacon_info[freq_name]['amplitude'] for ant in antennas])
|
||||||
|
beacon_phases = lib.phase_mod(np.array([ant.beacon_info[freq_name]['phase'] for ant in antennas]))
|
||||||
|
|
||||||
|
if 'true_phase' in antennas[0].beacon_info[freq_name]:
|
||||||
|
beacon_true_phases = lib.phase_mod(np.array([ant.beacon_info[freq_name]['true_phase'] for ant in antennas]))
|
||||||
else:
|
else:
|
||||||
subtitle = " Phases from t0"
|
subtitle = " Phases from t0"
|
||||||
beacon_frequencies = np.array([ f_beacon for ant in antennas ])
|
beacon_frequencies = np.array([ f_beacon for ant in antennas ])
|
||||||
|
@ -41,6 +48,11 @@ if __name__ == "__main__":
|
||||||
vals = beacon_phases
|
vals = beacon_phases
|
||||||
colorlabel = '$\\varphi$'
|
colorlabel = '$\\varphi$'
|
||||||
sizes = 64*(beacon_amplitudes/np.max(beacon_amplitudes))**2
|
sizes = 64*(beacon_amplitudes/np.max(beacon_amplitudes))**2
|
||||||
|
elif True: # True Phases
|
||||||
|
vals = beacon_true_phases
|
||||||
|
colorlabel = '$\\sigma_\\varphi$'
|
||||||
|
plot_phase_field = False
|
||||||
|
plot_tx = False
|
||||||
else:
|
else:
|
||||||
vals = beacon_amplitudes
|
vals = beacon_amplitudes
|
||||||
colorlabel = "[$\\mu$V/m]"
|
colorlabel = "[$\\mu$V/m]"
|
||||||
|
@ -51,13 +63,14 @@ if __name__ == "__main__":
|
||||||
#####
|
#####
|
||||||
|
|
||||||
fig, axs = plt.subplots()
|
fig, axs = plt.subplots()
|
||||||
axs.set_title(f"Amplitude at beacon frequency at each antenna\nf at A0: {beacon_frequencies[0]}GHz" + subtitle)
|
axs.set_title(pretitle + f"Beacon frequency at A0: {beacon_frequencies[0]:.3e}GHz")
|
||||||
axs.set_aspect('equal', 'datalim')
|
axs.set_aspect('equal', 'datalim')
|
||||||
axs.set_xlabel('[m]')
|
axs.set_xlabel('[m]')
|
||||||
axs.set_ylabel('[m]')
|
axs.set_ylabel('[m]')
|
||||||
|
|
||||||
if True:
|
if True:
|
||||||
if True:
|
vmax, vmin = None, None
|
||||||
|
if plot_phase_field:
|
||||||
# underlie a calculate phase field
|
# underlie a calculate phase field
|
||||||
if True: # only fill for antennas
|
if True: # only fill for antennas
|
||||||
xs = np.linspace( np.min(x), np.max(x), 4*np.ceil(len(antennas)**0.5) -1 )
|
xs = np.linspace( np.min(x), np.max(x), 4*np.ceil(len(antennas)**0.5) -1 )
|
||||||
|
@ -67,12 +80,19 @@ if __name__ == "__main__":
|
||||||
ys = np.linspace( (tx.y - np.min(y))/2, np.max(y), 500)
|
ys = np.linspace( (tx.y - np.min(y))/2, np.max(y), 500)
|
||||||
|
|
||||||
phases, (xs, ys) = lib.phase_field_from_tx(xs, ys, tx, f_beacon*1e9,return_meshgrid=False)
|
phases, (xs, ys) = lib.phase_field_from_tx(xs, ys, tx, f_beacon*1e9,return_meshgrid=False)
|
||||||
sc2 = axs.scatter(xs, ys, c=phases, alpha=0.5, zorder=-5, cmap='Spectral_r')
|
|
||||||
|
vmax, vmin = max(np.max(phases), np.max(vals)), min(np.min(phases), np.min(vals))
|
||||||
|
sc2 = axs.scatter(xs, ys, c=phases, alpha=0.5, zorder=-5, cmap='Spectral_r', vmin=vmin, vmax=vmax)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
# do not share the same colours
|
||||||
fig.colorbar(sc2, ax=axs)
|
fig.colorbar(sc2, ax=axs)
|
||||||
|
vmax, vmin = None, None
|
||||||
|
|
||||||
sc = axs.scatter(x, y, c=vals, s=sizes, cmap='Spectral_r', edgecolors='k', marker='X')
|
sc = axs.scatter(x, y, c=vals, s=sizes, cmap='Spectral_r', edgecolors='k', marker='X', vmin=vmin, vmax=vmax)
|
||||||
|
|
||||||
axs.plot(tx.x, tx.y, marker='X', color='k')
|
if plot_tx:
|
||||||
|
axs.plot(tx.x, tx.y, marker='X', color='k')
|
||||||
|
|
||||||
#for i, freq in enumerate(beacon_frequencies):
|
#for i, freq in enumerate(beacon_frequencies):
|
||||||
# axs.text(f"{freq:.2e}", (x[i], y[i]))
|
# axs.text(f"{freq:.2e}", (x[i], y[i]))
|
||||||
|
@ -91,6 +111,6 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
fig.colorbar(sc, ax=axs, label=colorlabel)
|
fig.colorbar(sc, ax=axs, label=colorlabel)
|
||||||
|
|
||||||
|
if not True:
|
||||||
fig.savefig(__file__ + ".pdf")
|
fig.savefig(__file__ + ".pdf")
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
|
@ -58,13 +58,15 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
axs[0].axvline(ant.t[0], color='k', alpha=0.5)
|
axs[0].axvline(ant.t[0], color='k', alpha=0.5)
|
||||||
|
|
||||||
if not True:
|
if True: # total E field
|
||||||
|
mydict = dict(AxB=ant.E_AxB)
|
||||||
|
elif False: # polarisations
|
||||||
mydict = dict(x=ant.Ex, y=ant.Ex, z=ant.Ez)
|
mydict = dict(x=ant.Ex, y=ant.Ex, z=ant.Ez)
|
||||||
else:
|
else: # beacon
|
||||||
mydict = dict(E=ant.E_AxB, b=ant.beacon)
|
mydict = dict(b=ant.beacon)
|
||||||
|
|
||||||
for j, (direction, trace) in enumerate(mydict.items()):
|
for j, (direction, trace) in enumerate(mydict.items()):
|
||||||
l = axs[0].plot(ant.t, trace, label=f"E{direction} {ant.name}")
|
l = axs[0].plot(ant.t, trace, label=f"$E_{{{direction}}}$ {ant.name}", alpha=0.8)
|
||||||
|
|
||||||
#if False and j == 0 and 't0' in ant.attrs:
|
#if False and j == 0 and 't0' in ant.attrs:
|
||||||
# axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5)
|
# axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5)
|
||||||
|
@ -87,19 +89,25 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
print(amp)
|
print(amp)
|
||||||
phase = np.arctan2(cft[0],cft[1])
|
phase = np.arctan2(cft[0],cft[1])
|
||||||
axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3')
|
axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
|
||||||
axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3')
|
axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
|
||||||
|
|
||||||
if plot_ft_amplitude:
|
if plot_ft_amplitude:
|
||||||
fig1.legend(loc='center right', ncol=min(3, len(idx)))
|
fig1.legend(loc='center right', ncol=min(2, len(idx)))
|
||||||
else:
|
else:
|
||||||
fig1.legend(loc='upper right', ncol=min(3, len(idx)))
|
fig1.legend(loc='upper right', ncol=min(3, len(idx)))
|
||||||
|
|
||||||
if plot_geometry:
|
if plot_geometry:
|
||||||
|
if len(mydict) == 1:
|
||||||
|
geom_colorlist = colorlist
|
||||||
|
else:
|
||||||
|
# only take the colour belonging to mydict[0]
|
||||||
|
geom_colorlist = [ colorlist[len(mydict)*(i)] for i in range(len(colorlist)//len(mydict)) ]
|
||||||
|
|
||||||
fig2, axs2 = plt.subplots(1)
|
fig2, axs2 = plt.subplots(1)
|
||||||
plot_antenna_geometry(antennas, ax=axs2, plot_max_values=False, color='grey', plot_names=False)
|
plot_antenna_geometry(antennas, ax=axs2, plot_max_values=False, color='grey', plot_names=False)
|
||||||
for j, _ in enumerate(mydict):
|
plot_antenna_geometry([ antennas[i] for i in idx], ax=axs2, colors=geom_colorlist, plot_max_values=False)
|
||||||
plot_antenna_geometry([ antennas[i] for i in idx], ax=axs2, colors=colorlist[j + len(colorlist)//len(mydict)], plot_max_values=False)
|
|
||||||
axs2.plot(tx.x, tx.y, marker='X', color='k')
|
axs2.plot(tx.x, tx.y, marker='X', color='k')
|
||||||
axs2.set_title("Geometry with selected antennas")
|
axs2.set_title("Geometry with selected antennas")
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue