Merge branch 'add-noise' into main

This commit is contained in:
Eric Teunis de Boone 2023-01-11 03:10:07 +01:00
commit fe05908bbb
2 changed files with 156 additions and 2 deletions

View file

@ -82,6 +82,8 @@ def Antenna_from_h5ant(h5ant, traces_key='traces', raise_exception=True, read_Ax
ant.Ez = deepcopy(h5ant[traces_key][3]) ant.Ez = deepcopy(h5ant[traces_key][3])
if len(h5ant[traces_key]) > 4: if len(h5ant[traces_key]) > 4:
ant.beacon = deepcopy(h5ant[traces_key][4]) ant.beacon = deepcopy(h5ant[traces_key][4])
if len(h5ant[traces_key]) > 5:
ant.noise = deepcopy(h5ant[traces_key][5])
# E_AxB # E_AxB
if read_AxB and 'E_AxB' in h5ant: if read_AxB and 'E_AxB' in h5ant:
@ -240,6 +242,8 @@ def write_baseline_time_diffs_hdf5(fname, baselines, true_phase_diffs, k_periods
if __name__ == "__main__": if __name__ == "__main__":
from os import path from os import path
rng = np.random.default_rng()
fname = "ZH_airshower/mysim.sry" fname = "ZH_airshower/mysim.sry"
# Transmitter # Transmitter
@ -276,6 +280,9 @@ if __name__ == "__main__":
beacon_amplitudes *= ampl beacon_amplitudes *= ampl
# Noise properties
noise_sigma = 1e-4 # set to None to ignore
# Disable block_filter # Disable block_filter
if False: if False:
block_filter = lambda x, dt, low, high: x block_filter = lambda x, dt, low, high: x
@ -294,6 +301,7 @@ if __name__ == "__main__":
print("Beacon amplitude at tx [muV/m]:", beacon_amplitudes) print("Beacon amplitude at tx [muV/m]:", beacon_amplitudes)
print("Tx location:", [tx.x, tx.y, tx.z]) print("Tx location:", [tx.x, tx.y, tx.z])
print("Noise sigma:", noise_sigma)
# read in antennas # read in antennas
ev = REvent(fname) ev = REvent(fname)
@ -328,13 +336,20 @@ if __name__ == "__main__":
print(f"Modified trace lengths by {pre_N},{after_N-N_samples}") print(f"Modified trace lengths by {pre_N},{after_N-N_samples}")
beacon = lib.beacon_from(tx, antenna, f_beacon, antenna.t, c_light=c_light, radiate_rsq=beacon_radiate_rsq) beacon = lib.beacon_from(tx, antenna, f_beacon, antenna.t, c_light=c_light, radiate_rsq=beacon_radiate_rsq)
traces = np.array([antenna.Ex, antenna.Ey, antenna.Ez, beacon])
# noise realisation
noise_realisation = 0
if noise_sigma is not None:
noise_realisation = rng.normal(0, noise_sigma, size=len(beacon))
# Collect all data to be saved (with the first 3 values the E fields)
traces = np.array([antenna.Ex, antenna.Ey, antenna.Ez, beacon, noise_realisation])
# add to relevant polarisation # add to relevant polarisation
# and apply block filter # and apply block filter
dt = antenna.t[1] - antenna.t[0] dt = antenna.t[1] - antenna.t[0]
for j, amp in enumerate(beacon_amplitudes): for j, amp in enumerate(beacon_amplitudes):
traces[j] = block_filter(traces[j] + amp*beacon, dt, low_bp, high_bp) traces[j] = block_filter(traces[j] + amp*beacon + noise_realisation, dt, low_bp, high_bp)
append_antenna_hdf5( antennas_fname, antenna, traces, name='traces', prepend_time=True) append_antenna_hdf5( antennas_fname, antenna, traces, name='traces', prepend_time=True)

View file

@ -0,0 +1,139 @@
#!/usr/bin/env python3
# vim: indent=fdm ts=4
"""
Show Signal to noise for the original simulation signal,
the beacon signal and the combined signal for each antenna
"""
import numpy as np
import h5py
import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple
from earsim import REvent
import aa_generate_beacon as beacon
import lib
passband = namedtuple("passband", ['low', 'high'], defaults=[0, np.inf])
def get_freq_spec(val,dt):
"""From earsim/tools.py"""
fval = np.fft.fft(val)[:len(val)//2]
freq = np.fft.fftfreq(len(val),dt)[:len(val)//2]
return fval, freq
def bandpass_samples(samples, samplerate, band=passband()):
"""
Bandpass the samples with this passband.
This is a hard filter.
"""
fft, freqs = get_freq_spec(samples, samplerate)
fft[ ~ self.freq_mask(freqs) ] = 0
return np.fft.irfft(fft)
def bandpass_mask(freqs, band=passband()):
low_pass = abs(freqs) <= band[1]
high_pass = abs(freqs) >= band[0]
return low_pass & high_pass
def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True):
fft, freqs = get_freq_spec(samples, samplerate)
bandmask = bandpass_mask(freqs, band=band)
if normalise_bandsize:
bins = np.count_nonzero(bandmask, axis=-1)
else:
bins = 1
power = np.sum(np.abs(fft[bandmask])**2)
return power/bins
def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None):
if noise_band is None:
noise_band = signal_band
if noise is None:
noise = samples
noise_power = bandpower(noise, samplerate, noise_band)
signal_power = bandpower(samples, samplerate, signal_band)
return (signal_power/noise_power)**0.5
if __name__ == "__main__":
from os import path
import sys
import matplotlib
import os
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
f_beacon_band = (49e-3,55e-3) #GHz
fname = "ZH_airshower/mysim.sry"
fig_dir = "./figures/"
show_plots = not False
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
time_diffs_fname = 'time_diffs.hdf5' if not True else antennas_fname
# create fig_dir
if fig_dir:
os.makedirs(fig_dir, exist_ok=True)
# Read in antennas from file
_, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# Read original REvent
ev = REvent(fname)
# general properties
dt = antennas[0].t[1] - antennas[0].t[0] # ns
pb = passband(30e-3, 80e-3) # GHz
beacon_pb = passband(50e-3, 55e-3) # GHz
##
## Beacon vs Noise SNR
##
if True:
beacon_snrs = [ signal_to_noise(ant.beacon, ant.noise, samplerate=1/dt, signal_band=beacon_pb) for ant in antennas ]
fig, ax = plt.subplots()
ax.set_title("Beacon SNR")
ax.set_xlabel("Antenna")
ax.set_ylabel("SNR")
ax.plot([ int(ant.name) for ant in antennas], beacon_snrs, 'o', ls='none')
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".beacon_snr.pdf"))
##
## Airshower signal vs Noise SNR
##
if True:
shower_snrs = [ signal_to_noise(ant.E_AxB, ant.noise, samplerate=1/dt, signal_band=pb) for ant in antennas ]
fig, ax = plt.subplots()
ax.set_title("Shower SNR")
ax.set_xlabel("Antenna")
ax.set_ylabel("SNR")
ax.plot([ int(ant.name) for ant in antennas], shower_snrs, 'o', ls='none')
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".shower_snr.pdf"))
if show_plots:
plt.show()