# vim: fdm=indent ts=4 """ Library for this simulation """ import numpy as np from numpy.polynomial import Polynomial from earsim import Antenna c_light = 3e8*1e-9 # m/ns """ Beacon utils """ def sine_beacon(f, t, t0=0, amplitude=1, baseline=0, phase=0, peak_at_t0=0): """ Return a sine appropriate as a beacon """ baseline = baseline*np.ones_like(t) if peak_at_t0: # add peak near t0 idx = (np.abs(t-t0)).argmin() baseline[ max(0, idx-1):min(len(t), idx+1) ] += peak_at_t0 + amplitude return amplitude * np.cos(2*np.pi*f*(t+t0) + phase) + baseline def phase_mod(phase, low=np.pi): """ Modulo phase such that it falls within the interval $[-low, 2\pi - low)$. """ return (phase + low) % (2*np.pi) - low def distance(x1, x2): """ Calculate the Euclidean distance between two locations x1 and x2 """ assert type(x1) in [Antenna] x1 = np.array([x1.x, x1.y, x1.z]) assert type(x2) in [Antenna] x2 = np.array([x2.x, x2.y, x2.z]) return np.sqrt( np.sum( (x1-x2)**2 ) ) def geometry_time(dist, x2=None, c_light=c_light): if x2 is not None: dist = distance(dist, x2) return dist/c_light def beacon_from(tx, rx, f, t=0, t0=0, c_light=c_light, radiate_rsq=True, amplitude=1,**kwargs): dist = distance(tx,rx) # suppress extra time delay from distance if c_light is not None and np.isfinite(c_light): t0 = t0 + dist/c_light if radiate_rsq: if np.isclose(dist, 0): dist = 1 amplitude *= 1/(dist**2) return sine_beacon(f, t, t0=t0, amplitude=amplitude,**kwargs) def remove_antenna_geometry_phase(tx, antennas, f_beacon, measured_phases=None, c_light=c_light): """ Remove the geometrical phase from the measured antenna phase. """ if not hasattr(antennas, '__len__'): antennas = [antennas] if not hasattr(measured_phases, '__len__'): measured_phases = [measured_phases] true_phases = np.empty( (len(antennas)) ) for i, ant in enumerate(antennas): measured_phase = measured_phases[i] geom_time = geometry_time(tx, ant, c_light=c_light) geom_phase = geom_time * 2*np.pi*f_beacon true_phases[i] = phase_mod(measured_phase - geom_phase) return true_phases """ Fourier """ def ft_corr_vectors(freqs, time): """ Get the cosine and sine terms for freqs at time. Takes the outer product of freqs and time. """ freqtime = np.outer(freqs, time) c_k = np.cos(2*np.pi*freqtime) s_k = -1*np.sin(2*np.pi*freqtime) return c_k, s_k def direct_fourier_transform(freqs, time, samplesets_iterable): """ Determine the fourier transform of each sampleset in samplesets_iterable at freqs. The samplesets are expected to have the same time vector. Returns either a generator to return the fourier transform for each sampleset if samplesets_iterable is a generator or a numpy array. """ c_k, s_k = ft_corr_vectors(freqs, time) if not hasattr(samplesets_iterable, '__len__') and hasattr(samplesets_iterable, '__iter__'): # samplesets_iterable is an iterator # return a generator containing (real, imag) amplitudes return ( (np.dot(c_k, samples), np.dot(s_k, samples)) for samples in samplesets_iterable ) # Numpy array return np.dot(c_k, samplesets_iterable), np.dot(s_k, samplesets_iterable) def phase_field_from_tx(x, y, tx, f_beacon, c_light=c_light, t0=0, wrap_phase=True, return_meshgrid=True): """ """ assert type(tx) in [Antenna] xs, ys = np.meshgrid(x, y, sparse=True) x_distances = (tx.x - xs)**2 y_distances = (tx.y - ys)**2 dist = np.sqrt( x_distances + y_distances ) phase = (dist/c_light + t0) * f_beacon*2*np.pi if wrap_phase: phase = phase_mod(phase) if return_meshgrid: return phase, (xs, ys) else: return phase, (np.repeat(xs, len(ys), axis=0), np.repeat(ys, len(xs[0]), axis=1)) def find_beacon_in_traces( traces, t_trace, f_beacon_estimate = 50e6, frequency_fit = False, N_test_freqs = 5e2, f_beacon_estimate_band = 0.01, amp_cut = 0.8 ): """ f_beacon_band is inclusive traces is [trace, trace, trace, .. ] """ amplitudes = np.zeros(len(traces)) phases = np.zeros(len(traces)) frequencies = np.zeros(len(traces)) if frequency_fit: # fit frequency test_freqs = f_beacon_estimate + f_beacon_estimate_band * np.linspace(-1, 1, int(N_test_freqs)+1) ft_amp_gen = direct_fourier_transform(test_freqs, t_trace, (x for x in traces)) n_samples = len(t_trace) for i, ft_amp in enumerate(ft_amp_gen): real, imag = ft_amp amps = 1/n_samples * ( real**2 + imag**2)**0.5 # find frequency peak and surrounding bins # that are valid for the parabola fit max_amp_idx = np.argmax(amps) max_amp = amps[max_amp_idx] if True: frequencies[i] = test_freqs[max_amp_idx] continue valid_mask = amps >= amp_cut*max_amp if True: # make sure not to use other peaks lower_mask = valid_mask[0:max_amp_idx] upper_mask = valid_mask[max_amp_idx:] if any(lower_mask): lower_end = np.argmin(lower_mask[::-1]) else: lower_end = max_amp_idx if any(upper_mask): upper_end = np.argmin(upper_mask) else: upper_end = 0 valid_mask[0:(max_amp_idx - lower_end)] = False valid_mask[(max_amp_idx + upper_end):] = False if all(~valid_mask): frequencies[i] = np.nan continue # fit Parabola parafit = Polynomial.fit(test_freqs[valid_mask], amps[valid_mask], 2) func = parafit.convert() # find frequency where derivative is 0 deriv = func.deriv(1) freq = deriv.roots()[0] frequencies[i] = freq else: # no frequency finding frequencies[:] = f_beacon_estimate n_samples = len(t_trace) # evaluate fourier transform at freq for each trace for i, freq in enumerate(frequencies): if freq is np.nan: phases[i] = np.nan amplitudes[i] = np.nan continue real, imag = direct_fourier_transform(freq, t_trace, traces[i]) phases[i] = np.arctan2(imag, real) amplitudes[i] = 2/n_samples * (real**2 + imag**2)**0.5 return frequencies, phases, amplitudes def coherence_sum_maxima(ref_x, y, k_step=1, k_start=0, k_end=None, periodic=True): """ Use the maximum of a coherent sum to determine the best number of samples to move """ N_samples = int( len(ref_x) ) k_end = N_samples if k_end is None or k_end > max_k else k_end ks = np.arange(k_start, k_end, step=k_step) maxima = np.empty(len(ks)) if periodic is False: # prepend zeros N_zeros = N_samples preshift = 0 # only required for testing purposes ref_x = np.pad(ref_x, (N_zeros-0,0), 'constant') y = np.pad(y, (N_zeros-preshift,preshift), 'constant') for i,k in enumerate(ks, 0): augmented_y = np.roll(y, k) maxima[i] = max(ref_x + augmented_y) return ks, maxima