#!/usr/bin/env python3 # vim: fdm=indent ts=4 __doc__ = \ """ Show the curve for signal-to-noise ratio vs N_samples """ import matplotlib.pyplot as plt import numpy as np from mylib import * rng = np.random.default_rng() def noisy_sine_realisation_snr( N = 1, f_sample = 250e6, # Hz t_length = 1e4 * 1e-9, # s noise_band = passband(30e6, 80e6), noise_sigma = 1, # signal properties f_sine = 50e6, signal_band = passband(50e6 - 1e6, 50e6 + 1e6), sine_amp = 0.2, sine_offset = 0, return_ranges_plot = False, cut_signal_band_from_noise_band = False, rng=rng ): """ Return N signal to noise ratios determined on N different noise + sine realisations. """ N = int(N) init_params = np.array([sine_amp, f_sine, None, sine_offset]) axs = None snrs = np.zeros( N ) time = sampled_time(f_sample, end=t_length) for j in range(N): samples, noise = noisy_sine_sampling(time, init_params, noise_sigma, rng=rng) # determine signal to noise noise_power = bandpower(noise, f_sample, noise_band) if cut_signal_band_from_noise_band: lower_noise_band = passband(noise_band[0], signal_band[0]) upper_noise_band = passband(signal_band[1], noise_band[1]) noise_power = bandpower(noise, f_sample, lower_noise_band) noise_power += bandpower(noise, f_sample, upper_noise_band) signal_power = bandpower(samples, f_sample, signal_band) snrs[j] = np.sqrt(signal_power/noise_power) # make a nice plot showing what ranges were taken # and the bandpowers associated with them if return_ranges_plot and j == 0: combined_fft, freqs = ft_spectrum(samples+noise, f_sample) freq_scaler=1 # plot the original signal if False: _, ax = plt.subplots() ax = plot_signal(samples+noise, sample_rate=f_sample/freq_scaler, time_unit='us', ax=ax) # plot the spectrum if True: _, axs = plot_combined_spectrum(combined_fft, freqs, freq_scaler=freq_scaler, freq_unit='MHz') # indicate band ranges and frequency for ax in axs: ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4) ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='purple', alpha=0.3, label='noiseband') ax.axvspan(signal_band[0]/freq_scaler, signal_band[1]/freq_scaler, color='orange', alpha=0.3, label='signalband') # indicate initial phase axs[1].axhline(init_params[2], color='r', alpha=0.4) # plot the band powers if False: powerax = axs[0].twinx() powerax.set_ylabel("Bandpower") else: powerax = axs[0] powerax.hlines(np.sqrt(signal_power), noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, colors=['orange'], zorder=5) powerax.hlines(np.sqrt(noise_power), noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, colors=['purple'], zorder=5) powerax.set_ylim(bottom=0) axs[0].legend() # plot signal_band pass signal if True: freqs = np.fft.fftfreq(len(samples), 1/f_sample) bandmask = bandpass_mask(freqs, band=signal_band) fft = np.fft.fft(samples) fft[ ~bandmask ] = 0 bandpassed_samples = np.fft.ifft(fft) _, ax3 = plt.subplots() ax3 = plot_signal(bandpassed_samples, sample_rate=f_sample/freq_scaler, time_unit='us', ax=ax3) ax3.set_title("Bandpassed Signal") return snrs, axs if __name__ == "__main__": from argparse import ArgumentParser from myscriptlib import save_all_figs_to_path_or_show rng = np.random.default_rng(1) parser = ArgumentParser(description=__doc__) parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.") args = parser.parse_args() default_extensions = ['.pdf', '.png'] if args.fname == 'none': args.fname = None ### t_lengths = np.linspace(1, 50, 50) # us N = 50e0 fs_sine = [33.3, 50, 73.3] # MHz fs_sample = [250, 500] # MHz if False: # show t_length and fs_sample really don't care fs_iter = [ (fs_sample[0], f_sine, t_lengths) for f_sine in fs_sine ] fs_iter2 = [ (fs_sample[1], f_sine, t_lengths/2) for f_sine in fs_sine ] fs_iter += fs_iter2 del fs_iter2 else: fs_iter = [ (f_sample, f_sine, t_lengths) for f_sample in fs_sample for f_sine in fs_sine ] if False: f_sine = fs_sine[0] f_sample = fs_sample[0] N = 1 # Note: keep this low, N figures will be displayed! N_t_length = 10 for t_length in t_lengths[-N_t_length-1:-1]: snrs = np.zeros( int(N)) for i in range(int(N)): delta_f = 1/t_length signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f) noise_band = passband(30, 80) # MHz snrs[i], axs = noisy_sine_realisation_snr( N=1, t_length=t_length, f_sample=f_sample, # signal properties f_sine = fs_sine[0], sine_amp = 1, noise_sigma = 1, noise_band = noise_band, signal_band = signal_band, return_ranges_plot=False, rng=rng, ) axs[0].set_title("SNR: {}, N:{}".format(snrs[i], t_length*f_sample)) axs[0].set_xlim( (f_sine - 20*delta_f)/1e6, (f_sine + 20*delta_f)/1e6 ) print(snrs, "M:",np.mean(snrs)) plt.show(block=False) else: #original code sine_amp = 1 noise_sigma = 4 my_snrs = np.zeros( (len(fs_iter), len(t_lengths), int(N)) ) for i, (f_sample, f_sine, t_lengths) in enumerate( fs_iter ): for k, t_length in enumerate(t_lengths): return_ranges_plot = ((k==0) and not True) or ( (k==(len(t_lengths)-1)) and True) and i < 1 delta_f = 1/t_length signal_band = passband( *(f_sine + 2*delta_f*np.array([-1,1])) ) noise_band=passband(30, 80) # MHz my_snrs[i,k], axs = noisy_sine_realisation_snr( N=N, t_length=t_length, f_sample = f_sample, # signal properties f_sine = f_sine, sine_amp = sine_amp, noise_sigma = noise_sigma, noise_band = noise_band, signal_band = signal_band, return_ranges_plot=return_ranges_plot, rng=rng ) if return_ranges_plot: ranges_axs = axs # plot the snrs fig, axs2 = plt.subplots() fig.basefname="signal_to_noise_vs_N" axs2.set_title("A: {:.2e}, $\\sigma$: {:.2e}".format(sine_amp, noise_sigma)) axs2.set_xlabel("$N = T*f_s$") axs2.set_ylabel("SNR") mycolors = {} myshapes = { 250: '^', 500: 'v' } for i, (f_sample, f_sine, t_lengths) in enumerate(fs_iter): if f_sine in mycolors.keys(): color = mycolors[f_sine] else: color = None if f_sample in myshapes.keys(): marker = myshapes[f_sample] else: marker = 'x' # plot the means l = axs2.plot(t_lengths*f_sample, np.mean(my_snrs[i], axis=-1), color=color, marker=marker, ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black', mew=0.1) color = l[0].get_color() mycolors[f_sine] = color myshapes[f_sample] = l[0].get_marker() if True: for k, t_length in enumerate(t_lengths): t_length = np.repeat(t_length * f_sample, my_snrs.shape[-1]) axs2.plot(t_length, my_snrs[i,k], ls='none', color=color, marker='o', alpha=max(0.01, 1/my_snrs.shape[-1])) axs2.legend() # plot snrs vs T fig, axs3 = plt.subplots() fig.basefname="signal_to_noise_vs_T" axs3.set_title("A: {:.2e}, $\\sigma$: {:.2e}".format(sine_amp, noise_sigma)) axs3.set_xlabel("time [us]") axs3.set_ylabel("SNR") #mycolors = {} #myshapes = { 250: '^', 500: 'v' } for i, (f_sample, f_sine, t_lengths) in enumerate(fs_iter): if f_sine in mycolors.keys(): color = mycolors[f_sine] else: color = None if f_sample in myshapes.keys(): marker = myshapes[f_sample] else: marker = 'x' # plot the means l = axs3.plot(t_lengths, np.mean(my_snrs[i], axis=-1), color=color, marker=marker, ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black', mew=1) color = l[0].get_color() mycolors[f_sine] = color myshapes[f_sample] = l[0].get_marker() for k, t_length in enumerate(t_lengths): t_length = np.repeat(t_length , my_snrs.shape[-1]) axs3.plot(t_length, my_snrs[i,k], ls='none', color=color, marker='o', alpha=max(0.01, 1/my_snrs.shape[-1])) axs3.legend() ### Save or show figures save_all_figs_to_path_or_show(args.fname, default_basename=__file__, default_extensions=default_extensions)