#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt import numpy.fft as ft import aa_generate_beacon as beacon from view_orig_ant0 import plot_antenna_geometry import lib from earsim import Antenna if __name__ == "__main__": from os import path import sys import matplotlib import os if os.name == 'posix' and "DISPLAY" not in os.environ: matplotlib.use('Agg') from scriptlib import MyArgumentParser parser = MyArgumentParser() parser.add_argument('ant_idx', default=[72], nargs='*', type=int, help='Antenna Indices') parser.add_argument('-p', '--polarisations', choices=['x', 'y', 'z', 'b', 'AxB', 'n', 'b+n'], action='append', help='Default: x,y,z') parser.add_argument('--geom', action='store_true', help='Make a figure containg the geometry from tx to antenna(s)') parser.add_argument('--ft', action='store_true', help='Add FT strenghts of antenna traces') args = parser.parse_args() figsize = (12,8) plot_ft_amplitude = args.ft plot_geometry = args.geom fig_dir = args.fig_dir show_plots = args.show_plots if not args.polarisations: args.polarisations = ['x','y', 'z'] #### fname_dir = args.data_dir antennas_fname = path.join(fname_dir, beacon.antennas_fname) tx_fname = path.join(fname_dir, beacon.tx_fname) f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) _, __, txdata = beacon.read_tx_file(tx_fname) beacon_amp = np.max(txdata['amplitudes'])# mu V/m idx = args.ant_idx if not idx: if not True: idx = [0, 1, len(antennas)//2, len(antennas)//2+1, -2, -1] elif not True: idx = np.arange(1, 20, 2, dtype=int) elif True: # center 6 antennas names = [55, 56, 57, 65, 66, 45, 46] idx = [ i for i, ant in enumerate(antennas) if int(ant.name) in names ] for i_fig in range(2): name_dist='' if i_fig == 1: #read in the raw_traces _, __, antennas = beacon.read_beacon_hdf5(antennas_fname, traces_key='prefiltered_traces') name_dist='.raw' fig1, axs = plt.subplots(1+plot_ft_amplitude*1 +0*1, figsize=figsize) if not plot_ft_amplitude: axs = [axs] axs[0].set_xlabel('t [ns]') axs[0].set_ylabel('[$\mu$V/m]') if i_fig == 1: axs[0].set_title("UnFiltered traces") else: axs[0].set_title("Filtered traces") if True: axs[0].set_xlim(-250, 250) if plot_ft_amplitude: axs[1].set_xlabel('f [GHz]') axs[1].set_ylabel('Power') if len(axs) > 2: axs[2].set_ylabel("Phase") axs[2].set_xlabel('f [GHz]') axs[2].set_ylim(-np.pi,+np.pi) colorlist = [] for i in idx: ant = antennas[i] n_samples = len(ant.t) samplerate = (ant.t[-1] - ant.t[0])/n_samples axs[0].axvline(ant.t[0], color='k', alpha=0.5) mydict = {} for p in args.polarisations: pattr = 'E'+str(p) if p == 'b': pattr = 'beacon' elif p == 'n': pattr = 'noise' elif p == 'AxB': pattr = 'E_AxB' elif p =='b+n': mydict[p] = getattr(ant,'noise') + beacon_amp*getattr(ant, 'beacon') continue mydict[p] = getattr(ant, pattr) if 'b' in mydict: mydict['b'] *= beacon_amp for j, (direction, trace) in enumerate(mydict.items()): l = axs[0].plot(ant.t, trace, label=f"$E_{{{direction}}}$ {ant.name}", alpha=0.7) #if False and j == 0 and 't0' in ant.attrs: # axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5) colorlist.append(l[0].get_color()) if not plot_ft_amplitude: continue fft, freqs = lib.get_freq_spec(trace, 1/samplerate) axs[1].plot(freqs, np.abs(fft)**2, color=l[0].get_color()) if True: cft = lib.direct_fourier_transform(f_beacon, ant.t, trace) amp = (cft[0]**2 + cft[1]**2) #axs[0].axhline(amp, color=l[0].get_color()) print(amp) phase = np.arctan2(cft[0],cft[1]) axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3', alpha=0.8, ms=30) if len(axs) > 2: axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3', alpha=0.8, ms=30) if plot_ft_amplitude: fig1.legend(loc='center right', ncol=min(2, len(idx))) else: axs[0].legend(loc='upper right', ncol=min(3, len(idx))) # Keep trace plot symmetric around 0 max_lim = max(np.abs(axs[0].get_ylim())) axs[0].set_ylim(-max_lim, max_lim) # Keep spectrum between 0 and 100 MHz if len(axs) > 1: xlims = axs[1].get_xlim() axs[1].set_xlim(max(0, xlims[0]), min(0.1, xlims[1])) if False: # extra zoom axs[1].set_xlim(f_beacon - 0.01, f_beacon + 0.01) if fig_dir: fig1.savefig(path.join(fig_dir, path.basename(__file__) + f".trace{name_dist}.pdf")) if plot_geometry: if len(mydict) == 1: geom_colorlist = colorlist else: # only take the colour belonging to mydict[0] geom_colorlist = [ colorlist[len(mydict)*(i)] for i in range(len(colorlist)//len(mydict)) ] fig2, axs2 = plt.subplots(1, figsize=figsize) plot_antenna_geometry(antennas, ax=axs2, plot_max_values=False, color='grey', plot_names=False) plot_antenna_geometry([ antennas[i] for i in idx], ax=axs2, colors=geom_colorlist, plot_max_values=False) axs2.plot(tx.x, tx.y, marker='X', color='k') axs2.set_title("Geometry with selected antennas") if fig_dir: fig2.savefig(path.join(fig_dir, path.basename(__file__) + f".geom.pdf")) if show_plots: plt.show()