#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt import numpy.fft as ft import aa_generate_beacon as beacon from view_orig_ant0 import plot_antenna_geometry import lib from earsim import Antenna if __name__ == "__main__": import os.path as path fname = "ZH_airshower/mysim.sry" plot_ft_amplitude = True plot_geometry = True #### fname_dir = path.dirname(fname) antennas_fname = path.join(fname_dir, beacon.antennas_fname) f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) if not True: idx = [0, 1, len(antennas)//2, len(antennas)//2+1, -2, -1] elif not True: idx = np.arange(1, 20, 2, dtype=int) elif True: # center 6 antennas names = [55, 56, 57, 65, 66, 45, 46] idx = [ i for i, ant in enumerate(antennas) if int(ant.name) in names ] [ print(antennas[i].name) for i in names ] fig1, axs = plt.subplots(1+plot_ft_amplitude*2) if not plot_ft_amplitude: axs = [axs] axs[0].set_xlabel('t [ns]') axs[0].set_ylabel('[$\mu$V/m]') if plot_ft_amplitude: axs[1].set_xlabel('f [GHz]') axs[1].set_ylabel('Power') axs[2].set_ylabel("Phase") axs[2].set_xlabel('f [GHz]') axs[2].set_ylim(-np.pi,+np.pi) colorlist = [] for i in idx: ant = antennas[i] n_samples = len(ant.t) samplerate = (ant.t[-1] - ant.t[0])/n_samples axs[0].axvline(ant.t[0], color='k', alpha=0.5) if True: # total E field mydict = dict(AxB=ant.E_AxB) elif False: # polarisations mydict = dict(x=ant.Ex, y=ant.Ex, z=ant.Ez) else: # beacon mydict = dict(b=ant.beacon) for j, (direction, trace) in enumerate(mydict.items()): l = axs[0].plot(ant.t, trace, label=f"$E_{{{direction}}}$ {ant.name}", alpha=0.8) #if False and j == 0 and 't0' in ant.attrs: # axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5) colorlist.append(l[0].get_color()) if not plot_ft_amplitude: continue freqs = ft.fftfreq(n_samples, 1/samplerate)[:n_samples//2] fft = 2*ft.fft(trace)[:n_samples//2]/n_samples #axs[1].plot(freqs, np.abs(fft)**2, color=l[0].get_color()) if True: cft = lib.direct_fourier_transform(f_beacon, ant.t, trace) amp = 2*len(ant.t) * (cft[0]**2 + cft[1]**2) #axs[0].axhline(amp, color=l[0].get_color()) print(amp) phase = np.arctan2(cft[0],cft[1]) axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3', alpha=0.8, ms=30) axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3', alpha=0.8, ms=30) if plot_ft_amplitude: fig1.legend(loc='center right', ncol=min(2, len(idx))) else: fig1.legend(loc='upper right', ncol=min(3, len(idx))) if plot_geometry: if len(mydict) == 1: geom_colorlist = colorlist else: # only take the colour belonging to mydict[0] geom_colorlist = [ colorlist[len(mydict)*(i)] for i in range(len(colorlist)//len(mydict)) ] fig2, axs2 = plt.subplots(1) plot_antenna_geometry(antennas, ax=axs2, plot_max_values=False, color='grey', plot_names=False) plot_antenna_geometry([ antennas[i] for i in idx], ax=axs2, colors=geom_colorlist, plot_max_values=False) axs2.plot(tx.x, tx.y, marker='X', color='k') axs2.set_title("Geometry with selected antennas") #fig1.savefig('./fig1.png') plt.show()