#!/usr/bin/env python3 # vim: fdm=indent ts=4 """ Do a reconstruction of airshower after correcting for the clock offsets. """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # required for projection='3d' on old matplotliblib versions import numpy as np from os import path import pickle import joblib from earsim import REvent from atmocal import AtmoCal import aa_generate_beacon as beacon import lib from lib import rit if __name__ == "__main__": import sys import os import matplotlib if os.name == 'posix' and "DISPLAY" not in os.environ: matplotlib.use('Agg') atm = AtmoCal() from scriptlib import MyArgumentParser parser = MyArgumentParser() args = parser.parse_args() fname = "ZH_airshower/mysim.sry" fig_dir = args.fig_dir fig_subdir = path.join(fig_dir, 'reconstruction') show_plots = args.show_plots remove_beacon_from_traces = True #### fname_dir = path.dirname(fname) antennas_fname = path.join(fname_dir, beacon.antennas_fname) pickle_fname = path.join(fname_dir, 'res.pkl') tx_fname = path.join(fname_dir, beacon.tx_fname) # create fig_dir if fig_dir: os.makedirs(fig_dir, exist_ok=True) if fig_subdir: os.makedirs(fig_subdir, exist_ok=True) # Read in antennas from file _, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) _, __, txdata = beacon.read_tx_file(tx_fname) # Read original REvent ev = REvent(fname) # .. patch in our antennas ev.antennas = antennas # For now only implement using one freq_name freq_names = antennas[0].beacon_info.keys() if len(freq_names) > 1: raise NotImplementedError freq_name = next(iter(freq_names)) f_beacon = ev.antennas[0].beacon_info[freq_name]['freq'] # Repair clock offsets with the measured offsets measured_repair_offsets = beacon.read_antenna_clock_repair_offsets(ev.antennas, mode='phases', freq_name=freq_name) for i, ant in enumerate(ev.antennas): # t_AxB will be set by the rit.set_pol_and_bp function ev.antennas[i].t += measured_repair_offsets[i] # .. and remove the beacon from the traces if remove_beacon_from_traces: clock_phase = measured_repair_offsets[i]*2*np.pi*f_beacon beacon_phase = ant.beacon_info[freq_name]['beacon_phase'] f = ant.beacon_info[freq_name]['freq'] ampl_AxB = ant.beacon_info[freq_name]['amplitude'] calc_beacon = lib.sine_beacon(f, ev.antennas[i].t, amplitude=ampl_AxB, phase=beacon_phase-clock_phase) tx_amps = txdata['amplitudes'] tx_amps_sum = np.sum(tx_amps) # Split up contribution to the various polarisations for j, amp in enumerate(tx_amps): if j == 0: ev.antennas[i].Ex -= amp*(1/tx_amps_sum)*calc_beacon elif j == 1: ev.antennas[i].Ey -= amp*(1/tx_amps_sum)*calc_beacon elif j == 2: ev.antennas[i].Ez -= amp*(1/tx_amps_sum)*calc_beacon N_X, Xlow, Xhigh = 23, 100, 1200 with joblib.parallel_backend("loky"): res = rit.reconstruction(ev, outfile=fig_subdir+'/fig.pdf', slice_outdir=fig_subdir+'/', Xlow=Xlow, N_X=N_X, Xhigh=Xhigh) ## Save a pickle with open(pickle_fname, 'wb') as fp: pickle.dump(res,fp) if show_plots: plt.show()