#!/usr/bin/env python3 # vim: fdm=indent ts=4 """ Show how the Power changes when incorporating the various clock offsets by plotting on a grid. """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # required for projection='3d' on old matplotliblib versions import numpy as np from os import path import joblib from earsim import REvent from atmocal import AtmoCal import aa_generate_beacon as beacon import lib from lib import rit def save_overlapping_traces_figure(test_location, ev, N_plot = 30, wx=200, title_extra=None, fname_distinguish='', fig_dir=None, **fig_kwargs): P, t_, a_, a_sum, t_sum = rit.pow_and_time(test_location, ev, dt=1) fig, axs = plt.subplots(**fig_kwargs) axs.set_title("Antenna traces" + (("\n" + title_extra) if title_extra is not None else '') ) axs.set_xlabel("Time [ns]") axs.set_ylabel("Amplitude [$\\mu V/m$]") if False: text_loc = (0.02, 0.95) axs.text(*text_loc, '[' + ', '.join(['{:.1e}'.format(x) for x in test_location]) + ']', ha='left', transform=axs.transAxes) a_max = [ np.amax(ant.E_AxB) for ant in ev.antennas ] power_sort_idx = np.argsort(a_max) for i, idx in enumerate(reversed(power_sort_idx)): if i >= N_plot: break alpha = max(0.4, 1/N_plot) axs.plot(t_[idx], a_[idx], color='r', alpha=alpha, lw=2) if fig_dir: if fname_distinguish: fname_distinguish = "." + fname_distinguish fig.tight_layout() fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.{case}.pdf')) fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.{case}.png'), transparent=True) # Take center between t_low and t_high if True: orig_xlims = axs.get_xlim() if not True: # t_high and t_low from strongest signal t_low = np.min(t_[power_sort_idx[-1]]) t_high = np.max(t_[power_sort_idx[-1]]) else: # take t_high and t_low from plotted signals a = [np.min(t_[idx]) for idx in power_sort_idx[-N_plot:]] t_low = np.nanmin(a) b = [np.max(t_[idx]) for idx in power_sort_idx[-N_plot:]] t_high = np.nanmax(b) if False: axs.plot(a, [0]*N_plot, 'gx', ms=10) axs.plot(b, [0]*N_plot, 'b+', ms=10) center_x = (t_high - t_low)/2 + t_low low_xlim = max(orig_xlims[0], center_x - wx) high_xlim = min(orig_xlims[1], center_x + wx) axs.set_xlim(low_xlim, high_xlim) fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.zoomed.{case}.pdf')) fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.zoomed.{case}.png'), transparent=True) return fig if __name__ == "__main__": valid_cases = ['no_offset', 'repair_none', 'repair_phases', 'repair_all'] import sys import os import matplotlib if os.name == 'posix' and "DISPLAY" not in os.environ: matplotlib.use('Agg') atm = AtmoCal() from scriptlib import MyArgumentParser parser = MyArgumentParser() parser.add_argument('--input-fname', type=str, default=None, help='Path to mysim.sry, either directory or path. If empty it takes DATA_DIR and appends mysim.sry. (Default: %(default)s)') group = parser.add_argument_group('figures') for case in valid_cases: group.add_argument('--'+case.replace('_','-'), dest='figures', action='append_const', const=case) args = parser.parse_args() if not args.input_fname: args.input_fname = args.data_dir if path.isdir(args.input_fname): args.input_fname = path.join(args.input_fname, "mysim.sry") wanted_cases = args.figures if not wanted_cases or 'all' in wanted_cases: wanted_cases = valid_cases figsize = (12,8) fig_dir = args.fig_dir show_plots = args.show_plots remove_beacon_from_traces = True apply_signal_window_from_max = True #### fname_dir = args.data_dir antennas_fname = path.join(fname_dir, beacon.antennas_fname) pickle_fname = path.join(fname_dir, 'res.pkl') tx_fname = path.join(fname_dir, beacon.tx_fname) beacon_snr_fname = path.join(fname_dir, beacon.beacon_snr_fname) # create fig_dir if fig_dir: os.makedirs(fig_dir, exist_ok=True) # Read in antennas from file _, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) _, __, txdata = beacon.read_tx_file(tx_fname) # Read original REvent ev = REvent(args.input_fname) bak_ants = ev.antennas # .. patch in our antennas ev.antennas = antennas # Read in snr info beacon_snrs = beacon.read_snr_file(beacon_snr_fname) snr_str = f"$\\langle SNR \\rangle$ = {beacon_snrs['mean']: .1e}" ## ## Setup grid ## X = 400 zgr = 0 #not exact dXref = atm.distance_to_slant_depth(np.deg2rad(ev.zenith),750,zgr+ev.core[2]) scale2d = dXref*np.tan(np.deg2rad(2.)) scale4d = dXref*np.tan(np.deg2rad(4.)) scale02d = dXref*np.tan(np.deg2rad(0.2)) Nx, Ny = 21, 21 scales = { 'scale2d': scale2d, 'scale4d': scale4d, 'scale02d': scale02d, } N_plot = 30 trace_zoom_wx = 100 plot_titling = { 'no_offset': "no clock offset", 'repair_none': "unrepaired clock offset", 'repair_phases': "phase resolved clock offsets repaired", 'repair_all': "final measured clock offsets repaired" } # For now only implement using one freq_name freq_names = ev.antennas[0].beacon_info.keys() if len(freq_names) > 1: raise NotImplementedError freq_name = next(iter(freq_names)) # Pre remove the beacon from the traces # # We need to remove it here, so we do not shoot ourselves in # the foot when changing to the various clock offsets. # # Note that the bandpass filter is applied only after E_AxB is # reconstructed so we have to manipulate the original traces. if remove_beacon_from_traces: tx_amps = txdata['amplitudes'] tx_amps_sum = np.sum(tx_amps) for i, ant in enumerate(ev.antennas): beacon_phase = ant.beacon_info[freq_name]['beacon_phase'] f = ant.beacon_info[freq_name]['freq'] ampl_AxB = ant.beacon_info[freq_name]['amplitude'] calc_beacon = lib.sine_beacon(f, ev.antennas[i].t, amplitude=ampl_AxB, phase=beacon_phase) # Split up contribution to the various polarisations for j, amp in enumerate(tx_amps): if j == 0: ev.antennas[i].Ex -= amp*(1/tx_amps_sum)*calc_beacon elif j == 1: ev.antennas[i].Ey -= amp*(1/tx_amps_sum)*calc_beacon elif j == 2: ev.antennas[i].Ez -= amp*(1/tx_amps_sum)*calc_beacon # Subtract the beacon from E_AxB ev.antennas[i].E_AxB -= calc_beacon # Slice the traces to a small part around the peak if apply_signal_window_from_max: N_pre, N_post = 250, 250 # TODO: make this configurable for i, ant in enumerate(ev.antennas): # Get max idx from all the traces # and select the strongest max_idx = [] maxs = [] for trace in [ant.Ex, ant.Ey, ant.Ez]: idx = np.argmax(np.abs(trace)) max_idx.append(idx) maxs.append( np.abs(trace[idx]) ) idx = np.argmax(maxs) max_idx = max_idx[idx] low_idx = max(0, max_idx-N_pre) high_idx = min(len(ant.t), max_idx+N_post) ev.antennas[i].t = ant.t[low_idx:high_idx] ev.antennas[i].t_AxB = ant.t_AxB[low_idx:high_idx] ev.antennas[i].Ex = ant.Ex[low_idx:high_idx] ev.antennas[i].Ey = ant.Ey[low_idx:high_idx] ev.antennas[i].Ez = ant.Ez[low_idx:high_idx] ev.antennas[i].E_AxB = ant.E_AxB[low_idx:high_idx] ## Apply polarisation and bandpass filter rit.set_pol_and_bp(ev) # backup antenna times backup_antenna_t = [ ant.t for ant in ev.antennas ] backup_antenna_t_AxB = [ ant.t_AxB for ant in ev.antennas ] fig = save_overlapping_traces_figure([0,0,0], ev, N_plot=1, wx=trace_zoom_wx, title_extra = plot_titling[case], fname_distinguish=f'single', fig_dir=fig_dir, figsize=figsize) plt.close(fig) with joblib.parallel_backend("loky"): for case in wanted_cases: print(f"Starting {case} figure") # Repair clock offsets with the measured offsets transl_modes = {'no_offset':'orig', 'repair_phases':'phases', 'repair_all':'all'} if case in transl_modes: transl_mode = transl_modes[case] measured_offsets = beacon.read_antenna_clock_repair_offsets(antennas, mode=transl_mode, freq_name=freq_name) else: measured_offsets = [0]*len(ev.antennas) for i, ant in enumerate(ev.antennas): total_clock_offset = measured_offsets[i] ev.antennas[i].t = backup_antenna_t[i] + total_clock_offset ev.antennas[i].t_AxB = backup_antenna_t_AxB[i] + total_clock_offset if i == 0: # Specifically compare the times print("backup time, time with measured_offset, true clock offset, measured clock offset") print(bak_ants[i].t[0], ev.antennas[i].t[0], ev.antennas[i].attrs['clock_offset'], measured_offsets[i]) # # Plot overlapping traces at 0,0,0 # fig = save_overlapping_traces_figure([0,0,0], ev, N_plot=N_plot, wx=trace_zoom_wx, title_extra = plot_titling[case], fname_distinguish=f'{case}.0', fig_dir=fig_dir, figsize=figsize) plt.close(fig) # Measure power on grid # and plot overlapping traces at position with highest power for scalename, scale in scales.items(): wx, wy = scale, scale print(f"Starting grid measurement for figure {case} with {scalename}") xx, yy, p, maxp_loc = rit.shower_plane_slice(ev, X=X, Nx=Nx, Ny=Nx, wx=wx, wy=wy, zgr=zgr) fig, axs = rit.slice_figure(ev, X, xx, yy, p, mode='sp', scatter_kwargs=dict( vmax=1e5, vmin=0, s=250, cmap='inferno', # edgecolor='black', )) suptitle = fig._suptitle.get_text() fig.suptitle("") axs.set_title("Shower plane slice\n" + plot_titling[case] + "\n" + suptitle) axs.set_aspect('equal', 'datalim') axs.legend(title=snr_str) axs.set_xlim(1.1*min(xx)/1e3, 1.1*max(xx)/1e3) axs.set_ylim(1.1*min(yy)/1e3, 1.1*max(yy)/1e3) if fig_dir: fig.tight_layout() fig.savefig(path.join(fig_dir, path.basename(__file__) + f'.X{X}.{case}.{scalename}.pdf')) plt.close(fig) # # Plot overlapping traces at highest power of each scale # fig = save_overlapping_traces_figure(maxp_loc, ev, N_plot=N_plot, wx=trace_zoom_wx, title_extra = plot_titling[case] + ', ' + scalename + ' best', fname_distinguish=scalename+'.best', fig_dir=fig_dir, figsize=figsize) # # and plot overlapping traces at two other locations # if True: for dist in [ 0.5, 5, 10, 50, 100]: # only add distance horizontally location = maxp_loc + np.sqrt(dist*1e3)*np.array([1,1,0]) fig = save_overlapping_traces_figure(location, ev, N_plot=N_plot, wx=wx, title_extra = plot_titling[case] + ', ' + scalename + f', x + {dist}km', fname_distinguish=f'{scalename}.x{dist}', fig_dir=fig_dir, figsize=figsize) plt.close(fig) if args.show_plots: plt.show()