#!/usr/bin/env python3 # vim: fdm=indent ts=4 import h5py from itertools import combinations, zip_longest import matplotlib.pyplot as plt import numpy as np import aa_generate_beacon as beacon import lib if __name__ == "__main__": from os import path import sys fname = "ZH_airshower/mysim.sry" show_plots = True ref_ant_id = None # leave None for all baselines #### fname_dir = path.dirname(fname) antennas_fname = path.join(fname_dir, beacon.antennas_fname) # Read in antennas from file f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) # run over all baselines if ref_ant_id is None: print("Doing all baselines") baselines = list(combinations(antennas,2)) # use ref_ant else: ref_ant = antennas[ref_ant_id] print(f"Doing all baselines with {ref_ant.name}") baselines = list(zip_longest([], antennas, fillvalue=ref_ant)) freq_names = antennas[0].beacon_info.keys() if len(freq_names) > 1: raise NotImplementedError freq_name = next(iter(freq_names)) # Determine integer multiple of periods to shift # and True phase differences time_diffs = np.empty( (len(baselines), 3) ) for i, base in enumerate(baselines): # which traces to keep track of traces = [ base[0].E_AxB, base[1].E_AxB ] # read f_beacon from the first antenna f_beacon = base[0].beacon_info[freq_name]['freq'] # how many samples do we need to shift sample_shifts, maxima = lib.coherence_sum_maxima(traces[0], traces[1], periodic=False) best_sample_shift = sample_shifts[np.argmax(maxima)] # turn sample_shift into time sampling_dt = (base[1].t[1] - base[1].t[0]) # ns delta_t_coherence = sampling_dt*best_sample_shift # ns # get the amount of periods to move k_period, t_rest = np.divmod(delta_t_coherence, 1/f_beacon) # always keep the reference before traces[1] if t_rest < 0: # np.divmod already does this k_period -= 1 t_rest = 1/f_beacon + t_rest # Get true phase diffs try: true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base]) true_phases_diff = lib.phase_mod(true_phases[0] - true_phases[1]) except IndexError: # true_phase not determined yet print(f"Missing true_phases for {freq_name} in baseline {base[0].name},{base[1].name}") true_phases_diff = np.nan # save k_period with antenna names time_diffs[i] = [true_phases_diff, k_period, f_beacon] # Plotting for one or two iterations if show_plots and (i in [ 0, 1 ] or k_period > 3): # More than three periods is quite much so report it print('i',i,'k[T]',k_period, 'rest[ns]',t_rest, 'T[ns]',1/f_beacon, 'dT_coher[ns]', delta_t_coherence) # Show correlation maxima plot if not True: fig, ax = plt.subplots() ax.set_title(f"Correlation Maxima {i}") ax.set_xlabel("k") ax.set_ylabel("Maximum correlation") ax.plot(ks, maxima) ax.plot(best_k, maxima[max_idx], marker='X') # Delta between first timestamp from both antennas delta_t_antennas = base[0].t[0] - base[1].t[0] # Delta t due to the beacon if true_phases_diff is np.nan: true_phases_diff = 0 delta_t_beacon = true_phases_diff/(2*np.pi*f_beacon) fig, ax = plt.subplots() ax.set_title( ", ".join([ f"$\\Delta$t0 [ns] : {delta_t_antennas:.2f}", f"$\\Delta$t_beacon [ns]: {delta_t_beacon:.2f}", f"$\\Delta\\sigma_\\varphi$: {true_phases_diff:.4f}", f"", ]) ) ax.set_xlabel('Sampling t [ns]') ax.set_ylabel('Amplitude [a.u.]') ax.plot(base[0].t, traces[0], label=f'Reference: {base[0].name}', alpha=0.5) # plot vertical lines indicating f_beacon min_t, max_t = base[0].t[0], base[0].t[-1] N_lines = int( (max_t - min_t)*f_beacon) +1 for i, t in enumerate(np.arange(N_lines)/f_beacon): ax.axvline( min_t + t, color='k', alpha=0.3) ax.plot(base[1].t + delta_t_antennas, traces[1], label=f'Original: {base[1].name} (t0 removed)', alpha=0.4, marker='+', ms=5) ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + t_rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5) ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + delta_t_beacon, traces[1], label=f'$\\Delta t_\\varphi$ + $k={k_period:.0f}$ Periods', alpha=0.6) ax.legend(fancybox=True, framealpha=0.5) # Save integer periods to antennas beacon.write_baseline_time_diffs_hdf5(antennas_fname, baselines, time_diffs[:,0], time_diffs[:,1], time_diffs[:,2]) # Report back to CLI print("Period Multiples resolved and written to ", antennas_fname) plt.show()