#!/usr/bin/env python3 # vim: fdm=indent ts=4 import h5py from itertools import combinations, zip_longest import matplotlib.pyplot as plt import numpy as np import aa_generate_beacon as beacon import lib if __name__ == "__main__": from os import path import sys fname = "ZH_airshower/mysim.sry" c_light = 3e8*1e-9 show_plots = not True ref_ant_id = None # leave None for all baselines #### fname_dir = path.dirname(fname) antennas_fname = path.join(fname_dir, beacon.antennas_fname) time_diffs_fname = 'time_diffs.hdf5' if not True else antennas_fname if not path.isfile(antennas_fname): print("Antenna file cannot be found, did you try generating a beacon?") sys.exit(1) # Read in antennas from file f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) # run over all baselines if ref_ant_id is None: print("Doing all baselines") baselines = list(combinations(antennas,2)) # use ref_ant else: ref_ant = antennas[ref_ant_id] print(f"Doing all baselines with {ref_ant.name}") baselines = list(zip_longest([], antennas, fillvalue=ref_ant)) # For now, only one beacon_frequency is supported freq_names = antennas[0].beacon_info.keys() if len(freq_names) > 1: raise NotImplementedError freq_name = next(iter(freq_names)) # Get phase difference per baseline phase_diffs = np.empty( (len(baselines), 2) ) for i, base in enumerate(baselines): if i%50==0: print(i, "out of", len(baselines)) # read f_beacon from the first antenna f_beacon = base[0].beacon_info[freq_name]['freq'] # Get true phase diffs try: true_phases = np.array([ant.beacon_info[freq_name]['phase'] for ant in base]) true_phases_diff = lib.phase_mod(lib.phase_mod(true_phases[1]) - lib.phase_mod(true_phases[0])) except IndexError: # true_phase not determined yet print(f"Missing true_phases for {freq_name} in baseline {base[0].name},{base[1].name}") true_phases_diff = np.nan # save phase difference with antenna names phase_diffs[i] = [f_beacon, true_phases_diff] # Read actual phases from antenna hdf5 actual_antenna_phases = { a.name: 2*np.pi*a.attrs['clock_offset']*f_beacon for a in antennas } # Compare actual time shifts my_phase_diffs = [] for i,b in enumerate(baselines): actual_phase_diff = lib.phase_mod( lib.phase_mod(actual_antenna_phases[b[1].name]) - lib.phase_mod(actual_antenna_phases[b[0].name])) if True: # remove time axis phase difference t0s = np.array([ant.t_AxB[0] for ant in base]) delta_t0 = t0s[1] - t0s[1] actual_phase_diff = lib.phase_mod( actual_phase_diff - lib.phase_mod(delta_t0*2*np.pi*f_beacon)) my_phase_diffs.append(actual_phase_diff) # Make a plot if True: N_base = len(baselines) N_ant = len(antennas) phase_residuals = lib.phase_mod(phase_diffs[:,1] - my_phase_diffs) fig, axs = plt.subplots(2, 1, sharex=True) axs[0].set_title("Measured phase difference - Actual phase difference") axs[0].set_xlabel("Phase residuals $\\varphi$") if True: forward = lambda x: x/(2*np.pi*f_beacon) inverse = lambda x: 2*np.pi*x*f_beacon secax = axs[0].secondary_xaxis('top', functions=(forward, inverse)) secax.set_xlabel('$\\varphi/(2\\pi f_{beacon})$ [ns]') i=0 axs[i].set_ylabel("#") axs[i].hist(phase_residuals, bins='sqrt', density=False) i=1 axs[i].set_ylabel("Baseline combination #") if not True: axs[i].plot(my_phase_diffs, np.arange(N_base), ls='none', marker='+', label='actual time shifts') l = axs[i].plot(phase_diffs[:,1], np.arange(N_base), ls='none', marker='x', label='calculated') axs[i].legend() else: axs[i].plot(phase_residuals, np.arange(N_base), ls='none', marker='x') plt.show()