{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Beacon Sync\n", "\n", "Synchronise two delta peaks, by using an intermediate beacon that was sent out together with it." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy.signal as signal\n", "\n", "import os\n", "import sys\n", "# Append parent directory to import path so lib can be found\n", "sys.path.append(os.path.dirname(os.path.abspath(os.getcwd())))\n", "from lib.util import *\n", "from lib.plotting import *\n", "from lib.timing import *\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beacon period [ns]: 14.285714285714285\n", "Beacon initial [ns]: 4.4\n", "Beacon initial [phase]: 1.9352210746113125\n", "Beacon initial [idx]: 2.2\n", "Beacon difference [ns]: 8.571428571428571\n", "Beacon difference [phase]: 3.7699111843077517\n", "Impulse offsets [ns]: [ 64. 178.]\n", "Time difference Impulses [ns]: 113.99999999999999\n", "Time difference Impulses [T]: 7.9799999999999995\n" ] } ], "source": [ "us = 1e3 # ns\n", "ns = 1/us # us\n", "\n", "\n", "band = (30, 80) # MHz\n", "samplerate = 500 # MHz\n", "timelength = 0.2 # us\n", "\n", "time = np.arange(0, timelength, 1/samplerate)\n", "\n", "# generate beacons\n", "if True: # in-band\n", " f_beacon = 70 # MHz\n", "else: # under band\n", " f_beacon = 20 # MHz\n", "\n", "beacon_amplitude = 0.1\n", "beacon_init_phase = time2phase(4.4*ns, f_beacon)\n", "beacon_phase_offset = 1.2*np.pi\n", "\n", "beacons = np.array([\n", " beacon_amplitude * sin_delay(f_beacon, time, t_delay=0, phase=-beacon_init_phase),\n", " beacon_amplitude * sin_delay(f_beacon, time, t_delay=0, phase=-beacon_init_phase-beacon_phase_offset)\n", "])\n", "\n", "\n", "# generate impulses\n", "impulses = []\n", "impulses_offsets = []\n", "impulses_def_offsets = [\n", " (0.3*len(time),0.4*len(time)),\n", " (0.5*len(time),0.9*len(time)),\n", " ]# random offsets in interval\n", "if True:\n", " # freeze impulses\n", " impulses_def_offsets = [\n", " 0.064*samplerate,\n", " 0.178*samplerate \n", " ]\n", " \n", "for i in range(2):\n", " offset = None\n", " if impulses_def_offsets:\n", " if len(impulses_def_offsets) == 1:\n", " offset = impulses_def_offsets[0]\n", " else:\n", " offset = impulses_def_offsets[i]\n", " orig_imp, imp_offset = deltapeak(timelength, samplerate, offset=offset, peaklength=1)\n", "\n", " orig_imp[imp_offset] = 0.1\n", " ## Bandpass it\n", " imp, _ = fft_bandpass(orig_imp, band, samplerate)\n", " imp /= np.max(imp)\n", " \n", " impulses.append(imp)\n", " impulses_offsets.append(imp_offset/samplerate)\n", "\n", "impulses = np.array(impulses)\n", "impulses_offsets = np.array(impulses_offsets)\n", "print(\"Beacon period [ns]:\", 1/f_beacon/ns)\n", "print(\"Beacon initial [ns]:\", phase2time(beacon_init_phase, f_beacon) /ns)\n", "print(\"Beacon initial [phase]:\", beacon_init_phase)\n", "print(\"Beacon initial [idx]:\", phase2time(beacon_init_phase, f_beacon)*samplerate)\n", "print(\"Beacon difference [ns]:\", phase2time(beacon_phase_offset, f_beacon)/ns)\n", "print(\"Beacon difference [phase]:\", beacon_phase_offset)\n", "print(\"Impulse offsets [ns]:\", impulses_offsets[:,0]/ns)\n", "print(\"Time difference Impulses [ns]: {}\".format( (impulses_offsets[1,0]-impulses_offsets[0,0])/ns ))\n", "print(\"Time difference Impulses [T]: {}\".format( (impulses_offsets[1,0]-impulses_offsets[0,0])*f_beacon ))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "full_signals = impulses + beacons" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAEHCAYAAACqdl4sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1hUV+L/8feZGXoT6YiCghQr2LuJJcUUNT2bRDfJpmx00zb7SzG7m103MZtNsknWFGPyTe9dTbP3Fix0HVFBBKRJr8PM+f1xAQEBARlg9Lyeh0cZ7r185nLn3HPPPedcIaVEURRFURRFUS4kup4OoCiKoiiKoihdTVVyFUVRFEVRlAuOquQqiqIoiqIoFxxVyVUURVEURVEuOKqSqyiKoiiKolxwVCVXURRFURRFueAYrLFRb29vGRISYo1Nd7myshQAXF2jejhJ+1RVVQHg6OjYw0naR+W1rrbyVlQcBsDZOaJbM7XlQtq/vZHKaz22lBVUXmtTeXuXffv25UspfZq/bpVKbkhICLGxsdbYdJfbuXM8AJMm7enhJO1jNBoBCA8P7+Ek7aPyWldbeQ8cuASAmJjN3ZiobRfS/u2NVF7rsaWsoPJam8rbuwgh0lt6XXVXUJQLwOLFiwkODm7ymtkiKSirxmxRD3xRFEVRLj6qkqsoNi4jI4PNmzdTU1NDaWkpAFJKjuaVkZpXxhubUns4oaIoiqJ0P2GNx/qOGTNG2kp3BUWxdQsWLGDOnDmsXLmSZ599lgkTJvDRrjTKs6/B0aBn6e7n+PK+iYwO9uzpqIqiKIrS5YQQ+6SUY5q/rlpyFcWGJSUlkZiYyM0330xUVBRJSUkcPlXKv35MoY+TPcP6eRDYx5GHPj9ASZWpp+MqiqIoSrdRlVxFsWFLlixh6dKlCCGIioriYHw8D352APuKPD59K5MnHk/mlZtjyC6u4q/fJ2KNOzeKoiiK0htZZXYFW6JmV7Auldd69uzZwy+//EJsbCwGg4GqqipcAgZhdrqM9++7Ao+K/+Mvf0lidLAnD88czEvrjEwP9+G6UUE9ltmW9i+ovNZmS3ltKSuovNam8tqGTrXkCiHe7uogiqJ0zFNPPcWKFSvYuHEjaWlpLP96Pemph7lr8kAuifBtsuwDl4YxLqQvf/0+kfSC8h5KrCiKoijdp9VKrhCibytfXsCcbsyoKEoz69ato7q6mokTJwKQW1LFc5uyEbXV3DP+rPmw0esE/70lGr1O8ODnBzGZLd0dWVEURVG6VVstuXlALLCv0Vds3ZdvG+spimJls2fPZvv27QBYLJI/fxVHRU0tKenZBPj6UFBQwLPPGjl8uIxly5YB0K+PE89fP4K4jCJeWW/syfiKoiiKYnVt9ck9BsyUUp5o/gMhRIb1InUvX987ejpCh3h5efV0hA5Rea3Ly8uL7/afZHPcUQYd+57U/YI3161j7ty5LFmi9b2KiXmyYfk5wwO4eUx/3th8lCuHBTCsn0e357UlKq912VJeW8oKKq+1qby2oa2W3FeA1ibWfMEKWXpEWNhiwsIW93SMdvPy8uqWg3XFihUEBAQQHR1NWFgY8+bNo6ampsPb6WzelStXEh0dTXR0NDqdruH/jz76aIe31RHdtX+7ipeXFxuOVxLsYUCWnGLOnDn88MMPbc6i8NRVUeiFYE18djcm1dji/lV5rceW8tpSVlB5rU3ltQ3qYRBKixYtWsSYMWO48847sVgshIeH8/nnnzNmzFlzLVtVZmYmkyZNIj29xcdSX/SKK0wEz76Dkl1f4ufnR0hICHl5eRw7doyYGHfeeSeamJjNZ6132zu7yS2pZt2j07s/tKIoiqJ0IfUwiFakpi4nNXV5T8dot4KCAgoKCqz+exISEoiJiQEgNTUVKWWnph5pKe+NN97I4sWLmTJlCsHBwWzfvp0FCxYQHh7O3Xff3WTZxMREhg8f3vk30gV5e7NVew/jGDqWqTMvp7y8HJPJRFFREePGjWPhwv6trjcz0o8juWXdPtOCre1flde6bCmvLWUFldfaVF7bcNFXcnNzPyI396OejtFu3XWgJiUlsWDBAqKiohg9ejTvvfce7u7uba4zderUhm4F9V9Tpkxh9erVTZZLSEhg0KBBbN++nYULF3L33Xfz73//m8TERL799luqq6ubLDts2DCrvMeW2FpBsHZ/Kt59+/LlJx/i6upKXl4eJpOJ559/nqlTW781NSvKD4D1KbndFRWwvf2r8lqXLeW1payg8lqbymsbLvqHQShny8jIwNfXl/j4eAA+/PBDli5dyooVK3j22WcpLi7m66+/Pmu9bdu2nfVa/QTU9aqqqigqKuLhhx8GwMnJibvvvpuAgAAAnJ2dsbe3b1g+MTGR2bNnd9l7u5CYzBb2Hi9gSpgPPt5ebN26lbCwMLKzs3F1dSU1tfV1B3g5E+7nyoaUHO6eMrD7QiuKoihKN2lXS64QwlMIMU4IMa3+y9rBlJ4THx/PkCFDGr4fOXIkubm5DBo0iHfffbfV9VpqyZ07dy47d+5sWCYpKYlRo0ah02mHXlxcHOPHa0+dO3nyJIGBgQghGpbv7pZcWxKbVkhZtZmJoV7odDrCwsIACAgIwM3N7Zzrz4zyY+/x0xRXmqwdVVEURVG63TlbcoUQfwAeAoKAg8AEYBcww7rRlJ6SkJBAVFQUAFJKPvjgA2bNmnXO9drTkpuQkMDIkSMbvo+Pj2fEiBGAVuGt/z+AxWLhyJEjREZGdup9XOjWp+RgpxOMCWltEpS2zYry5c3NR9lizOPakYFdnE5RFEVRelZ7uis8BIwFdkspLxVCRAL/sG6s7jNp0p6ejtAh3fHc6YSEBLZs2cKPP/6IEIIJEybw4osvdmpbzfMmJCQwbtw4QOu6UFlZiaenVklrXOEFbcBbUFAQDg4OnXwn55+3t5JSsiElh0vGjyR62JBzr9CC6P6eeLnYsyElp9squbayf+upvNZlS3ltKSuovNam8tqG9lRyq6SUVUIIhBAOUspDQogIqydTeswnn3zS4usFBQUsWbKEAwcOsGzZMp588skWl2vLSy+91PB/R0dHjh8/3vB98+2Fh4eTnJzc4d9xMTiaV05aQQV3Tx3U6W3odYJLI31Zm3QKk9mCnf6iH4eqKIqiXEDaU8k9KYToA3wPrBNCFAJZ1o3Vs6qqqsjPzycoKKino/QqXl5evPXWWz0d46J18uRJvL29cXR0ZH1KDgAzI8/vCduzonz5et9JYtMKmRh68U0UriiKoly4ztl0I6WcL6UsklI+A/wVeBeYZ+1g3WXnzvHs3KkNfKqqquL1119n8ODBLF/eO+fONRqNZ/Vz7c1U3q7z+uuvExYWxvLly1kbf4IhAe6U5WacV96pg32w1+vYUFdptrbevH9bovJaly3ltaWsoPJam8prG9o1hZgQQg/4AfX3lv2BE9YK1d3MZguPPvooH3/8MYMHD+bpp58mIiKCzZs393S0s2RkZACQlWUbjekqb9e5/PLLCQkJ4f/ee5/Y+GSmXDkf82WPo9frO71NFwcDE0O92HAol6ev7lzfXkVRFEXpjdozu8KfgL8DOYCl7mUJjGh1JRtz8mQ1b7zxBgaDgaqqKj777LOejtSqyspKQJtf1haovF0vv7gMWVvN7jWfkfaHmwkNDT2v7c2K8uWvPyRxNK+MUB/XLkqpKIqiKD2rvbMrREgpL9hHZQQHO1FcXMy7777LsmXLCAwM5LnnnuvWx8m2V/3tBlsZKanydp2EhASeeuopcuJT6H/5PaR88QInT2ac93ZnRPnx1x+SWJ+cQ+h0VclVFEVRLgztqeRmAMXWDtJTfH3vAMDBwYEHHniAu+++m3fffZeffvqpV1Zyvbxsa3CQytt1fv75Z2bNvpyjI+5l7uhgnJ2duiRvvz5ORAW4syEll/umn1+r8Ln05v3bEpXXumwpry1lBZXX2lRe2yCklG0vIMS7QATwI1Bd/7qU8uXW1hkzZoyMjY3tqoyKotTZdiSPO97dy7sLxzAzyq/NZQ8cuASAmJjN59zuy2sPs3xTKvueno2ni/05l1cURVGU3kIIsU9KOab56+2ZGPMEsA6wB9wafSmK0s02pOTiaKdjcph3l253ZpQfFgmbjbldul1FURRF6Snn7K4gpbxgnm7WktRUbaqwsLDFPZykfQoKtK7RtnLrQeXtOlJK1iXnMCXMG0c7bUaFrso7vJ8HPm4OrE/OZX6M9eaH7s37tyUqr3XZUl5bygoqr7WpvLahPbMrhAOPASGNl5dSzrBerO6Tm/sRoCq51nKuvFJK1sRn81NCNkKAXqfDTifQ6wQGvQ53RwMLJ4UQ2Kd7Zjvozfv3cE4pmUWV/GlGWMNrXZVXpxPMivJldVw2NbUW7A3WefpZb96/zcWfLGLl6t3UmM24+QVjtkhMZgtmi8ROr2PhpGBGB/ft6ZhN2NL+BdvKa0tZQeW1NpXXNrRn4NlXwFvAO4DZunGUi0lcRhH/XJPMvvRCAj0ccXEwaBUJiwWzWVJrkRRW1PDJnhM8fkUEt40PRqcTPR27x2xI0boSzDjPp5y1ZmakH5/tzWDP8QKmDvaxyu+wBZU1Zl5ed5h3tx9HFGfj4mDArcy17sJLYNAJ8kqrWRWXxbUjA3n8ykj6ddNFmKIoitJ+7ank1kop37R6EuWicaq4ihd+PcS3+zPxdrXn39cP54bR/dG3UIHNOF3Bk98m8NcfklgVl8Wy60YQ5ntxTnO1LjmHkUEe+Lo7WmX7k8O8cbTTsSEl96Kt5O5IzefJbxM4cbqC340fwA1hIbg62J01pVx5dS0rthxlxdZj/Jp0ivumDeK+6aG4OLTr+TqKoihKN2jPPcnVQogHhBABQoi+9V9WT9ZBJrOFnan5pOaWUlJl4lyzRnRKxl7Y9pL2b2/XC7NWmcy8tuEIl764mTVx2fzxklA2PXYJN/ufQr/j5bOzZuylf9KbfHQZ/OeGERhzypjz6jaWbzyCyWxp+ZdYW1v71Yr7PLekioMZRcwe0vaMCk1Ul0JxRruzOtnrmRLmw7rkHOt8ftrSQ/u1XnGFif/3dRy3vbMHvU7w+b0TeG7+cFwd7Fpc3sXBwKOXRbDxsUu4fKg/r21MZcZLm9m0bg2Wrb3rc9eqXlhGtOo8s1oskoKyalKySzh0qgSzxYrHd2tZe+P+Vlmtw5aytsaWsrahPVOIHW/hZSmlHNTaOj0xhVhmUSWTn9/Y8L2jnQ5fN0f83B3wdXdkbLAnV40IxMfN4dwby9gLadvAbwToBGQdhKMbIX0nIEHoYOh8iLwa+o2G0lOQvh1CpkL/cdZ7k21lDZkK3oO1jPFfQvIPWlYEDLoEBkzQfl5bA0UnIPTSbs26MzWfJ79LIL2ggjnD/XniiigG2JfA7jdh52sgLVrWoLHgEwHSDPFfgcUMBntYuJrcPiP4x6pkfkzIJtLfjf/eHE1UgHuXZ03KKuZ/G1Ix5pZy+VB/rovpx2BfV4j7AlYtAkutdgz0Gwvu/mBw0iqUR37V3ofeARau6tL9+9neEzz5bQK/PDyVSP92vOf0nRw4MB2QxMS5w8Cp4OAGZhOU50HWAZASDA6wcHVD1i9+O8Hj3yTw04NTGRLY9fu2RRl74YNroLYadHoYMheps6O4IBtT3jG8ajIQADo7xG1fQ+glXfrr1yfn8OR3CZwur+HeaYN4aObghoF9reY9/DO4BWjH5uljFGYcoupkHP7mUyAAYUBc+W8YtUBbpvHntCfKiGNbwL0fWEyQfRDStkN+3XPshR7G3QfDrwe/YXAqvmezpm2DAZPAzhGOb4OU1XCy7kQrdBA1VzuevcOhpgxykrXv67IezStjdVwWyVkl5JRWk1dSRV5ZNSbzmXOdq4OBmAF9GB3syehgT2IGeOJ6Pq3wZhOk74DY9yH5exrOEwOnge9QMFfD/g+08swK5UOHVRXDjtdg+8tamSV0MGCidkzXlEHqOrBYziofuouUkoLyGtILyknLr8D+8PfMMf4NHWYkOk77jMXBxQPnmtPos/fXlbv2sGA1BE/o1qxnSd8NH16jHRM6PQy+HHQ6OH0ccpIACToDzF8Jw6/r2axw5jPm6gtCQMExrYzISdR+LvQw9TEYexe4+bdZlkkpEaJnuhS2NoXYOSu5ndETldwqk5kDJ4rILa0it6Sa3NIqcur+zSyqJON0JToBk0K9uWZkAFcMDcDDuYVWmqTv4eu7tEpWY06eUFl45nuhP3sZvT0sXAMDxnf9G2xJxl54/2ow19S9UPe31Bm0ilg9xz5aoUajv7XQw/y3YMRNVo1YXGHiuZ9S+CI2gzke6TwdcohAFwE5CZC57+wVXP21nGW5TfOGTIXr3gb3QNYmnWLJ94kUV5r429VDuG38gC75YCVlFfPahiP8mpTDFMdjXO1+lG0F7gwkixsd9xBsPlF/2aBx8wcHDzBVQkUBmMrPbGzwFTD/TXDumpsed73/G0dyS9n6l0vbfq8FR2H/h/DbOxwYkgNAzEEXcOqr5dXbQXk+lGSeWadPCEx7DIZcS2F6Ais/+pDgUZdz83XXd0n2NmUdhNUPaYVqHbPQkyv7kmNxw11UMVBkNexzM3pMA2fgOPxa7VjJSeh0Zay61szzPx/ivR1pRAW4858bRjCsn0frK0gJu9+AtU/XXZTV0duDZwgSCflHEHWLCgHSzhnhOwSy47TyojsrOLU1sOV52P7fpnkdPLTyrCidJp8xqCvX6pbt7grO0Y3wyU1aRbwxZy/t81VPZ3fWMlJnx6oRb/L2CX+SskoQAsJ8XPH3cMTHzQE/d0d86/6tMpnZf6KQ2LRCDueUIqXWljE00IOrRgRwzcjA9vWxTt0ABz6GytOQeQCqi1soez21Cq6poum60bfB3Ne1g6Q7ZOyFo5u0ylbWQTiyTsvVmIsvOLhCWR7UlJ55PXAUXPWi9q+V8kopScwsYcOhHLYY80jNKaOmuoIrdXu5xbCJCbqUhrJXSiiQ7uTiSR9KCNAVNpQPFns3dGPu1M5rNRXd2/hUVQwHP4UtL2jHRD07F+gzQDtPFKU1Xcc7AiKvAs+BUJ6rXRR11+etJAvW/R0Svmz6uqufVk4Vnzh7nT7BUHISLPUNJKuQQWPZf6KQHw5msSEll18fmXZ+F4yd1OlKrhDCGXgUGCClvFcIMRjtMb9rWlunNz4M4khOKavislgVl0V6QQX2eh3Twn24aoQ/08N96Vt6GLa/AonfcKbgFxBzO1z2L63V44NrtQql3h5u/wbsnbUD+vBPDb+nxsWfpBFL2Oc0iZNF1eSVVhPs5czQQA+G9XNnQF/n86+QSam1GvzwJyg8dub1gdNh+uNa/o9vOJN14SrwHw7r/o7c+zZCOx0jgETncaxyvp49cijVZsnwfh5MC/dhSpj3eT0UQErJL4mn+NuqJArLq3hn0Hamn3wLUb9vvSNhxI3gEQSrH26atf84SN8FH807U4GXFu0EEnUNjL+fokoTa3/6ls9zB+A/bBrLrhuBh1PLt5bPpXHl1s3RwF+HF3Fj0iJEoxNpkmEo26tCWKhfi50wozM4IBpXVhpaI2u0/Y/UCoohc6H/eK0AHNi5wraippbof67jtvED+Ps1Q89e4Pg2+O0dOH0UTiVoFZX+4zjQdwMAMYleTStWGXvPHMtCaCe30iyt8iDNmKWkFjsc7v6x6wvcjL1wbLPWSnR0g9ZCp3dAWmqxSEmN1HO7aQkuYZO5LqYfV3icwPHT+UhzDWZ0/FI7mmhdKkEi/8wFh94Bfr+mQ1nT8stZ/Nl+EjNL+P2kEJ6cE4mDoVnrbX2LRf/xWivMrtchL+XMz4UOJi6GWc9oLTZ1+1WaazCh5+Wa+US5lDNH7MSuuv6kJ2DiIrj82Q7ttpOFFWw15rPVmMex/DJtMJyjHW6OBtwcDLg5GvB1c+SakYH4O5pg3wda3tKsRlvRwcQHYPZSyIxtWp7d8K72Gdv9pla21AueDDe+r7XytIPJbCE1t4ykrBKSsorJLa2mXx8ngjyd6O/pTP++TgR5OjdtKS/P1y4edi5vVPES2t2yy5/Tutw0zrrgB/AIouzXf+KS/EVDmVIinfjW9VZ0Y+/k8lHh+LWj73pJlYmDJ4qITS9kizGPuIwiAMaGeHJtdD+uGh5A3+blYGE6/PoUHGp0Cgy/Qmu1t3eFT29uWp4FjcVydBN8dgvCrJUPAqhwDyUr/HZK3QbiX5qMz/CZGKzRChn3BXz/xzONMk6eMOIW8I2Cnx8/q+w9fXgbHl/egK6ufJBCj85SQ63PUBh0CQZHFwibfd5lQ5XJzI7UfNan5LLxUA45JdUIAQ97x3Kd+Vf8qo9hb67E5B6CCLsUQ/xnYDYh9XYcm/MZKYZIqo7t4tq4P6KTJixSR5xlEDH6oxgw1+1lEF1wsSalpKLGTGlVLaVVJkqqaimrrsUu6zdCc9fiVZuD4fgWraHDJwpOp2plXONzWuNyV28HY+7WLtKPbwfqLix1drDgewiZ0qmcxZUmEjOLMZktGHS6hsGyep3AI+8AAUWxOPcNguObtbqOxUxDfUfoYNr/g0ufbJbVXrvIqSiAfe/Daa3OIYFkr8u4v+xeMoprcDDomBXlx1NXRfXIQNzzqeR+AewDFkgphwkhnIBdUsro1tbpjZXcelJKEjKLWXUwi7QDm5gb8TSO1DA72UCN3pnKkNm4p/+KMJuaHqDQcNKTwVM45TGCuIxi8lK2cVPyIvTShEUKCqQ7AbpCjloCeF/Mo9gpiAFl8ew0R7FfhuPmYCAq0J1hda0Gowb0aV+lN2MvHN+GMbMIjm0i3JSgtRLUlGqV3layEjKVmoAx/JJ0ij1bfubpgiewo5Za9Pyiv4Rp8jf6yiLS7MI46DSRjJIaNlVHcYBwRtRVeKeF+zAyqE+7ppWSUnI8v5znfz7EhuQsrpcbuEO/geH2GWcWEnqYsQSm/vmsrE0Kosavu/hoFbn9H2ktJnWnNrPOnlurnyLbfQT/uzWGmAGe7ToOAA5mFPH6plTWJWuV23snBjD99Hc4xr5FuFt9y4uASQ/CZf8kNbeUXVt+ITtuHX2HzOAPv7vl7L9RfV6Do3Z78uCnZ1px9HZ1t9MmtjsjwC+Jp7j/4318es94JoU2eghEVTHGDx6CxK8J99JrWcfcqV3ouPlzYPdoqCoiJvSzswv4xlmDxkLmfvjliYbbwlJC5dCbcL7x7a5rvTGuw7j8RpC1Wl63fjD5T5hH3MKSld8QUBjLwDGXM2HalU0H1zXKmuEyjDc2HSHy4LPcofuVhrGKXmEw7812nch+OJjJku8S0esE/7lhBJcN9T97obqLFmNOBSC1vH7DIGKO1r2mpfKhWda1JQP46w+JBJUl8LnDcxikqe6oFTD8Ru34ry5p8dgvq65l7/GCRhVb7S5BgIcjQwM9qDKZKa3WTrhlVbWEViUzybIPWXiCaYZkovtWIUOmIMLnwMalZ19ENst69gVQXWWzvvtNzO0waDoUpDZZ3myRrE/JYfPhXJKySjh0qpSaWu2E7WSnx8/dgeziKqprz7QkjxJGZjkfwewVQf+CXUTkryfSsxYRMkX7/ZbaFrOaj23lkONIVp0OYmNKLm55+/nE/jnsRC1C6Kn1jsIhLx7s3SD8MnAPgqirO1S5SS8oZ3VcFt8fzCI1twyDTjApzJvo/n3wK9jHkOzviC5Zr1WfpAWtW8KZ8kxKSemRnZQc2kSC3XC2VQ0iJbuEw6dKiTSlMEGXQqwlnH4in4WGX4nWHUNKrcJQgx3LfF7AI2IKY0M8GTXA87wGMhq3fQu//R/hJdvOvCh0cOkS7c4NkJ2whcKUjcTKoawrCyYlu4T8shpGCSMTdCnstkRxRAYxV7+DO/U/E6o7pZW76Pkk+Fks4VcQ4efGYD83vF3tWz2X1ZotHM0rJ/5kEQmZxSRkFpOUVUJNrQUXez3TBnszpXon0Sc/ZChH6rLq4YrnYewftBboNs4T8vg2TriPZk1hEL8lH+G2U/9hlm6fdjcFOOE+hqOXvs6QQSH4uTu0mtNskaQXlGPMKeNITinG3DKMp0o5nl9OTaNxIAIL84o+5V7DGqK8dUgJewyj2dLvHlwHjmWC3VGG1sTjOHh66+e0+tc3/gu2vkhDZdPeTTueRi3UGtLakFVUyW9pp4lNK+S3tNMNdyaaGyUO88/Sf2JHLRHeeqqxJ95/PpagiYw98ATCYkK0UT5U+Y/mSE4ZuclbmbbrbnSyBiGl1pvT0J/MYX9kyJDhuOT81jPdnDi/Sm6slHKMEOKAlDKm7rU4KeXI1tbpzZVcQOs/ufVF5I5X2TVUuy1TnHojjxfPpwRXLnNL50q3VI46x5DmPBS9TqAXAiEExZUm4k8WkVuqnQTs9IK5XpnMcj5CVeAE7EPGMaxwE4FJb2HITaS+Mib19mwY9w5bKweRmFVMSnYJVSYLI4M8uGvKQK4cFtB6JfLYFvjkejCbMBaYwcmL8Bue1k48pxJa7R+TXVzJZ3tO8OneDPLLqhnQ15k/RxVxmfMRnMIv0ZY3VWm3K7b8B4q12/FSGFgd+W8+KIjiYEYRFgn2Bh1DA92J7t+H6P59GDXAkyBPJ0xmSXJ2CbFpp9mXXkhseiEhZQf5g92vTHZMIys7GzxDCZ9xq9ZS3tLJtiNqyuHbe+DQjw0vFQdO45bT93CkxMBfLo/gnqmDWp1qTErJrqMFvL45lR2pBUx1PMYD/dMZ5W3GwbgG44ls6DuYcMPJuv5zZ2f9x+ok3tuRxuf3TmDCoHPMObj5ee2rvgBz9IRZf4ORv9P6HLbDY1/FsTbpFPvv9MBwYodW2TqxC357F2OW1oUm3Et/1sVDRx7rCzRU7GRtNbKuAMN/hLY9Vz84sbNzBVh+Kux+HfZ/iDFP+9yEe9s1nGxXbj3Gsz+l8MrN0cyL6deuTeYkbcXz6xvQWUxIBCa9I86Wcu12X+Q12me8Wct5RU0t/1iVzBexGYwJ9uTVW2NabnHIOgCrHoJTcdrnDQifuRDmLtcq/B3oX1tSZeL5nw9xaO96JuhSOO0SyuVux5hS9AN25kqk0IGsLx9Wsr40hIMZRRhztZOVo52O8QO9mBbuw/Rwb0J9XJueoKXUWm1/fNCjPd4AACAASURBVBQpzRwpMBNPKB+73kWZTzR3TAjmBr8sXLJ2tf9v1/j9OXvBjlfgwCdnWgL19pTf+h2fZQfy/s40ThZW4u5oYHiQB0MDPRga6M7QQA8Gerug1wksFkl+WTUZhRWUHdnJ5B13opfaHZqUfAvrLWP4weNWzH0Hc3Xfk0RVx3PEaSTHHIdikRKLlFSbLMSmF1JcacJOLxg/0ItLI3250uMEgUWxZ95bdhysewaO1Y3PEDq4YpnW57gDF2tSSlKyS4nd/iuuR77Ht+o43oUJ1GDHAa/LyfQYzWOlL6CXJmqFHU+4/osdVYM4XV5DbaNBbR5OdkT6uxEV4E6kvxu+7g7odToMdXOBD9rzV3wOf6LdhgfS9MH8ufIu9lsGo9cJhvXzYHaUL7OH+BPu59p2g0hdQwiO7nDoR4y/rQd7d8KnXQcJX9W1gtpjvOJjvs8PYm3SKY7maRdP9nod4f6uRPm7MyTQnagAd9wcDXUtl7WUVZsITl5B9JHl6LDUVXR1fF07jbfNV3NMBuJsr8fZXo+DQY+TvR5HOx2OBj21FsnhU6VUmrTjx8Vez9B+HlzpcYJL7A/R38sFw+EfMSb8BnYuhLtX0/zioaOKjdtx+fx6dJYaJKDHQpl05GPzLA47DGesczbxhuHEEUG1yUylyUyVyUx5tblJZTbI04lwPzfCfF3xcrHH3c5MVN7PDD76PpnHjyCBCC89FnT80PdO/lt1DSdOa40aep1gwqC+XDbEn9lD/Fqf671xq6lODz6RWr94Z2/tTqCLN4TNgv7jqKm1sPtYAWuTT7HpUB6ZRZUN+3RUsCdjQ/oSM6APzvbadJyyqhjv1K/on/A6adlal58wLwOfOdzMP8rmUWO2NFzQHNAPI8NlGF6uDni72OPlak9FjZlDp0o5lldG/WE90e4o1/Q5St+o6UzyrcX9t1fr+u/WHZs91I/7fCq5O4GZwA4p5SghRCjwmZSy1XfQ6yq59R9+Vx84+Rskfqt1rgd2Di0DBJP8/03uyEVsPpzHhkM5pOVXYJYSi0UrZLX/ayPQh/fzYGSQByP79yEqwL3lQSpSwg+L4OAnZ17rGwoz/wYRc6hM30fK7p/4v5P9WFPYH183BxZMDOaOoBw8cvZoAy9qyrUKaOK3DX3QjAUSxt9P+O0vtPhWpZTEphfy3o7j/JqUg0VKZkT4cvvEYKYP9ml9ntmtL8LGZ2m4bSJ0MGQeZdF3kZhZQmXqNtZXDOabvECqTNoyfV3sqaippcpkwZFq5rsf5g7DJqIq9tTfKMIY/kcYtZDwyMiuG3zTQmuTtHNms/NlfJkXTLghhxyvsRiCxxMVoBXYEX5u7EjN543NRzmYUUSwq4V/B+9j/LHXEPUn78AYjGH3Qr/RhDsXt5q1ssbMla9uxSwlvzw0re3WluYFmOdAyD+sdRGIulq7vRl5dav9uM0Wydhn1/P7wJM8mFV3a7G+wjx0Pka7obD534R7Ws6qkHe4kluXVx7fxkM7HRjufJp7xA9a6119AVZ/u/hcrdEn9kDcZ1o3n/SdWit26EyMe9eC2Uy4nxMsXEWqwxDmvLaN6eE+vH3H6I515cnYS+mhTXxdEML/khyYb1nLIw6rcLWU1l2s6dkR8SQ/iJkknSonNbeUWotk0SVhPDxrMAa9rmE7HNuiVeKOboSMPaB3BIsJY74Z9HaE//mn8zpmk7NK2HYkj9j0QvalF2IpL+B1u1eZpE9u6Ge41xLJS/q7cOofTfQAT8aEaCetJuVL/WfIf6T2d9n/AeQmN/zYWACmcfeTMuRPfLQrjbiTxbjY67l+dBALJ4UQ6tPJ6ffWP6NdpDZ0DXDm3dorMQZey4Kh9owTyegHTWu91crVVxtIuuctqMivW0CQ2O8WEkPu5LSdF3EZRaRkl2K2SHQ60AuBrq6BQa8TDO/nwcwoXyaHeePm2EbXpG0vaa1jjfshe4fD2Hu0wbdZ+9sug6TU9umeFVr/9rruXb85z+S3oAXkuQ4mObsEl9x9TNClcMwlhgLPkXi5OODlak9fF3tCfVyJDHDD393x3BXTxl2H9A5gKqfYexTxzhNIzy/j28JB7JfhBHs5MzvKj8uG+jM62PPMlItSQvwX8MPiM32VHftgHHAbcvgNeAYP4UT8ZgoSN/JlXjAbykMw6AQTBnkxe4gf4wf1JdTHFTv9Oe7UNbmFbUCGXdbQt/dUn9FkGQLZ7z6LFMeRVJssDRVHgAh/N0YEeTC8Xx8GeTmjM/4EX/3+TF63QIwDF4LHAMJ3PXr+jSH1eetbIoUTFRtfoM+x1Q3d9cwYWO63lGN9JuJo0OFop8fV0cAgb5eGim1D2W5cB7uXa/2Zq4rAfwRG53Gw/33CPZveSS2tMpGcVcIWYx5rk3NIzdXqGsP6uXPZEH+mDPYmws+t6Xmj+bkxfZfW9z8ztq4s0/FL3zt4Nn86mdWOONnpmTrYm4mhXowN6Uukv1vT8izpO62bT+pGrQuF7xCMhw+BxdJQ9poCx3A8v5yU7BIyiyopKKvhdHkN+WXVFJTVUFBejZ1eR6S/O0MC3IisO5cG93VuWo+QEr67H+I/174/j4uT83E+ldzLgCXAEGAtMBm4U0q5qbV1eqSSa6rSBgFk7dduXXr0124T5x2GvSvODAbQ28Pwm7RbtL88wc6IfBCCSeN3WKf/YeMCzLGPVsA7uGvZLGakzkBa1H2sOeVB+alUHjV8g0HUagO0ARw9tH5xqevBYsZYqIP5bxE+/YYmv6rKZGZNfDbv7ThOUlYJHk523DK2P7dPCKZ/37ZveZyVVW/QKl6p6+sGrNW1M+gMmMfeS6bLEA6XOpCflcaI8p3460vpW5yEqK3UruJq6yqfQo9x8L0w5q6z5hntkn1bXyjYOcGu15HxXza0NlnQ8SsT2WGK4Lj0x1VWMF0fj7uDYLz7aXyKExCNB4gIHcx4GqPfNQDnzPtb2mluWrGL28cHs3TesPZnDRqr/X/9P7R+kfUCR2mzYARGAwJO7AZ7F3JyT5GdvIMR+uPoGk7aZ/p1Go1GyI4nXJd+1om7U5XcOs/+mMz7O9PYv2QGbj89UNdXvY7eAUJnaC2ljp5aP1VXf+0YzzdqAwpPxZ9ZPvp3MPMZcPPDuOVryIwlfOp1mPuN5fo3d5JWUM7aR6bh69b5+X9Pl9fw/s407Hf8hz/Kr9AL2TD46zTuJLpMxOwZxhD3CvyCI7XcZacgK04bDV9/oeMWoHVPif4d5Bu1W779xpz1eTsf9V16jh/cxLSdd9e1amp3ioQ0axWy/hO0SppPeF1ZVqnt591vNR10FRij9cXf85Z2p6dZ+RCXUcQHu9JYE5dNjdnC9HAf7pwcwrS2Lnhb2Lex239h+u4/oLeYsKAjy2kwwVWHtPtUQqed6HQGmPKw1hJVmAZb/q116xDiTIXTfzjkHmoYDW+cuhwCRnRt+dC87+OkB7X+340HuuoM2u3gfqO0rlBlOXAyVmv8yNwPhc0mFequssw3SjuPbf+vlgmtgpPpPYVdpsFsyXfHzlLJCLuTODk6EWI4zbDqA7jWnhnoJBFs8r+bF3PHcTy/nEpnbdpBZ3s9l0T4cNkQfy6N8G154HVHsvYfpw1SW/c3iPv0zDKegyBkknZs6uy1wVYu3lqjTeZ+7e9Q9940OpixBKP/tQCEOxVZb3aPX5fAruVNX/MfDiHTwM1PG1zuOVA7bvKNkH8EsuPPDMISOq0Lxbh7MR450mrZ29jRvDLWJeewNukUBzKKGroT9O/rRISf1sIf4e+Gl4s9mUWVZBVVkVlUwegT73FDyfvoOVOWmdFT4jMat+CRGHQ68B0CLl7aDE9lOdqd3SNrz3zewmZrFc7AmCZlr/XqOtU9NnvIec2uIITwAiag1XZ2Synz21q+Ryq5yavhy9vPsZCA6X/RbpMCZOwlNWkZeIURNvY/1snVuFDoN1ob4br26aYDWFpgkbBGTmXD4KeZPXIAM13SccraSYHHCGr9ozE4u1NYUUNhhYmtxjw+3XOCgvIawv1c+f2kgcyLCcTZvoP9uZoXYDXl8O29TQdYtEhA1LXaFCN6e/jouoYr8YJrP4J+o7rnUYLNWpukztC0Ilv3E+Edro1odfPXRpc26l9Z4BwKtO/Rh0vXJPPu9uN8+ofxTArzPufyTTRpbRJaS1dFQdOR2YBJ2LPfHMqoYUOwO7z6rC4UbT2q8XwquXuPa5X41383iqs8Gw380em0gjPvUMMAhCYc+2gjtItPat83u6pvnPetLUd5/udDvHZrDNeODOxwxpaUH92Jwyfz0FlqkXoDVRMewqX4mDblV+PZL+o1HqnfrL9i87xW0fgz1zcUUn6A2PeaXiS0SMC4e2DOf5psp8BjRIuft7zSaj7be4KPdqeTV1rNIB8XFk4MYXiQB57O9vR1tsfN0dBQ8c0rrebXpFP8nJjN7mOnMVskc/qc4Fa/EwydNIe+EVO1qQh/WAzHt5z7fYbOgGte1UaZN3rPHfm8dUhLd43W/Bli3zn3uv3GQsxt2gXPV7/vmbJsy39g03M03Fmzc2nx+C3Bla1Ek1brxR/0P2HAjAkDd8u/UuwaxmA/V6LD+hPh707MgD5tT43XWdte0u4CSjMgoO9AqCxqOsNAPe9w7Tzo7AV7Vzbpf221Y6GxJnfWDDDyFq0cO7H77Fk9dAboO0grF/IO07wLRWfKhtzSKg6eKOLwqVIO5ZRyuK6/b/N5m33dHLjUJY2lxU+hl7UIvR3yyhfQF5/QGhyaX4SBltPOueEudVtlr1X05DSJnF9L7gYp5cxzvdZYj1Ryt7wAm5YBdXP+jf+jNpI4J0Wr/LY2UKQn1I/EN5u0K8Z5b2pXZJn7YM0j2khznR3vDHqFlcd9yC+rxsGgw9/DkcLyGkqqmlaEhNAeyXrn5BAmhXp17Tx1zUdZ3vShdqLa/bo2CKylvlM9dbA3z3rH99AnSOsTe+DjLs9aWWPmqte2UV1r6fi0Kc2zLlyl9X/9dQnEvkv9PJvvGm5ls/9CPrp7fIeznk8lt9ZsYeyz67kkwpf/3hzd8u9e93fY8WpDVqY8CjOe1roENX9vzfIeySnlqte2MyPSlzdvH9X1x2zzrI0rDfXlwyVPQG4KfDi3a26PdpXGF0BCp/UnnXC/1gL61cLzKstqai38nJjN/+1Ia5hJoJ5OQB9ne9wdDaSfrkBKGOTtwpzhAVw53J8hAe5n/52at5pe97Y2ujxzP6x+sOVBZD2l+Wfud1+AZ7A2X2zse2jHRi8tyxau0lrIN/xTG4Bb/5m79GmY9mdKqkycPrQd0rbjNHg6PlFTu+8R6C1lDRqrlQ87/0fDZ27qY9q+bbxeT+3b5r9387/rxk40Kh9m/0M7plt6f12Yt8pk5mheGcWVJvr1ccLfw/HMTC8tZW1ePoz9g3a8Ontrd7KtmLU363AlVwjhCDgDm4BLODM9qDvws5QyqrVf1iOV3LYOxB6+wmhRe2YU6D8Os0USm3aanxNPUVBeQ19nO/o4a/2++jjb0dfFnkE+rtadsqPNUdi97MPUzVn3pZ/mhrd28btxA3h2/vAuzWrR23FD+RPMu3Y+CyaGdDjb+VRyAR798iAbUnKJfXpWy/31OvmZqzVbuP7NnWQUVrL2kWl4u7bjAS3ny5bKh27KaswpJbOoksJy7Y6Q9m8NRRUmQn1duWp4wLkHO7WVqbftV1BlmbXYUtaWnCtrbzqWbSlrN+pMJfch4GEgEMjkTCW3BFgppVze4or04MCzTvxxU1O1txEWttiaybqM1W85dEQ79nevydvOY6MzeZ/7KYW3tx7j47vHM2VwB7sttKQu63eFA3lkpwM7n5jR6shca3VXAPglMZv7P97PZ/dMYGJoK/ujg5+5goIC3tl2jDd357L8dzFcPaJruim0SyfKhx47fjt5ouo1n7d26jV5VVlmHR04jns8byfKMuihvLZUlnWT1iq5rd5flVK+CrwqhPiTlPJ/Vk3XVfqP6/CVS27uR4Cq5HZKO/Z3r8nbzmOjM3kfnR3O+pQcHv8mnl8entr2yO/2qMv68Zs7GRpobn3qmU7mba+pg32wN+hYl5zTeiW3g5+52MPpvPnLQa6aOrp7K7jQqfKhx47fTmSFXvR5a6dek1eVZdbRgeO4x/N28DPXo3ltqSzrYeec3V9K+T8hxCQhxO+EEAvqv7ojnKLYAkc7Pf+5YSSZRZW8teVol2wzv6ya/ScKmT3Er0u21xkuDgYmh3qxLuUUXfH4byklyzem4mSv559zW3hym6IoiqJ0oXNWcoUQHwEvAlOAsXVfZzUJK8rFbHSwJ/OiA3ln23Gy6iboPh8bU3KREmZF9VwlF2DWED8yTldizCk7721tNuax/0QRCyYG49Ud/XAVRVGUi9q5n9OqVWgnSykfkFL+qe7rQWsHUxRb89jlEUjgxbWHz3tb61JyCPRwZGig+/kHOw/1lez1KTnnWLJttWYLy35KoV8fR64Z2b6nmimKoijK+WjPFGJfAQ9KKbPbu9Fe98QzRekmy37WBqGtXjyFYf08OrWNyhozMUvXctOY/vxz7jkeNNGG8x14Vm/u8u0gBD8smtzpbXy+9wRPfJvAm7eN4srhAeeVR1EURVEaa23gWXtacr2BZCHEr0KIVfVfXR9RUWzfA5eE0cfJjmU/p3S6H+uO1HyqTJYe7Y/b2OwhfsRlFJFbUtWp9cura3lpnZHRwZ5cMcy/i9MpiqIoSsvaU8l9BpgHPAe81OhLUZRmPJzseHDmYHakFrDZmNepbaxLzsHNwcD4gb1jFOysIfVdFnI7tf7KbcfIK63mqTlRXfvQB0VRFEVpQ3tmV9jS+AuoBW6yfrTusXPneHbuHN/TMdrNaDRiNBp7Oka7XYx5bxsfTIiXM8t+SqHWbOnQuqm5pXx3MJPLhvpjbzj3NWh37N8IPzcG+7ryxuZUyqtrz71CI7klVazYcoyrhgcwOtjzojweupPKaz22lBVUXmtTeW1De1pyEUJECyFeEEKkAf8CUqyaSlFsmL1Bx+NXRGLMKePrfSfbvV6t2cKfv4rHxV7PE1dGWjFhxwgheO664WQWVbLs54599P+73kitxcL/uyLCSukURVEUpWWtVnKFEOFCiL8JIVKA5UAG2kC1S9t62pmiKHDFMH9GB3vy0jpju1s/3952jLiMIv45dxg+br1riq2xIX25e/JAPt59gu1H8tu1jjGnlC9+y+COCSEEe7lYOaGiKIqiNNVWS+4hYCZwjZRySt1Tz8zdE0tRbJsQgqfmRJFXWs3KbcfOufzhU6W8su4Ic4b7c/WI3jn7wGOXRzDI24XHv4mntMp0zuWX/ZSCi4OBP80I64Z0iqIoitJUq4/1Ba4HbgE2CSF+AT4HLrhRI76+d/R0hA6xtUfyXcx5Rwd7ctXwAFZsOcaNY/rTr5XH85rMFh77Kg43RwNL5w7r0OCs7ty/jnZ6XrxpJDe8uZPnfkph2XUjWl128+FcNh3O46k5kXi62De8fjEfD91B5bUeW8oKKq+1qby2oT3z5Lqgza5wKzAD+AD4Tkq5trV11Dy5iqJJLyjnile24Win45lrh3LtyMCzKrH/23CEl9YZeeO2Uczpwjlku2qe3OaW/ZTCiq3H+OCucUwP92nyM5PZwpubj/K/jUfo18eJXx6ehqOdvkt/v6IoiqI01ul5cqWU5VLKT6SUVwNBwEHgCStkVJQLTrCXC6v/NJlgLxce+vwg9320j9zSM/PNpmSX8NrGI1w9IqBLK7jW9MjscEJ9XHjim3hKGnVbSM4qYd7rO3h5nZErhwXw7QOTVQVXURRF6THtml2hnpTytJRyhZRyhrUCdbfU1OWkptrOOLqCggIKCgp6Oka7qbwQ5uvGN3+cxFNzItlizGP2y1v57sBJamot/PnLODyc7Dr9ZLOe2L+OdnpeuimanJIq/rUmmZpaC/9dZ+Ta5dvJKanmrdtH89qtMfRt1E2hJ/OeD5XXumwpry1lBZXX2lRe29BWn9yLQm7uRwCEhS3u4STtU3+Q2kr/GpVXo9cJ7p0WyswoP/7yVRyPfBHHq+uPkFZQwVu3j26xQtgePbV/o/v34f7pobyx+Sh7j58mraCCedGB/P2aoU364DanjgfrUnmtx5aygsprbSqvbehQS66iKOcn1MeVr+6fxNNXRZFdXMV1Mf1s9lG3D80aTFSAO+U1Zt6+YzSv3BLTZgVXURRFUbrTRd+SqyjdTa8T/GHqIG4a2x8Xe9v9CDoY9Hz3wCQA1fdWURRF6XVs9wyrKDbO3dGupyOcN1W5VRRFUXqrc04h1qmNCpEHpHf5htvHG2jfI5kUUPurM9Q+6zi1zzpO7bOOU/us49Q+6zi1zzrO2vssWErp0/xFq1Rye5IQIraludKUlqn91XFqn3Wc2mcdp/ZZx6l91nFqn3Wc2mcd11P7TA08UxRFURRFUS44qpKrKIqiKIqiXHAuxEru2z0dwMao/dVxap91nNpnHaf2WcepfdZxap91nNpnHdcj++yC65OrKIqiKIqiKBdiS66iKIqiKIpykVOVXEVRFEVRFOWCoyq5iqIoiqIoygVHVXIVRVEURVGUC46q5CqKoiiKoigXHFXJVRRFURRFUS44qpKrKIqiKIqiXHAM1tiot7e3DAkJscambVpKXgoAUT5RPZzk3KqqqgBwdHTs4STto/Jal8prXSqvdam81qXyNnW44DAAEV4RXbI9W9q/PZV13759+VJKn+avW6WSGxISQmxsrDU2bdPGvzkegD1/3NPDSc7NaDQCEB4e3sNJ2kfltS6V17pUXutSea1L5W3qkvcvAWDz7zd3yfZsaf/2VFYhRHpLr6vuCoqiKIqiKM0sXryY4ODgDq0jpSSjsIKC8horpVI6QlVyFUVRFEVRGjl+/DibN2+mpqaG0tLSdq/36d4TZBZWcjS3jJTsEismVNpDSCm7fKNjxoyRqruCoiiKoii2aMGCBcyZM4eVK1fy7LPPMmHChHOucySnlGuWb+e08xIqa8xMcHuNVYun4GSv74bEFzchxD4p5Zjmr6uWXEVRFEVRlDpJSUkkJiZy8803ExUVRVJS0jnXqTKZefDzg7jYGxjs60qYrytHcst49qfkbkistEZVchVFURRFUeosWbKEpUuXIoQgKiqKxMREAL7//nvuuece5s6dy9q1a5us88Ivh0nJLuE/N47ATq/Dw8mOe6cN4uPdJ1ibdKon3oaCquR2q/Fvjm+YYaG3MxqNDaMkbYHKa10qr3WpvNal8lrXhZR3z549/PrrryxatIiQkBCWLl3a0JI7b948Vq5cyfvvv88XX3zRsM6mw7n8347j/H5SCDMi/Rpef+yyCIb1c+f/fRPPqeIqq+TtbXpb1lYruUIIvRDiPiHEUiHE5GY/e9r60RRFURRFUbrPU089xZo1a0hLSyMtLY24uLiGltx6//rXv1i0aBEAeaXV/OWrOCL83Hjiysgmy9kbdLx6SwzVJguPfnkQi6Xrx0ApbWurJXcFMB0oAF4TQrzc6GfXWTWVoiiKoihKN1q3bh3V1dXMnDmz4TU/Pz/Ky8s5ffo0Ukoef/xxrrzySkaNGoXFInnsqzhKq2p57dYYHO3OHmAW6uPKM9cOYefRAt7edqw7345C2w+DGCelHAEghFgOvCGE+Ba4FRDdEU5RFEVRFKU7zJ49m9mzZ5/1enFxMQCvvfYa69evp7i4mNTUVOyHXc4WYx5L5w4lwt+t1e3eNKY/W4x5vPjrYSaFejEiqI/V3oPSVFuVXPv6/0gpa4F7hRB/AzYCrtYOdiG6Y/gdPR2h3by8vHo6QoeovNal8lqXymtdKq912XLeyspK3n77bV599VW2bt1KUFBQq+s9+OCDPPjggwAUV5oY++x6XPZ/zDeHKhn2978TExPT4npCCJbNH8GBE1v5+6okvntgcovLtSdvb9fbsrbVXSFWCHFF4xeklP8E3gNCrBnqQrV4ymIWT1nc0zHaxcvLq9cdrG1Rea3rQsm7YsUKAgICiI6OJiwsjHnz5lFTY90nE61cuZLo6Giio6PR6XQN/3/00UfPmbe3UnmtS+W1Li8vL5ydnXn11VcJDQ1l8+bNfPPNN21WcJvbYsyjptbCitde5NJLL+Wqq65i3rx5HDhwoMXlPZztuG38AA6cKCK3pGOD0Gxp//a2rOphEIqiXDQWLVrEmDFjuPPOO7FYLISHh/P5558zZsxZc4h3uczMTCZNmkR6eouPWFcUpRsNGzasXfPfdkb009F4hHqw+febm7x+6FQJV7yyjeevG84t4wZY5XdfrNTDIHqB5duXs3z78p6O0S4FBQUUFBT0dIx2U3mt60LJm5CQ0HBLMTU1FSkl4eHhXfI758+fz9NPP83UqVPx9/dn/fr1TX6emJjI8OHDO5S3t1J5rUvlta6CggJ+/vln/vvf/xIQEMD8+fPZv38/FoulXV/VplqG/e1nHvn8AOXl5bzyyisEBgYyd+5cYmNj8Qj1aPH3Rvi50a+PE+tTcjuc11b2b2/L2lafXKWLfZTwEYBNdFmoP0h7022Htqi81nWh5E1KSmLBggWYTCZOnjzJjz/+iLu7e5vbmjp1aovPrn/xxReZNWtWw/eJiYlMnjyZbdu28e233/LJJ580+XlCQgLDhg3rUN7eSuW1LpXXuurzPvzww9x33328/fbbXH/99efsk1tvX3oRpdVmZg/x48knnyQ9PZ3Vq1czatQobYGEltcTQjArypcvYjOoMplbnI2hrby2sH97W1ZVyVUU5aKQkZGBr68v8fHxAHz44YcsXbqURYsW8eOPP5Kbm8uiRYu47LLLmqy3bdu2c267oqKC4uJiHnnkEQBqa2vp06fpCOrExMQWR24ritJznJyceOihh3jooYfavc6GlBzs9Tqmhvtw5auvduj3zYzy44Nd6exIzWdmlN+5V1DOS7u6KwghPIUQxPtg/QAAIABJREFU44QQ0+q/rB1MURSlK8XHxzNkyJCG70eOHElubm6rTzGqN3Xq1IbBYo2/GndHSEpKYvTo0ej1+obf1bzVtq2WXEVRbIOUkvUpOUwI9cLVoePthOMH9cXVwdDhLgtK55zzLySE+APwEBAEHAQmALuAGdaNpiiK0nUSEhKIiooCtBPVBx980KQ7QeOnGDXWnpbcxMREoqOjG76Pj49n7ty5Dd9bLBaOHDlCZGRkS6srimIjjuaVk1ZQwV1TBnZqfQeDnmnh3mxIycFiGYZOpx47YE3tuQx5CBgL7JZSXiqEiAT+Yd1YF6Y9f9zT0xHarasG43QXlde6LoS8CQkJbNmyhR9//BEhBBMmTODFF19ESskTTzzR8BSjzkhISGD8+PEN3ycmJjZptU1NTSUoKAgHB4d25+3NVF7rUnmt63zybkjJAWBGpG+ntzEz0o+fEk6RmFXcrgdD2NL+7W1Z21PJrZJSVgkhEEI4SCkPCSEirJ5MURSlC33yySctvt78KUb3339/h7f98ssvN/n+2LGmj+8MDw8nOTm5w9tVFKV32ZCSS1SAO0Gezp3exqWRvugErE/JVU8/s7L29Mk9KYToA3wPrBNC/ABkWTfWxaGoqIiVK1dSW1vb01EU5aL14IMPsm/fPt56661OVXAVRem9PvzwQzIzM7tkW4XlNcSmn2ZWVOdbcQH6utgzOtizoVVYsZ5zVnKllPOllEVSymeAvwLvAvOsHexCNP7N8Yx/czxFRUU888wzhIWFsWfPHqzxQI7zZTQaMRqNPR2j3VRe61J5/3979x1fZXU/cPxz7s1NQnYCWayElTBDmMoQwhK0inu0FqX111artra1raOtHbZ1V+to64yi4lZQUURkTxlhJSGMELID2Tu5957fH8/NgiQkITc3JN/365UX8PDc+3w5nOc83+c855zHuSRe55J4nas7x3vs2DHGjRvHPffcU5/sdjTedYfzsGs6ZVWEeaNCOZRVQlZR5Tn37c7le6buFmubpgYqpcxAKJDq2BQGnHRWUD3ZsTeO0f83/YmKiuLmm28mKCiIv/3tb64O6yzdba27c5F4nUvidS6J17kkXufq7vEuXbqU7du3M3z4cKZPn86LL76IUu2f8LU2KY9gXw9iBjT/sof2mD8qhEe/TGZtch5LLo447+8TzWvL6gr3AA8DuYDdsVkDMU6Mq8dSJlV/cplMJtzcuudSxXVLIXXX+M4k8TqXxOtcEq9zSbzO1d3jNZvNaK1RSnU4xhqrnQ0pp7giJrxTVkQYFuxDZF8v1iblSpLrRG1dXSFaa9193tN2ARu6ZChff/k1zz33HM8++yzf+973ePnll7FYLK4OrYm6xw3dbaZkSyRe55J4nUvidS6J17m6c7wPPfQQr776Krfddhsff/wx4eHhHXqcviM1n7Jqa6e9wEEpxbxRoSzblkZ5tRXvDqy5K86tLaWaDhQ7O5DeYMm4JQD4+/vzhz/8gXvuuYePPvqoQ49NnK27PnZqicTrXBKvc0m8ziXxOld3jnf06NEcOnSI8PDw+m0diXdtUh4ebiZmDu/XabHNGxXCq5tT2XTkNIvGhrW4X3cu3zN1t1jVuSY9KaVeBaKBL4Dquu1a66db+szkyZP1rl27OitGIYQQQgiX0FpzyePriA715dWlU865f1x8HADrl65vdb9am51Jf1vDwjFhPHHD+E6ItPdSSu3WWk8+c3tblhA7CawB3AHfRj9CCCGEED1aSm4ZGYWVnTZUoY7FbCIuOoRvk/Ow2bvfKks9wTmHK2it5e1mneT5zc8DcPfMu10cybl199myZ5J4nUvidS6J17kkXufq6fF+41jPdt55ro/bnHmjQli5L4uE9CImRQQ2u8+FVL7dLda2rK4QBdwHRDbeX2s913lhOV9WUSV//yKJpOwSau12bDaN1e74sdkZEuzD/YtGMm1Y5/1HLTuwDJAk1xkkXueSeJ1L4nUuibcprTWrD+Xw1Ncp5JZUYTGbMJtU/a9uJsVFQ4P4/aKRBHi5uzzeztaRJHfcAH9C/Tw7PZa4qBDMJsXapFxJcp2gLRPPPgD+C7wC2JwbjvPZ7Zq3d6Tx6JfJ2LXx/ml3NxNuJoWbWeFmMk7yNYm5fP/l7SwcE8qDl48ioq+3q0MXQgghzsvBzGL+9nkiO1ILiA715dqJA7Ha7djsmlqbxmbXlFdbeX9XBmsSc/nL4rFcPi6sW06Q7gqny6pJSC/i3nnOWTnC38vC1MggvknK5XeLRjrlGL1ZW5Jcq9b6P06PpAsczSvjgY/3892JQmYO78c/rx3HoKDm3z99/2UjeXVzKi+sO8qCpzfyoxmR3DV3OH6e3WupLyHEeUrfCSc2QeQlMGiqq6MRwinySqt4cvVhPtidQaCXO49cPZabpwzCzdz81JxDWcX8/qP93PXOHhaMDuWRq8c6pSezu/s2KQ+tnTNUoc780aH87fNETuZXMLhv8zlJm0l71kRbktzPlFI/Bz6h6eoKBU6LqjPZbVj3vceBXZt5PG0EKZYxPHF9DNdPGojK+A4ONV8ZPC1m7poznBsmDeTx1Yf538bjfLg7g/sWRnPT5EGdshh0s1JWQ9pWiFoIEdMbtnfHipu23Yhp6OymMXVRrFprCitqySutYldqAfll1XyTZWJAQB8mRQQyIKBPQ+9DSzGd3AEnNsOQblSuzcVqq4Wj30DmHhixoPvHmvgZZO6C0VfB4ItcG2Nr0rbDssVGzGZ3uO2z7lO2zUlZDUfWwMjLYVijEWMuaB+01hw/VcbutELyy2sI8fUgxNeTUD/jV7/c7aiUr2D4fBgaB+c6F10pfSccXw9DZjetr9011uZiSt8JqZvOastqrHZe2XycF749So3Nzv/NHMLdc0fg36f1Dpsx/f359OczeHVzKk+vSWH+Uxt44PJR3DylHde/5mLVGqqKjXb31OGz4s0priLQ24KHm7nNRdIpWoh124FkbvfewpiU/WCf55R6MH9UCH/7PJE1SbncPnNIx7/o6FpY/n2w14LZA25b2eF4iytr0Vq3abhKd9aWJcRSm9mstdZDW/qMy5YQS98JqRvBbyBUFULqJmzH12OuLQeM17TZ/AbjNmA8uPvAgQ9B29pUGQ5kFPPXzw/x3YlCpkYG8c/rxjEs2Of8Yj2xCSJmgsUTDn9pxJN/pGEfD38IGARunpC1F7Qd3DxceyG224zGaft/IOXLhu0WL6NMlQnKcgFtJA23roSIaZ1yaK01BzNLWLkvk2+S8sgsrKTGZm9x/zA/Ty4e3IfbbJ8Qm/oKYEcBePgZDa21ymgMAExusPgFiL25U2LtsMNfwns/BLvVKEvf/lBTBlVFDfsoE0y9A6bdCQGDXRdr+k6IvwJsNWAyQfgEqDgNhSdpeDkiMGw+jLsOhsxGF2dQmryeE74TOGgayYn8ck6cLictv4K80irC/fswpJ83EX29iOzrTWQ/byL7eRHi2wk9SCd3QNJK8PA1yjQrwfg32Kob9vENh5HfgwGTwWyBwhMwZFbXn2917UPYeKgtN5KXI19DUVrDPn2CIHQMePobya/d5mgfOn5ha0211cb+jGJ2pxWy60Qhe04WUlBew0SVwsWmJLbbR3FchzPHlMB15g3MMCXW57V2szsmvwHg7g15icb55+YOt33u2uSxOAM2PwPfvYJxhcC4Hrh7gzIb9RlttA83v2N0PrjS3rdg5S+M6xYKPAMAO9RWNdRjZYK4B2D6PezJruL+j/aTklvG/FGhPPS9UQzp1/6hdydOl/PAxwfYdjyfGcP78vSNsefu1U3bBm8uNtoHZYLASCPO8lMN7S6AyQwLH2V/+LU8+20qa5Pz8O9j4YqYcK6ZMIBJEYHOHyqRvhPeuBKs1UY8ETOgqghdcBxVXdqwnzLBhFthwg+h/wTI2tPsDUdblxBr7NJ/baCvtwfLf3px2+I9uga8gsFaabRl2QlQcLzpfsGjYPzNMGCS0T5k7W71hq3aamNdch6f7M1kXfIpAL4/dRB3xg0nzL979+K3tITYOZPcjnBJkpv0Oby/xEgEHcq8BpFaZmG0KRUzGlDQL8rYp+BYk32Z8hP43pOtHkJrzQe7M3jk80Sqau38Yt5wfjZ7GJYWHve06OQOeOMKo/fI+GYjNv8B6OJMFBqNQvWfCL6hRgUuzWr4/KCL4Or/QN9h7TtuR53cAfvfh8oCo5e5LMdIYG01jh2UcdKEjDJ6GnP2N3zWwx+m3WU0CiWZHeoVOZpXysp92Xy2L4vU0+VYzIpLRgQTHeZLiK8HoX6e9b1IwUX7KE76lqOV3pCxm9jib/ChAq2NjiQNlAfH4j10Gipnn9EQ0+gcCBkDMTdA3xFw+nDX9OBoDSe3w86XIPHTpvUyZLTR4J4+AqkbmsYKEBZjNLbu3jDmmq5JGOx2SPkKvrq/adLlG248fSjLM26EHLFqixeqtsL4KAq0pgYLP6h5iIPmkUQEeRHR15sQPw+yiyo5kV9BekEF1kZL6gwP8WHeqBDmjwplwqCAFh+xNstaDev+AVuerY8JkwXCxoFffyNB1DbjAhYyxmgbasoaPm9yg++/ByPmd7DA2unoN/DOTcaNTh2Ll1G+Bcepby/CY4yELGef8W+sM/IKuO5V4+b5PFltdrYey2flvixWH8yhtNqIaUg/byZFBLLQL415O/8PZasxYkKj0NSYvbDYKlCATSt220dQ4RnOBPNR/KoyqU9ZAiLh0r9B9OVg7oI3PqXvNP6/bTWQuRvStpyxg4LBFxs3Dxm7jMSh/q9MMGoxTLoNhsQZTyrOs5fXarNTVm3F02LG03JGz2XdjU74eChIhT1vNm1bUdB/IgycbGw/uZ3G7UO1yYuVtZPZ6DGHWy+JZoop+bxi1VqzfGc6f/s8ES93M0/dOJ646GYe4Zefhj1vwOZnobrRe6T6jTCuXV79IDfRSNLQdbWZQu3DRjWJgMFjKauoZFluJNtrhzMoqA/XxA7g6gkDGHo+HUstKUyDj38C6TsatnkGwoCJnFThpBw+xDxzAurMttfiZXSUaM66uexIkvvE6mT+u+E4u/8wv/Xe0yY3Og7+g6H/ePDuB3vfNnILZQKfECjNbvp5swcsbbi5tNs1u08W8vGeTL7Yn0VJlZV+Ph5cFdufsiorH+3JwKRUt092O5zkKqW8gF8Dg7XWP1VKjcB4ze/nLX3GJUnuun/ChkcB0Jj4Nugmbs+6kiUDc/hr0YOo+seRjoqYthWWXQ3WGuobhshLYPo9RmJ2ckuLDUJeaRV/WZnIFweyGRnmy2PXxTB+UMC5Y7TbjZ6kL3/n6O00jlwceRkfhP6K1JSD/LHgfixYqcWNH+s/ctxzNFPdjvJkxR+xYEUpUCgjERpxqTFUoLbSOb1N1hpHcvAMdY1RYb/JbAm6lsRiC7/MfQg3rNiw8NKQf2EfMJXxHOaSbbdjsteiTGYIHWvc7aIassxz9DbZ7ZoDmcV8m5zH14m5JGWXoBRMG9qXxeP7s2hsWPONwPGN8Na1Db0EZncYcw3F/WLxWf8XsNdQo924peZB8gLG87Oh+dySfDcme63Razfl/4wLS8bOhu80O3qbWnjkrrUmt6SapJwSjuWVUWNrWKnD5litQ2vNiFBfpkQGMjjIq6FX4vhG2Pk/o8EvPG70yA2fD8mfg83atL6m74Q3HL0iZne46kUoSYd97xo9Y2A0alc8C5NubTbWkqpakrNLScwq5vjpctzNJnw83fD1tODr6Yafpxt+nhYGBXkxIKBP00eS6Tvh2LdG8pe8ykgEvUOgstCoi41i1Sd3oN9cDNZarMqNH9keJL/Wg/st7zLblOBIhaA2eBxuN7yGKeTsCR1Wm51MR8KbklPK+pQ8dhwvwGrXBHhZmBMdwrxRIUwdEtRyL29VCex6Dba/WH++1ZdT3IMw+7fY7JrcQxupPrqB7MDJpHuPpayymtikJ5mQ/R4mR9tgN1mwTf4Jlpn3GImxM5TlwbYXjHgb30BOWop90WNkJm4jfMVNKHstdpMb749+gTz/8Qws3c81B3+OyV6DAuNi7NUPpv7UqNMFx9qVjGmt2ZtexMqELD7fn8Xpshp8PdxYNDaM+aNDmRwRSF8fDyPx+vDHjvPbIXIWLPiL0XYsuxpsNWizhc9j/8eracGYMnbytvs/cFfGkwrdJxC3ilPgPwim3A6h44ykvY2x5pVUcexUOemFFWQUVJBeWEl6QQXphRVYzCbG9PdjTH9/xvT3Y3LxavxW34uqSw78B8PEW43Ogk9/3nBuNXvOuUH0FXB8nXGz7xNm9PJq+zmfBGqt2Z1WyDs7TnLsVBmlVVZKq62UVVmprDVicXczMTUyiFlR/ZgVFUx0TRLqjSubPmUIizHa+e9eaTS85uxYbSYLz/BDBlUfYbH7Ljzt5Q11qROeBB7NK+Xud/aSnFPKz2YN5TeXRuOevQv2v2ckjKkbjDILjzXaJrutaawA6Tuxx1+JttVQo828pG5gYUgR0UUbUY4bTG2ysPGil3glYwBbjp7GruHuOcO5b2F0h2OvOzYnNhm9oMe/hcQVRtkYR20ybOn3H+4n88AGlln+btzImd3hxmVQWwZbnjN6RuuMuQaufQXMbh1KcveeLOSaF7fyzE2xXD1hQNO/1Np4Sr3lGaMdrqNMMPPXMO+PZ//76s6h8nz4+g+wbzn1uY7/YPjeU1iHzuOWV3eyI7WAPhYzi8aGcc2EAUwf1re+IyG9oIIX1h3lw93dO9k9nyT3PWA3cKvWeqxSqg+wTWsd29JnXJLkOk5ybauhWpu5peZBZs29grvnDsec+V3LY5hObDLuhnMPGY/gSzKor/DnaBC+PpTDH1cc5FRpNUsujmDR2HBiBwXQx93c9BjHjZP+oo3/BGslmwOiMZXngbZRgxu3VD/IXqIY29+fm8Kyia7ax3HvWFLcR1NWZaW0upbgon345exgi3UkfQeO4DdBW4hOW46qKjSOY7LAkk+M8U3nq7aSlE+fQO95g2iP0/V32lZt4mnrDfxPX83wYB8uCzjJ8IoEtlpHsbY8gtwSo0Gue3x53CcWt4iLuaRfGZcdewTf3B0NPTijr4brXjGSS6Cs2srmI6f4NjmPb5NPcbqsGqVg4uBAvjcunCtiwglp6fFYZSEpH/0Tdr9OlH+j5GDWb2HuQw3/Dyc2Ud5/GquLB7MiIYvNR08zXh/mUu+jFIZMxWPINEaH+zLt6DP4Jfyv/s7d7tufkjl/JzN0DvnlVrKLK0nOKSU5u5SknBKKKmqbDctsUphNRmJfN6wi2NeDeQPtzD3xHBGn1xHd12zEOuNemP07cPdqfczdmds3PQXfPtK093foHOyX3EeCeQybUk5zKKuYpJwS0gsq63fx9XDDpjUVNc0vmOLtbmZ4qC9RIT7MN+0mYv2vUViJ7mumNnAE1TN/i2nMVXjm7qM8ZT2JHjFsrhrK/oxiDmYWE1FxkItNSRzuM56Q0bOYPyqEmZ7H8Xj7GsfjS2U00LZaY9zuiIVQlt1qclNSVcvGlFOsTcpj3eG8+nIP8/Nk3EB/Ygb4M26gPxOrtpO16ilUXiLR/jVUDZpFacR8+m77B9hrsSk3Xhj0NF+XRHDsVBnV1rOHvExUKbzt/g8sWLFiZrt9FDNNB9HKRJLXFOxBwwiYdD0RsXHn9yg1fSckf0HKwX2QtomoABsMmYU+uR3sVqzKjSdCn+D93HCKKmqZqFKY4ZbMDj2a3fYR9QvINx4yYMHG3Z6ruETvxqosmLCjtEab3Sm+8SN8h0+vv4BZbXZST5eTlFNKUnYJydklHMoqIa+0Gnc3E/NHhbB4fH/iokPwzNlt1L+AwaRs+BAOf0VUsKWh7jWTyJxZX0/mV7Bz01eUJa9jZfFQEvRwbvQ9yE891jC0bHd9W2O0vU2HMhRX1nIgo5h9GUXsSy9iX0ZRfZsDYFIQ7t+HgYF9GBTkRVWtjUNZJQTkJ3BV8TtMNycyoq/ZcZNlgrkPoWbd12KszW63VkPSZ7D2b1B0wrGTMjpHLv1bk//aihorn+7NYtn2NJKyS/D1dGPC4MD6G0ofD+MG08fDjcyiSjamnOJIXimzTfv5v9L/EUo+UX3NaBRM+T9U3ZPGZmItqarl6O5vyUpYw2sZAyjqN4HHrothyoA+sOJuOPhhQ2ARM+HGN4xevw6qqrXxyBeJvLP9BH8OWsNF6a+j0ET1NRu93XP/AMHRzca643g+L6w/RtmRLcz2SKH/+PksvGyxMal7wxNGx0rdcCeLN8T9nrzoW3hkTTqf7c/i/Z9NY0pkUMcCdwyhSMkz2sKoMD+Y+n8w9WdnPWm02TUX/eMbLh7al+cvsZ5dP+puLKzVGMmjhsAhMPNe4r57FqpLWH/t8jbfUNjtmov+uZapkUG8cMvEhnh3vUrKvh1QmErU4HAYdQUkvHP2jU5rGt+wKZMxzKXiFKe9R/BmUQwzo0IZN3MxfYa1PLTwzGT3ukkDuWP20IaVpxz/1yn2CAiPISrKOatRtOR8ktxdWuvJSqm9WusJjm37tNYtvoPOFUmu1ppVq1aQvP1LEj1i+MkPbubioe1cp81WCx//FA593LBt8MXG0ICg5ocgl1TV8uiXySzfedIYZmZSjOnvx8SIQBZ6JnHRtjvAXosCJlhryNFB9LH9l1h1lHl9jmAbPIOI2DhmDu9n9I60oqiihg92ZfDWjjTS8iv4XZ8V3KHfr+9twuJlNLZTfgI+we37twMcWwdbn8OesZujWfkkq2Ek+M7kd5b3sWBFm9w5fvk7DB4fd/ajNYyGL7PI6Ek5nFPquBgVk1lUWZ80uCujLExocujHMnUlh/UgRloPs9U2iiMeo5kdFcy8USHMjgohyLuFxzbpO+HwKig6CSmrSckuhtDxROkjxmPeNpz8+WXVrDqQzfbUApKzS0g9XY5dN0pwlBWN4rTdj3BTIYftA1llm4oVM3tMMVSGTWJUuC8jw/wYGebLiFBfvNzNuDmS27rkx27XHMkrI+XgdwQfeJmJxV9z/LRxcR7Zz4wNE8fH3cugxX9otlxb1ajx0mYLmUOuxz91Fb7WAhLtg0nUEWzwvhz74IsZHe7H6HA/RoX7EerngVKq/nFpaZXxU1RZw4nTFaTklED6Dqbnf8g8+zaO5htPEYYGufG09QZetF19VigmBVGhvowb4E/MQH8mDA5kTH+/pklg44te4BCj13L7f8FqDGfA7A4//PicN2tWm519GUXsPVnEgcxiDmYU0r9gB3eYVzDdlERKvg07Jl71+xkf2uOApolgtl8MUaG+RIX6MCLUl4ggL/z6GD3adYmHOfM7dOom8vpOIYEoMo4nEZv0FBMrNoE2hl68ZrmZUzF3MG/sICZFBLZ9GIXdZvTir/4DaBsp+TZqB80gZ/qf+ORkH4oObyHGeoDt9lEU9Z3AlMggJkcGMiUyiIi+DU8DtG54YlBaZSUl10hWk7JLKc88xM8Ln2CcOo5SYNfwqW0Gv7PdgZ9XH/z7WMgsqqTGkeRbzIphwT6MCvdjxvB+LBwTim/dajJp2x3jK416m1JohpgbibrhYShO79Bj++ziStYlGze2m4+e4nc6nqXmr6h7gJBKfx43/5QE8zg0ipySqvrPDunnzfiB/sQMDCAq1JdBQX0I9++Du5uj/E/ugIS3IHs/ZCeQWOrNyYCLmGvfjElbqdVuPOj7d6bNvozFsf07eN5d0ehJoMkY5jTjl2TknSJ525fEZw5kc/VQRoX7ceu0CK6K7Y+XezNDMurmkmgbtQdXYjl1kD2F3njYy4kOMlGLG3eaH0YNmkrsoEAmDA6gf0AfDmQWsetEIbvTCjmcW4rWxv/hHbOHcdec4Q3/pvo2wnFDoO3g1gcmLTX+z053YBhDTQUkvE35hn/jXX6Sw6dtKAUj+rnDnIdQs37TZHetNetTTvHiuqN8d6KQvt7u/HjmEJZMi2i6YlHjZKzxk8A+gdRGXcE7hyrY4TaFp37906adSedSng974o3x19UlpOQbY5qjrn0Q5jzQ7Ed2pxVy3X+28uzNsVwVO6DZferbs8EzjJ79TU9C1l7iMHrP17sFtWvc+QMf7+ezfdns/sVIPDY/YQxNQJOSb4eJtxL1w6eMYUgdmRDZ+DPhsWRtWYb9238wUJ02/t7kBte/ZnQ6tPY1BRX8Z8MxPtyVgdVu58rx/fnt4KMM/OYOsFtJKXKDa/5H1Ozr2xZXJzmfJHcrMA/YorWeqJQaBizXWrdYsq5IcpOyS/jevzcRFx3CkzeMbzk5OpcmDYKjtdV2Y0b7kNnGGJwzhwak76TyyHoOucews8ALy9HVjCzayDR1ADdllK9NK0bYPajyDOHZhauYMDiAYcE+HeoFsts1G4+cYuu6L/lV9n2OBNRMZfB4fPN2o8zuMGyO8Qhw9FVNE4bGFX3gFGOM3/F1cPBjdNqW+jF0d+VcRWr4Zfzyutlc6peGWyvDN87lVGk1+zOKyEvciF/uDlK9YvHW5cSdfpsh5fvqRzppkwX7jW/hNnLR2bEOmmo8sik4bowP3vhEw5ikoXNJGXY7BEcR1aeow+PkKmtsHMkzkoTSI1sJLviOvKApVAaPZ2LpOiYcfR7vikwjXmVGxf0eJv3IGPfUXLxgNK773oXdr0H+UePiMuGH7KwcgM/GR4gOstf35ie6jWTWiGAWjA5lSmQQ4QGerc4wLiivITmnhMLkzVhTN/H+qUi2VA8lyN3GE0ErmFv0YUPP+bB5MHGJ8aunX8uNZOomY2xw7iHjMbenP9WR80jdtgLsNoYHe7L+4pfJ8B5HldVOZY2NQC8L4wYGMDrcr30Xnjrf/t34/2w88WfsdTDueuOca2FyR/2NTkWh8dix6CQ2sycmWxVH8m3YMVNx8S84GvVTPN3NeLqZ6OvjwYhQn44vBdio57zxWMJPbTP40rKAmRFeXGJJxnPEbAbEzG44Tt3Md99QY3hfWEYKAAAgAElEQVTKwY+gLKf+O5LyNfG2Rbzndxv9fNyZNzKUOSODmRwZRL9z3Py2xpq2HdObV6FsRm+TAko8wtgedBVHVCSjTSdRkTMJHTOLYcE+RpJYVzcGXWy0d8lfGOdcTd0EHEXKkNtg2l2d1ltTVWvj0M5viFm7xBg+hKLa1AcvexkZnlEc8plOUB+F28jLGDJhTsNwpcb1OGQUnNhiPDY/9An19WnKT0iJuAXcvYnqU0TtsY1sqIniycQAknNK6evtzg8uGsySiyNaflrUnLpj9xuJTtuCbdfruFkrsGnHza3JjWOL3iZ66qVGO3/mOVdVbPTIff2HhvHXfgNhzgOkeMRiy00iqCKFBPM4vimNICG9iKOnymh8yfbxcGPC4AAmRxg3QbGDAvD2aCGRrju2ZwBs/pfRLtX1mJoscOUzMP77RnLZXPtgrYZDnxqJV9Zeoz4MmEzR4PlkfP4EJm1lSF8Pfqr+RG3/yYxy3FS7mRUvb0wlMbuE/v6e/HTWUG6aMrjltuLMY2fsgtUPQfp2NGDXij3BVzPlpgeMOTYZrTypPfCBMYTi+Hrjmt5/AuQeIiWvBswWon6zqsXrxGNfJfPyxuPs/sMC/L3a2F5oDSvuIi7hJQDW4w1+A2DGL43hDIUnWo71+AaO5leRtnctc932oRo9nUvJB6bdSdQPHm1bHOdQa7NzzYtbWFTwNnfp91CNJwoPmW0M4/EJNYbutfB0o8B/NNv3JBCcuoIpKslpsbbV+SS5lwIPAaOBr4EZwI+01uta+oyrVlfYnVbIxMEB5z8Ts/FJ5j8IdscbvS6VjqEBKONk6Tvc6JFJMhIA4zmYY7JN4FAKA8fhf+JLTNoYk3SxT1/w8GHHnTtaOnK75R7aSNK2VbySMYDNVUO5NKyUhz3fp3/O2oYExzvEuAB4+DpmYTtm7vcJggpjBmWZ8sbLXo5JgQ0T28KXEjLnTuc/cvjsXtj9etNtfgMhMMKYCGC3GY1u+HjIP9Z0lQEwZkDPfYiU0CsBnBvvxieNhIwzHm8HjzQa28NfNpRtcLQx4L++ztBkAlNKSgpk7yfKlEbtoBlsrx3GmsRc1iTmkl3c0GMV7OvBgIA+xk9gH+x2zeHcUpJzSjlVWt1kv/mjQrh0dBjThvXFc/szRqx1s7DdPI1ZuCaLMWEpe78Rq8lkTGyzWY0GuH6Co4IZv4DZvwd3b+PxdOYuoi65tvPHfp/ZezN0jjGJprrYuCBXlxo3miYTDF9g1OOSLDi5reFReXis8RTDNwzeup6U3MpzXsTOO1azO8z/E7VpOzAd/gKzvbZ+Yp0dExtsMZR4hDLAo5JJFVswYTOG/WBmI5P4rjaSX7h9igUrSQWKL4f+ibnX3MqEwYHGMJfOjPnEJhg8HSryjZuY1A0Nf69MMHiaUYdtNUZC23j2u8XLaO8ydhrzCszupFzyvHMeSTZue8PGGQnrxieN3uI6fUcYddjN0xGr1bE8mTLqu8mtIWlspX3QWrPtWD6vbTnB2uRcFHDx0L5cPi6chWPCCPY9981FWbWVj3Zn8MbWE+SfzuWlPs8zVe9vaHtNbsbMdp8w44asrn3w69/03wTG9jkPwaz7jPaBs9uzkqpa9qcXk1VUydgB/kSH+Xa8rnz9R9j6HE0ms3r6G5MvM75ztA9m6D/JuE4UpDbsq0zwvaeMm3ylSFz3PvmHt1IeMZeNVUNIzCrhcE5p/ZjjocHe3Dl7GFfFDmjobW+PZm4uAWP1mfK8huvEsHlGHcg/bsxzqDPyCpj7RwgZCek7Sdn0MQyY3Gpv4/ynNxDi68E7P2nDageNpe8k7rWZgGa98jPGvxYep2FeijZiHbHQ6HAozjAmQDrasgLty/6wa4mbPQ8+/hnYakgpNME1/+203tHn1h7hqTUpLF+kmLb5x472zAIxNxmdXkUnG3ZWZmO5Qr/+xvWsrh472IJGcMh9LFE5n+OmbRwtMmG69gLqyXV8uC9wMUbd2q61Pt3a/i5bQsyZNjzuGCvkKC+/AUYDVprdaJIIxgV60aNGknPG3fvzacaEJme81reixsonezOJ33KCBflv8xvL+5gdqzQU+UVjsnjgU3QYs81IoDSQZo7g5ap5bLaPZUo/G/8s/wNu2ooyu5O/eBkMmOj8V/OdmeBMWgoVBcbg+spGSzH7hEL0ZcYFw+xuJMeNJorkexkrTTg13jMTnMseM5KGE5uMXrrGiUFAhNEwlGQZ65pir7/gcslvWnz1odaaQ1klJGWXkFlUSVZRJVlFVWQWVZJZVIkCRoT6EB1qDJGIDvNlZJgvwb4eZw8LaBzrkk+M7YdXQcLbRtx1vIIgeLSx7F5uIqCbxApd8KrGM3tvaquM2dfr/tEwsQ7A3dcYilNdZlzc4KxYSd9J/r6vYPA0+sYscH6sYNTZT+5AH1ldP7GuxuxDNRY8bGW461pjyACKFX4/YGfknQwI8GScPszYmgPo/pNQAyd13aswv7wfdvyX+vbMO9i4+FY0btqVcdG78hmw9Gny7+6S861Ok5tLZQwd0zajh65xghY5E2b9zkjA3r6hXe1DWn45H+zKYNWBbI6fLkcpmBoZxOXjwpkTHYLVbqewooaC8loKK2ooLK8hraCClQlZlFVbiR0UwI9mRHJ5QDqWt65uWFYv+gpjNZqMXU3bh35REHOjsSrKN385a3xll7watUkbYTHmBZRkGmOOG3cm+IQaq6aUO9q6NrYPNrvmRH65sczc+d64NRmW5c6Dpnvpqwv5te8aTAXHGvbz8DMmEtaUw2njRuGs9qGFeBtLPV3OnCfX8/CVo/nRjPavWxv3v0lQVdQwJjcvGVbd5yg/B4s3ePc1hn7UnXfKxKcBt/FYxZVsvX+usZb/iU3k+8d02vU4KbuExc9vZtHYcJ77/oSz2zO7HVbeYwz3qePhbwyTqCo2nu4YwRoTWy9/ApSi4tg2Tuz+itCRM7smdzjD+fTkrtVazzvXtsZ6ZJJ7ZtLQZFbrle0bBO5EWmv2b1vDyDU/xGyvpRZjNYE9Osox1vTvjtUbLDwc+E+GTZjDZWPDjbesuGrh8+aOW1+uNTS7SH93ihWMx6RvXXPuVRHOo35orbFr2n6xaG0yTXN1thNj7TStnncXTqzasV1191jTtjlWRege7VmrsbZ0ztV9pgPtg9aalNwyVh3I5suD2aTklrW4r4ebiUVjw1g6PZIJgwObxnvmsdO2wbKrOjXWTtFq29vN2odGse6oHcZNL23noZhSfnL8l50e68sbj/P3VUls+t2cFt+K2ppmV1doY1u29qKXuX2tic/vmcnYAf7tPnZram12rnp+C3ml1az51SwCW5vzcqG0uw7tTnKVUp6AF7AOiKPhCYEf8KXWelRLB+uRSS60b9a7q6XvRKcaqwnkB46nsKKWwvIaVMZOAvN2Eh47n5DRs1wdZeu6Y7m25gKrHxKrE0iszuGiWI/mlbIjtQBvdzcCvd0J9LIQ6OVOoLc73u7m9g2N647l2pILoG785bNDvL7lBCuvthBTe6BTY73xf9soqazlq3s7do1scQmxNpRrfuB4pvz9G+6eO4JfL+jc4UDPfJPCM98c4X9LJrFwTFjrO18AdaCxjiS5vwTuBfoDmTQkuSXAy1rr51s6WI9Ncs/T85uNInPGcIXO1iWPyzqRxOtcEq9zSbzOJfE6lyvirayxcdmzG7HaNavvndX8hLsWtBZvQXkNkx9Zw11zhvObSzu2Jm9H1slt7Ib/bqW82saqX15yznjb6lBWMVc9v4UrYsJ55uYJHf6ec3FV3W0pyW1xBLjW+lmt9RDgPq31UK31EMfP+NYSXNGyZQeWsezAMleH0Sb5+fn1lfVCIPE6l8TrXBKvc0m8zuWKePu4m3nyhvFkFlXy+FfJ7fpsa/GuS87DrmHB6NDOCLNDFowOJTG7hIxCY2nF8y1fq83OfR/sJ9DbnT8vHtNZYTaru9Xdc05z1Fo/p5SarpT6gVLq1rqfrghOCCGEEKI5kyODWHJxBG/tOMnRvNJzf6AN1iTmEurnwdj+nTsetj3mjzIS7LVJeZ3yfR/sziApu4S/LB7T+iuDe6BzJrlKqWXAk8BMYIrj56wuYSGEEEKIrnTv/Ci8LGYe/bJ9vbnNqaq1sfHIKeaPCm36WvMuNjTYh2HB3qxJzD33zudQXm3lqa9TmBwRyGVjzzEOtwdqyyCWycBo3Za1xoQQQgghukiQtzs/nzOcx75KZtuxfKYN6/hY0G3H8qmosTHfhUMV6swfHcqrm1IpqWr+tfFt9dLG45wuq+alWyed/zsELkBtWULsA+AXWuvstn6pTDwTQgghRFeoqrUx98n19PXxYMVdMzrcC/vgJwdYsTeTPX9a0OrbJs/lfCeeAexOK+C6/2zj39+fwOLx/Tv0HbklVcQ9sZ65I0N44ZaJHY7lQtDuiWeN9AMSlVKrlVIr6346P0QhhBBCiPbxtJj57aJoDmQWs3Jf1rk/0Ay7XbM2KZdZUcHnleB2lthBgfT1dueb8xiy8K81KVjtdn63qGOrRPQEbRmu8GdnByGEEEII0VFXjR/Aq5tTeWL1YRaNDcPT0r5EdW96Ibkl1fWTvlzNbFLMHRnCV4dyqKix4uXe9iXSAA7nlPL+rnSWTh9CRF9vJ0XZ/bVldYUNjX8AK3Cj80PreS76z0Vc9J+LXB1Gm6SkpNS/P/1CIPE6l8TrXBKvc0m8ztUd4jWZFA9eNorMokrit55odd8z46212Xl45SH6ert3i/G4dW6aMojSKiu/f3V1u8v3n18m4ePhxj1zhzspuuZ1h7rQWFuGK6CUilVKPa6UOgE8AiQ5NSohhBBCiHaYPryfMf503VEKymva/Ln/rD/GwcwS/n7NOPz7WJwYYftMjgxi6fRIPt6bSUJ6YZs/t/nIadYfPsXdc4e3/OreXqLFJFcpFaWU+pNSKgl4HkjHmKg2R14GIYQQQoju5oHLRlJebeXfa4+0af9DWcX8e+0Rrortz6JuuMTW7xZF0z/Ak8e/Sqa82nrO/W12zd9XJTEwsA+3Tot0foDdXGs9ucnAPOBKrfVMrfVzgK1rwhJCCCGEaJ8Rob7cNGUwb21PI/V0eav71lgbvQnsSue+CayjvNzd+P3CkeSUVLdpLeBP9maSlF3CbxdGt3tcck/U2kjm64CbgXVKqa+Ad4Het8haJ1oybomrQ2izC+Wd6XUkXueSeJ1L4nUuide5ulu8v1owghUJmfxpxUH++8NJeHs0TXXq4n1+3VGSskt4+dbJ3fqx/pzYYSzJtbJsexqXjQ1j+vB+ze53Mr+CJ1cfZvxAf66M6diyY+eru9WFtqyT6w1cDXwfmAu8AXyitf66pc/IOrlCCCGEcJVl207wp5WHGBDQh8eui2HGGYnhwcxirn5hC4vH9+fpm2I79didsU7umSprbFz+703UWO2s/tUsfBol7na75s1tJ3jsq8O4mRRv3j6VCYMDO+3YF4IOr5OrtS7XWr+ttb4CGAgkAPc7IUYhhBBCiPO2ZFokH94xDXeziVte2cGDnxyg1PH2sGqrjfs+2EeQtzsPd9NhCmfq427myRtiyCqu5B+rGub+nzhdzs0vb+fPnyUydUgQq381q9cluK1p18JrWusC4H+OH9FOz2825uvdPfNuF0dybvn5+UD3e/TQEonXuSRe55J4nUvida7uGu+kiCBW/fISnl6TwiubjrM+OY9Hr4th3b5jHErN5I075+Lv1X1WU2hJXflOiujLTy4Zyksbj3Pp6FCOnyrn8dXJWMwmnrg+husnDXT5q3u7W11o3+rC4rwsO7AMkCTXGSRe55J4nUvidS6J17m6c7yeFjMPXj6KRWPD+O0H+7j1tZ1YCzNZODqMuSO7z5q4rWlcvr9eEMXapFx+HP8ddg1zR4bwj2vGEebv6eIoDd2tLrRpnVwhhBBCiAvVxMGBfPGLS7gzbhjjBvjz8znDXB1Sh3hazPzrplhGhfvx9I3jefW2yd0mwe2OpCdXCCGEED2ep8XM7xeN5JqhF3b/XszAAL74xSWuDuOCcGH/TwshhBBCCNGMcy4h1qEvVeoUkNbpX9w2/YDTLjr2hUjKq/2kzNpPyqz9pMzaT8qs/aTM2k/KrP2cXWYRWuvgMzc6Jcl1JaXUrubWShPNk/JqPymz9pMyaz8ps/aTMms/KbP2kzJrP1eVmQxXEEIIIYQQPY4kuUIIIYQQosfpiUnuS64O4AIj5dV+UmbtJ2XWflJm7Sdl1n5SZu0nZdZ+LimzHjcmVwghhBBCiJ7YkyuEEEIIIXo5SXKFEEIIIUSPI0muEEIIIYTocSTJFUIIIYQQPY4kuUIIIYQQoseRJFcIIYQQQvQ4kuQKIYQQQogex80ZX9qvXz8dGRnpjK/udBUVhwHw8op2+rEO5xvHiu7r/GMJ0ZV1WwghhEGu9V1v9+7dp7XWwWdud0qSGxkZya5du5zx1Z1u7944ACZMWO/0Y8XFG8dav9T5xxKiK+u2EEIIg1zru55SKq257TJcQQghhBBC9DiS5AohhBBCiB7HKcMVLiRd+ShXHl0IIYQQQnQN6ckVQgghhBA9jiS5QgghhBCix+n1Se7evXH1s9CdLS4+rn7WpRBCCCGEcJ5en+QKIYQQQoieR5JcIYQQQgjR40iSK4QQQgghepxev4RYWNjSLjvW0tiuO5YQQgghRG/W65Pc8PClXXYsSXKFEEIIIbqGDFcQQgghhBA9Tq9PcrOz48nOju+SY8UnxBOf0DXHEkIIIYTozXp9kpuTE09OTnyXHEuSXCGEEEKIrtHrk1whhBBCCNHzSJIrhBBCCCF6HElyhRBCCCFEj9PrlxCbMGF9lx1r/dKuO5YQQgghRG8mPblCCCGEEKLHkSRXCCGEEEL0OL0+yd27N469e+O65Fhx8XHExXfNsYQQQggherNen+QKIYQQQoieR5JcIYQQQgjR40iS2w4ZGRm89957rg5DCCGEEEKcQ69fQiwsbGmb9127di2JiYncdNNNHTrW0ti2H0sIIYQQQnRcr09yw8OXtmm/zZs38+tf/5qAgABWr17NJ598wpAhQ9p1LElyhRBCCCG6hgxXaKOZM2cyZcoUVqxYQUJCQrsTXCGEEK375JNPUEqRnJxcv02GiQkhOqrXJ7nZ2fFkZ8e3ad/Dhw8THR1d/+e//vWvpKamtvlY8QnxxCe07VhCCNHbLF++nMmTJ/Puu+/Wb1u7di179uxxYVRCiAtVr09yc3LiycmJP+d++fn5+Pv7Y7FYqKys5M477+Tdd9/lnnvuoaSkpE3HkiRXCCGaV1ZWxoYNG3j11VdZvnw50DBM7MMPPyQ2NrZdnQpCCNHrx+S2VWpqKv379wfgxRdfZMmSJVRVVTF+/Hj279/PzJkzXRyhEEJcuD799FPmz59PTEwM3t7e7Nmzp36Y2JNPPsnYsWNdHaIQ4gLT63ty22rkyJGcPn2asWPH8sUXX9CvXz8GDRrEgQMHGDNmjKvDE0KIC9ry5cu58cYbAbjxxhvre3PPHCYmhBBtJUluG/n4+LBz504OHjzInXfeye23386WLVuYM2cOgYGBrg5PCCEuWPn5+ezcuZNFixYBcNNNN/Hee+81GSYmhBDt1euHK0yYsL7dn7nhhhvYtWsXv/nNbwgJCWnz59Yvbf+xhBCip/vwww+5/PLL8fDwAGDIkCGEhYWRmJhYP0xMCCHaS3pym1FeXn7OCQ6PPfZYqwnuoUOH0Fp3dmhCnBe73U5iYqKrwxCiieXLl/PZZ58RGRlZ/5OUlMRrr71WP0xs69atrg5TiLOkpaVRWlrq6jBECyTJbaS8vJynnnqK4cOH89prr3X4e2pra7nlllu46KKLWLVqlSS7wuXsdjsffPABMTEx3HPPPVInRbeyfv16CgoKOHHiRP1PaWkpr7/+ev0wsenTp7s6TCHO8vbbbzNs2DAeffRRSXa7IeWMi93kyZP1rl27Ov17nWHv3jhqa+289tpo3n//fcaMGcMPfvCD837Zg91uZ8uWLbzzzju4u7vz29/+lrfc3gJk2ILoGnv3xgHw7bdX8txzz+Hp6cktt9zC5MmTUUq5NjghhOghTp48yfLly9m7dy/XX389h6ccxuxhlmt9F1JK7dZaTz5ze68fkwuQmVnFm2++idlspqamhhUrVnTK99rtdry8vEhOTuaZZ56h3339OuV7hWiPZ555hpycHEaNGsXmzZvZsmWLq0MSQogepbKyErvdzttvv83oQaPxjfB1dUgCSXIBiIz0ori4mDfffJNHHnkEPz8/HnvsMSZOnNjh73z99df561//yogRI3jppZeYMWMGcfFxnRe0EG108uRJvvnmGx5++GFOnjzJI488wnXXXefqsIQQ4oK3f/9+7r//frKysnj88cf50Y9+xMLlC10dlnCQMbkOFouF22+/nZSUFG6++WbWr1/f4e+qra1l69atvPXWW3z99dfMmDGj8wIVop2UUixYsIAtW7bw73//m3Xr1smYXCGE6AQbN25k8eLFHDlyhDvuuKN+hRDRPfT6ntywsKVN/lyX7J4Pi8XCyy+/fNb2pbFLz95ZiC5Sl+wuWLDA1aEIIUSPcPfdd7s6BNGKXp/khocv7bJjSZIrhBBCCNE1ZLiCEEIIIYTocXp9kpudHU92dnyXHCs+IZ74hK45lhBCCCFEb9brk9ycnHhycuK75FiS5AohhBBCdI1en+QKIYQQQoieR5JcIYQQQgjR40iSK4QQQgghepxev4TYhAnru+xY8h5rIYQQQoiuIT25QgghhBCix5EkVwghhBBC9Di9PsnduzeOvXvjuuRYcfFxxMV3zbGEEEIIIXqzXp/kCiGEEEKInkeSXCGEEEII0eNIkiuEEEIIIXqcXr+EWFjY0i471tLYrjuWEEIIIURv1uuT3PDwpV12LElyhRBCCCG6hgxXEEIIIYQQPU6vT3Kzs+PJzo7vkmPFJ8QTn9A1xxJCCCGE6M16fZKbkxNPTk58lxxLklwhhBBCiK7R65NcIYQQQgjR80iSK4QQQgghehxJcoUQQgghRI+jtNad/6VKnQLSOv2L26YfcNpFx74QSXm1n5RZ+0mZtZ+UWftJmbWflFn7SZm1n7PLLEJrHXzmRqckua6klNqltZ7s6jguFFJe7Sdl1n5SZu0nZdZ+UmbtJ2XWflJm7eeqMpPhCkIIIYQQoseRJFcIIYQQQvQ4PTHJfcnVAVxgpLzaT8qs/aTM2k/KrP2kzNpPyqz9pMzazyVl1uPG5AohhBBCCNETe3KFEEIIIUQv12OSXKXUIqXUYaXUUaXU/a6OpztSSg1SSq1TSiUppQ4ppX7p2P5npVSmUirB8XO5q2PtTpRSJ5RSBxxls8uxLUgptUYpdcTxa6Cr4+wulFLRjepSglKqRCl1r9SzppRSryml8pRSBxtta7ZeKcO/He3bfqXURNdF7hotlNcTSqlkR5l8opQKcGyPVEpVNqpr/3Vd5K7TQpm1eB4qpR5w1LHDSqmFronatVoos/caldcJpVSCY7vUM1rNLVzenvWI4QpKKTOQAiwAMoDvgO9rrRNdGlg3o5QKB8K11nuUUr7AbuBq4EagTGv9pEsD7KaUUieAyVrr0422PQ4UaK0fddxUBWqtf++qGLsrx7mZCVwE/AipZ/WUUrOAMuBNrfVYx7Zm65UjEbkHuByjLJ/VWl/kqthdoYXyuhT4VmttVUo9BuAor0jg87r9eqsWyuzPNHMeKqVGA8uBqUB/4BsgSmtt69KgXay5Mjvj758CirXWf5V6Zmglt1iKi9uzntKTOxU4qrU+rrWuAd4FrnJxTN2O1jpba73H8ftSIAkY4NqoLlhXAW84fv8GxgktzjYPOKa1dtXLYbotrfVGoOCMzS3Vq6swLrpaa70dCHBcWHqN5spLa/211trq+ON2YGCXB9aNtVDHWnIV8K7WulprnQocxbi29iqtlZlSSmF0Ci3v0qC6uVZyC5e3Zz0lyR0ApDf6cwaSvLXKcQc6Adjh2HS347HBa/Lo/Swa+FoptVsp9VPHtlCtdTYYJzgQ4rLourebaXpBkHrWupbqlbRx5/Zj4MtGfx6ilNqrlNqglLrEVUF1U82dh1LHzu0SIFdrfaTRNqlnjZyRW7i8PespSa5qZtuFPw7DSZRSPsBHwL1a6xLgP8AwIBbIBp5yYXjd0Qyt9UTgMuAux+MscQ5KKXdgMfCBY5PUs46TNq4VSqmHACvwtmNTNjBYaz0B+DXwjlLKz1XxdTMtnYdSx87t+zS9aZd61kgzuUWLuzazzSl1rackuRnAoEZ/HghkuSiWbk0pZcGohG9rrT8G0Frnaq1tWms78DK98BFVa7TWWY5f84BPMMont+7xiuPXPNdF2G1dBuzRWueC1LM2aqleSRvXAqXUbcAVwC3aMcnE8cg93/H73cAxIMp1UXYfrZyHUsdaoZRyA64F3qvbJvWsQXO5Bd2gPespSe53wAil1BBH79HNwEoXx9TtOMYTvQokaa2fbrS98ViYa4CDZ362t1JKeTsG0qOU8gYuxSiflcBtjt1uA1a4JsJurUmvh9SzNmmpXq0EbnXMSr4YY+JLtisC7E6UUouA3wOLtdYVjbYHOyY9opQaCowAjrsmyu6llfNwJXCzUspDKTUEo8x2dnV83dh8IFlrnVG3QeqZoaXcgm7Qnrk540u7mmNm7d3AasAMvKa1PuTisLqjGcAS4EDdEijAg8D3lVKxGI8LTgA/c0143VIo8IlxDuMGvKO1/kop9R3wvlLqduAkcIMLY+x2lFJeGKudNK5Lj0s9a6CUWg7EAf2UUhnAw8CjNF+vVmHMRD4KVGCsVNGrtFBeDwAewBrHObpda30HMAv4q1LKCtiAO7TWbZ2A1WO0UGZxzZ2HWutDSqn3gUSMoR939baVFaD5MtNav8rZ8wtA6lmdlnILl7dnPWIJMSGEEEIIIRAT3bYAAAJlSURBVBrrKcMVhBBCCCGEqCdJrhBCCCGE6HEkyRVCCCGEED2OJLlCCCGEEKLHkSRXCCGEEEL0OJLkCiGEEEKIHkeSXCGEaCOlVF+lVILjJ0cpldnoz1udcLylSqlTSqlXOvj5Jxxx3tfZsQkhRHfXI14GIYQQXcHxCs9YAKXUn4EyrfWTTj7se1rruzvyQa31b5VS5Z0dkBBCXAikJ1cIITqBUqrM8WucUmqDUup9pVSKUupRpdQtSqmdSqkDSqlhjv2ClVIfKaW+c/zMaMMxliqlPlZKfaWUOqKUetyx3ayUildKHXQc41fO/dcKIUT3Jz25QgjR+cYDo4ACjHfZv6K1nqqU+iVwD3Av8CzwL631ZqXUYIzXko9qw3fHAhOAauCwUuo5IAQYoLUeC6CUCujsf5AQQlxoJMkVQojO953WOhtAKXUM+Nqx/QAwx/H7+cBopVTdZ/yUUr5a69JzfPdarXWx47sTgQjgEDDUkfB+0eh4QgjRa0mSK4QQna+60e/tjf5sp6HdNQHTtNaV5/HdNsBNa12olBoPLATuAm4EftzuqIUQogeRMblCCOEaXwP1E8qUUrEd/SKlVD/ApLX+CPgjMPH8wxNCiAub9OQKIYRr/AJ4QSm1H6Mt3gjc0cHvGgC8rpSq67h4oBPiE0KIC5rSWrs6BiGEEM1QSi0FJnd0CTHHd/yZrlnqTAghuhUZriCEEN1XJXDZ+bwMAvghIGvlCiF6HenJFUIIIYQQPY705AohhBBCiB5HklwhhBBCCNHjSJIrhBBCCCF6HElyhRBCCCFEjyNJrhBCCCGE6HH+Hxe4s6D5BFxzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Make a figure showing two signals with a beacon per signal\n", "colors = ['y','g']\n", "multiplier_name = ['m','n']\n", "\n", "\n", "fig, axes = plt.subplots(3,1, sharex=True, figsize=(12,4))\n", "axes[-1].set_xlabel(\"Time [ns]\")\n", "axes[-1].set_yticks([],[])\n", "for i in range(0, 2):\n", " axes[i].set_yticks([],[])\n", " axes[i].set_ylabel(\"Antenna {:d}\".format(i+1))\n", " axes[i].plot(time/ns, impulses[i])\n", " axes[i].plot(time/ns, beacons[i], marker='.')\n", " if not True:\n", " axes[i].plot(time/ns, full_signals[i])\n", "\n", "\n", "# indicate timing of pulses\n", "for i, impulse_offset in enumerate(impulses_offsets):\n", " kwargs = dict(color=colors[i])\n", " [ax.axvline(impulse_offset/ns, **kwargs) for ax in (axes[i], axes[-1])]\n", "\n", "\n", "# indicate timing of the beacons\n", "# and annotate ticks and impulse widths\n", "tmp_beacon_phases = beacon_init_phase + np.arange(0,2)*beacon_phase_offset\n", "if True: # mod phases\n", " tmp_beacon_phases %= 2*np.pi\n", "tmp_beacon_offsets = phase2time(tmp_beacon_phases, f_beacon)\n", "\n", "\n", "A = np.empty(2)\n", "B = np.empty(2)\n", "for i in range(0,2):\n", " kwargs = dict(color=colors[i], ls=(0, (3,2)))\n", " tick_kwargs = dict(color='k', alpha=0.2)\n", "\n", " # indicate every period of the beacon\n", " beacon_ticks = tmp_beacon_offsets[i] + [(n)*1/f_beacon for n in range(1+int((time[-1] - time[0]) * f_beacon))]\n", "\n", " [axes[i].axvline(tick/ns, **{**kwargs, **tick_kwargs}) for tick in beacon_ticks]\n", "\n", " # reference period in beacon\n", " [ax.axvline(tmp_beacon_offsets[i]/ns, **kwargs) for ax in (axes[i], axes[-1])]\n", "\n", " # annotate width between impulse and closest beacon tick\n", " # and closest beacon tick and reference tick\n", " closest_beacon_tick_id = np.argmin(np.abs(beacon_ticks-impulses_offsets[i]))\n", " if closest_beacon_tick_id != 0 and beacon_ticks[closest_beacon_tick_id] > impulses_offsets[i]:\n", " closest_beacon_tick_id -= 1\n", " closest_beacon_tick = beacon_ticks[closest_beacon_tick_id]\n", "\n", " annotate_width(axes[i], f\"$A_{i+1}$\", closest_beacon_tick/ns, impulses_offsets[i]/ns, 0.7)\n", " annotate_width(axes[i], f\"$B_{i+1}={multiplier_name[i]}T$\", closest_beacon_tick/ns, tmp_beacon_offsets[i]/ns, 0.4)\n", "\n", " A[i] = closest_beacon_tick - impulses_offsets[i]\n", " B[i] = closest_beacon_tick - tmp_beacon_offsets[i]\n", "\n", "# annotate width between beacon reference periods\n", "annotate_width(axes[-1], \"$t_\\phi$\", tmp_beacon_offsets[0]/ns, tmp_beacon_offsets[-1]/ns, 0.4)\n", "\n", "# annotate width between pulses\n", "annotate_width(axes[-1], \"$\\Delta t$\", impulses_offsets[0]/ns, impulses_offsets[-1]/ns, 0.4)\n", "\n", "\n", "fig.show()\n", "if False:\n", " fname = 'figures/08_beacon_sync_timing_outline'\n", "\n", " # Dump figure\n", " fig.savefig(fname +'.pdf')\n", " \n", " # Dump information into accompanying file\n", " with open(fname + '.dat', 'w+') as fp:\n", " fp.write(\"f_beacon = {}MHz\\n\".format(f_beacon))\n", " fp.write(\"samplerate = {}\\n\".format(samplerate))\n", " fp.write(\"band = {}MHz\\n\".format(band))\n", " fp.write(\"timelength = {}us\\n\".format(timelength))\n", " \n", " fp.write(\"-\"*8 + \"\\n\")\n", " fp.write(\"\\Delta t = {}ns\\n\".format( (impulses_offsets[1][0] - impulses_offsets[0][0])/ns ))\n", " fp.write(\"t_phi = {}ns\\n\".format( (tmp_beacon_offsets[1]-tmp_beacon_offsets[0])/ns ))\n", " fp.write(\"\\Delta A = {}ns\\n\".format( (A[1] - A[0])/ns ))\n", " fp.write(\"kT = {}ns = {}T\\n\".format( (B[1]-B[0])/ns, (B[1]-B[0])*f_beacon ))\n", " \n", " fp.write(\"-\"*8 + \"\\n\")\n", " fp.write(\"A_1 = {}ns\\n\".format( (A[0])/ns ))\n", " fp.write(\"A_2 = {}ns\\n\".format( (A[1])/ns ))\n", " fp.write(\"B_1 = {}ns = {}T\\n\".format( (B[0])/ns, (B[0]*f_beacon) ))\n", " fp.write(\"B_2 = {}ns = {}T\\n\".format( (B[1])/ns, (B[1]*f_beacon) ))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\\Delta t = 113.99999999999999ns\n", "\\Delta A = -5.428571428571415ns\n", "t_phi = 8.571428571428573ns\n", "B_1 = 57.14285714285714ns = 4.0T\n", "B_2 = 157.14285714285714ns = 11.0T\n", "kT = 100.0ns = 7.0T\n" ] } ], "source": [ "t_phi = (tmp_beacon_offsets[1]-tmp_beacon_offsets[0])\n", "Delta_A = (A[1] - A[0])\n", "\n", "print(\"\\Delta t = {}ns\".format( (impulses_offsets[1][0] - impulses_offsets[0][0])/ns ))\n", "print(\"\\Delta A = {}ns\".format( Delta_A/ns ))\n", "print(\"t_phi = {}ns\".format( t_phi/ns ))\n", "print(\"B_1 = {}ns = {}T\".format( (B[0])/ns, (B[0]*f_beacon) ))\n", "print(\"B_2 = {}ns = {}T\".format( (B[1])/ns, (B[1]*f_beacon) ))\n", "print(\"kT = {}ns = {}T\".format( (B[1]-B[0])/ns, (B[1]-B[0])*f_beacon ))\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$\n", "\\Delta t = (A_2 + B_2) - (A_1 + B_1) + t_\\phi\\\\\n", "\\quad = (A_2 - A_1) + (B_2 - B_1) + t_\\phi\\\\\n", "\\quad = (A_2 - A_1) + (nT - mT) + t_\\phi\\\\\n", "\\quad = \\Delta A + t_\\phi + (kT) \n", "$\n", "\n", ", where $\\Delta A < T$ and $k \\in \\mathbb{Z}$ and $t_\\phi$ is minimisable by synchronising the beacons.\n", "\n", "Then $\\Delta t$ can be determined by iteratively summing the signals, changing $k$, and finding the $k$ belonging to the maximum of the sums." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Best k: 7\n", "Maximum: 2.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAErCAYAAAAL/58RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde5yc913Y+893nrlfdmYvuq5WWlnyJZFsy8FpTE8Ak8YoBmLRY161Y14NpKekSSkkB2jglLRQKAVSwEBTyElTDKGhAerUbnxI4aRGadBJ4tixLEu2Zcm6WLu67Eq7Mzv3med5fuePZ2a9Ws3uzszOLevv+/WalzQzz8zzm8vOfOf7fH/fnxhjUEoppZRSSnWOr98DUEoppZRSaqPRIFsppZRSSqkO0yBbKaWUUkqpDtMgWymllFJKqQ7TIFsppZRSSqkO0yBbKaWUUkqpDtMgWymllFJKqQ7TIFsppZRSSqkO0yBbKdVxInJORN7d73F8uxKRW0XkeRHJishPNbj+hIjc24ehDdxr28xz0eqYReSCiNy17sGtfP83vL5rveZKqW8/GmQrpVYkIo+IyLMikhORSyLyJRF5Z7/H1YpBCwqb9DHgsDEmYYz5veVXGmP2GWMO935Yg2f5c7He11tEhoFtwMvLLv/R2t9BTkRKIuIsOZ8WkVALu2n0+q76mjc59m/H97pSG5YG2UqphkTkp4HfAf4tsAXYCfw+cKiHY/D3al8DZhdwot+DeJO6HThtjCktvdAY88fGmLgxJo73N/FU/bwxJmWMKbewj0avr77mSm0wGmQrpW4gIkngl4GfMMZ8wRiTN8ZUjTFfNMb889o2bxGRw7Us3gkReWDZ3RwQkWMikhGRPxOR8JL73y4ij4vIrIicXXp4vJaN+zkROQbkRcS/2vZLbvOzy/cnIn+C9+Pgi7WM48dWeLw/JyLTtUP1J0Xk79UuNyKyd8l2fyQi/2bZfv95bb95EflPIrKllvHPisiXa5nRRvts+PyJyNPA9wKfrI35lga3vS5j2co4atv+XyLykojMi8hjy16bVR9zk8/bWq9Xw9st2+YDIvLFJedPi8ifLzl/QUQOLH0u1ni9V3w/LnMHcLx2f1ER+VMR+YKIxJfeF/DCCrevj6/p13eFy1p6bld67M0810qpLjHG6ElPetLTdSfgPYAN+Fe4PgCcBv4FEATeBWSBW2vXnwOeAbYDI3iH3j9Uu84HPAf8q9ptbwLOAAeX3PYoMAFE1tq+if2dA969ymO9FbgAbK+dnwT21P5vgL1Ltv0j4N8s2+/X8TL948AM8C3gLiAEPA38YhvP32HgH68y5useUyvjqG17vPb8jgBHlj2mZh7zu1d63pp4fVd8vpc9xpuAdO3+tgHngekl183Xrmv0XLy7wfPV8P3RYL+fBn4R2F17Dn8RkGXbnAH+91Ven5Zf36WXreO5Xf5cNPVc60lPeurOSTPZSqlGRoGrxhh7hevvAeLArxtjKsaYp4GngPct2eb3jDEXjTFzwBfxsn8Abwc2GWN+uXbbM8B/BB5edtsLxphik9uvtr+1OHiB6FtFJGCMOWeMea3J2wL8e2PMFWPMNPBV4BvGmOeNVz7w3/AC3eWaef5a1co4Pll7fueAX21zvys9b2u9Xk0937XbZfFex+8B/gqYFpHbaue/aoxxWxhvs++P2/GC+qeBf22M+dfGGFO/UkSG8ILVo6vsa72vb7vPbbP3o5TqAQ2ylVKNXAPGZOWa6O3AhWVBznm8LGrd5SX/L+AFHeDVnm6vHUZPi0gaL+O3Zcn2F5b8v5ntV9vfqowxp4GPAr8EzIjI50VkezO3rbmy5P/FBucbjaOZ569VrYxj6fN7vjaelqzyvK36erX4fH8FuBf47tr/D+MF2N9TO9+KNd8fIiLAfuDvA58yxjzZ4H7uxAv+z66yr3W9vu0+ty3cj1KqBzTIVko18jWgBPzQCtdfBCZEZOlnyE5guon7vgCcNd5ksfopYYz5/iXbmBa3X41ZcwNj/tQY8068IMYAv1G7qgBEl2y6tcl9rmU9z18nTCzb78Ul55t+zCs8b2u+Xqs838vVg+zvqv3/K6wdZK/5eq9id+3fdwM/IyJ3N9jmAHBsaXa7gXW/vm0+tzeMqYXnWinVYRpkK6VuYIzJ4NV9/gcR+aHaBLCAiNwvIp8AvgHkgY/VLr8XeC/w+Sbu/hlgoTYhKyIilojsF5G3d2j75a7g1a42JF5/4neJ14KthJf1dWpXHwUeqe3zPXjBXSes5/nrhJ8QkR0iMoKXCf2zJdc19ZhXed5Wfb3WeL6X+wrehMCIMWYKrwzmPXjlTM+vcJtVX+813IEXQL8IfBD4byKybdk2B1i9VATW+fq2+9yy7LG3+FwrpTpMg2ylVEPGmN8Gfhr4ODCLl0X7Z8ATxpgK8ABwP3AVr7Xf+40xrzRxvw5ewHEA75D7VeAzQLIT2zfwa8DHa4fXf7bB9SHg12v3exnYjBd4Anyktu808CPAE03uc1Xref465E+Bv8abNHcGWNo9pNnH3PB5a+L1Wu35vo4x5lUghxdcY4xZqI33SG0/jaz1eq/mduBYbV9P4E2CfGJZJ5I7WSPI7sDr2+5zu/yxr/hci9d5puHzrpTqDFn9iJdSSqmNRETO4XWx+HK/x6KUUhuZZrKVUkoppZTqMA2ylVJKKaWU6jAtF1FKKaWUUqrDNJOtlFJKKaVUh2mQrZRSSimlVIdpkK2UUkoppVSHaZCtlFJKKaVUh2mQrZRSG1Rtxb/nRSQrIj+1/Hy/x6eUUhuZBtlKKdUBInJORIoikhOReRH5f0RkogP3+e513MXHgMPGmIQx5vcanO/ZuGrPy9KTIyL/foVtf6y2FPnyy390ye1Ltfuon0/Xlg9XSqmBoEG2Ukp1znuNMXFgG3AFaBhE9tAu4MQq53vGGBOvn4AtQBH4i6XbiMg/EZG//8ZZ+eCS8xhj/njJffxb4Kkl95syxpR79XiUUmotGmQrpVSHGWNKwH8F3lq/TES2i8jjIjIrImeXlmuIyM+JyHStjOOkiPw9EfkTYCfwxVqm9mON9iUibxGRw7VM7gkReaB2+dPA9wKfrN1++flbVtr3auNtdlxr+GFgBvjqssv/ENgDfBQviHaBJ1e4jwPAC23sWymlesLf7wEopdRGIyJR4CHg67XzPuCLeAHj+4AdwJdF5CRwDvhnwNuNMRdFZBKwjDH/UES+C/jHxpgvr7CfQO1+/xD4PuCdwJMicrcx5l0ichj4z8aYz9S2X37+1kb7Xm28K41LRH4fwBjzT5t4in4U+KxpvBqaWfKvs+T8cgeA/9zEvpRSqi80k62UUp3zhIikgQXgPuDf1S5/O7DJGPPLxpiKMeYM8B+Bh/ECyRDwVhEJGGPOGWNea3J/9wBx4Ndr9/s08BReYNyMlfa92ngbMsb802YCbBHZCXwP8McNrv5HwFngd4BfAILAoQb3MQRMAkfX2p9SSvWLZrKVUqpzfsgY82URsfCCw6+IyFvxaqG31wLwOgv4qjHmtIh8FPglYJ+I/BXw08aYi03sbztwwRjjLrnsPDDezGBX2vdq423mftfwfuBvjTFnG4zn/wZv4qN31jvfwJ1AFi8gV0qpgaSZbKWU6jBjjGOM+QJepvidwAXgbG1yXv2UMMZ8f237PzXGvBMvuDXAb9Tvao1dXQQmauUddTuB6RbG2mjfq463iXGt5v00zmIvHdMfGWMOr7LJAeDYCuUmSik1EDTIVkqpDhPPIWAYeBl4BlioTTKMiIglIvtF5O213tXvqrWfK+F13XBqd3UFuGmVXX0DyAMfE5FAre3de4HPNznOlfa94nibHNdK+/u7eFn2v1hr2zUcQEtFlFIDToNspZTqnC+KSA6vJvtXgR81xpwwxjh4we8BvBKHq8BngCReTfSv1y67DGwG/kXt/n4N+Hitc8jPLt+ZMaYCPADcX7v97wPvN8a80uR4G+57jfE2HJeIfEpEPrXG/n4U+IIxJtvk+FZyJxpkK6UGnOjRNqWUUkoppTpLM9lKKaWUUkp1mAbZSimllFJKdZgG2UoppZRSSnWYBtlKKaWUUkp1mAbZSimllFJKddiGW/FxbGzMTE5O9nsYSimllFJqg3vuueeuGmM2NbpuwwXZk5OTPPvss/0ehlJKKaWU2uBE5PxK12m5iFJKKaWUUh2mQbZSSimllFIdpkG2UkoppZRSHbbharKVUkoppVR3VKtVpqamKJVK/R5KT4XDYXbs2EEgEGj6Nn0LskVkAvgssBVwgU8bY3532TYC/C7w/UAB+DFjzLd6PVallFJKKQVTU1MkEgkmJyfxwrSNzxjDtWvXmJqaYvfu3U3frp/lIjbwM8aYtwD3AD8hIm9dts39wM210weBP+jtEJVSSimlVF2pVGJ0dPRNE2ADiAijo6MtZ+/7FmQbYy7Vs9LGmCzwMjC+bLNDwGeN5+tASkS29XioSimllFKq5s0UYNe185gHoiZbRCaBu4BvLLtqHLiw5PxU7bJLK93X5YUSv/E/XunwCJVSrTDG4Fw9hzU8jviD/R6OUkqpDvmezVUuZYp9HcOF8+d5/8MP8jdfa21dlGNHv8VH/+k/oVQs8q77DvIrv/GbLQXPmWK1pRiz791FRCQOPA581BizsPzqBjcxDe7jgyLyrIg8WygUujFMpVQLTDFD9bVvYF95rd9DUUoppQD4+Z/+CJ/4nU9y5FsvcvbMaf7my3/d1f31NZMtIgG8APtzxpgvNNhkCphYcn4HcHH5RsaYTwOfBrj77rvNz73nti6MVinVrG9961v892Nwc7zCQ/r3qJRSG8bLL7/MtmSkr2MoD4Xx+4RtyQhnzpzhwQcf5NOf/jRvf/vbV7zNpUuXKOZzvPe+ewH48X/0AQ7/v1/iR374h5rebzoSYHmM+fOrbN/P7iIC/CfgZWPMb6+w2X8H/pmIfB54B5AxxqxYKqKUGgzT09PX/auUUkp12smTJ3n44Yd57LHHiEQiHDhwoOF2hw8fZnp6mh07dixetmPHjq5/R/Uzk/2/Af8QeFFEjtYu+xfATgBjzKeAv8Rr33car4XfB/owTqVUi+ofXAsLCywsLDA0NNTnESmllOq0b56b41qu0tH7HI0HefvkyJrbzc7OcujQIR5//HH27dsHwNGjR1fc3pgbqo27PoGzb0G2MeZvaVxzvXQbA/xEb0aklOqESqXClStX2L17N2fPnuXixYsaZCullOqoZDLJxMQER44cYd++fZw8eZKHHnqo4baHDx9mx44dTE1NLV42NTXF9u3buzrGgeguopTaOC5fvowxhrvvvpvz588zPT3NbbdpXbZSSm00zWScuyUYDPLEE09w8OBB4vE4jzzyyKqZ7FQqRSKR4Otf/zrveMc7+OxnP8tP/uRPdnWMGmQrpTqqXiqyc+dOtmzZonXZSimluiIWi/HUU09x3333EYvFOHTo0Krb/8Ef/AE/9mM/RrFY5P777+f+++/v6vg0yFZKddTU1BTJZJJEIsH4+Dgvvvgiruvi8/W9Y6hSSqkNYHJykuPHjwNehvqb3/xmU7e7++67F2/XC/qtp5TqqOnpacbHvcVbx8fHKZfLXLt2rc+jUkoppXpLg2ylVMfk83nS6fR1QTZoKz+llFJvPhpkK6U6ph5M14PrsbExgsGgBtlKKaXedDTIVkp1zPT0NCLCtm3bAPD5fGzfvl2DbKWUUm86GmQrpTpmenqaTZs2EQqFFi8bHx/n8uXL2Lbdx5EppZRSvaVBtlKqI4wx1016rBsfH8d1XS5fvtynkSmllFK9p0G2Uqoj5ufnKRaLDYNs0MmPSimlOuPcuXPs37+/5dv9wi/8AhMTE8Tj8S6M6kYaZCulOmL5pMe6oaEh4vG4BtlKKaX66r3vfS/PPPNMz/anQbZSqiOmp6fx+/1s3rz5ustFhB07dmiQrZRSquPOnDnDXXfd1dSCNPfcc8/ixPxe0BUflVIdMT09zbZt27As64brxsfHeeWVVygWi0QikT6MTiml1EZz8uRJHn74YR577DEikQgHDhxouN3hw4dJpVI9Hp0G2UqpDnAch0uXLnH33Xc3vL5eQnLx4kX27NnTy6EppZTqlte/AcW5zt5nZAR2vmPNzWZnZzl06BCPP/44+/btA+Do0aOdHcs6aZCtlFq3mZkZbNu+oR67bvv27YCX7dYgWyml1Holk0kmJiY4cuQI+/bt4+TJkzz00EMNt9VMtlLq29ZKkx7rwuEwY2NjWpetlFIbSRMZ524JBoM88cQTHDx4kHg8ziOPPDJwmWyd+KiUWrfp6Wmi0SjDw8MrbjM+Ps7U1BTGmB6OTCml1EYVi8V46qmnePTRR3nyySfX3P5jH/sYO3bsoFAosGPHDn7pl36pq+PTTLZSat3qi9CIyIrbjI+P88ILL7CwsEAymezh6JRSSm0kk5OTHD9+HIBUKtVUZxGAT3ziE3ziE5/o5tCuo5lspdS6lMtlZmZmViwVqatfPzU11YthKaWUUn2lQbZSal0uXrwIrFyPXbdlyxYsy9K6bKWUUm8KGmQrpdalHjTXO4isxO/3s3XrVg2ylVJKvSn0NcgWkT8UkRkROb7C9feKSEZEjtZO/6rXY1RKrW56eprh4WFisdia246Pj3Px4kVc1+3ByJRSSqn+6Xcm+4+A96yxzVeNMQdqp1/uwZiUUi2oT3psxvj4ONVqldnZ2S6PSimllOqvvgbZxpj/BXR4qSClVK9ks1kWFhZaCrIBLRlRSim14fU7k92M7xSRF0TkSyKyr9+DUUq9YWZmBoCtW7c2tf3IyAiBQIArV650c1hKKaU2sHPnzrF///6WblMoFPiBH/gBbrvtNvbt28fP//zPd2l0bxj0IPtbwC5jzJ3AvweeaLSRiHxQRJ4VkWf1MLRSvZPL5QBIJBJNbe/z+YjH4+Tz+W4OSymllLrBz/7sz/LKK6/w/PPPc+TIEb70pS91dX8DHWQbYxaMMbna//8SCIjIWIPtPm2MudsYc/emTZt6Pk6l3qzqQXY8Hm/6NvF4fPF2Siml1HqcOXOGu+66a80FaaLRKN/7vd8LeEuyv+1tb+v6ug0DveKjiGwFrhhjjIj8HbwfBdf6PCylVE0+n8eyLEKhUNO3icViXLumf8ZKKaXW5+TJkzz88MM89thjRCIRDhw40HC7w4cPk0qlFs+n02m++MUv8pGPfKSr4+trkC0i/wW4FxgTkSngF4EAgDHmU8APAx8WERsoAg8bY0yfhquUWiafzxOLxVZdTn25WCzG66+/3sVRKaWU6oWjM0fJlDMdvc9kKMmBzY2D5aVmZ2c5dOgQjz/+OPv2eVP2jh49uubtbNvmfe97Hz/1Uz/FTTfdtO7xrqavQbYx5n1rXP9J4JM9Go5SqkW5XK6lUhHwykUKhQKO42BZVpdGppRSaiNLJpNMTExw5MgR9u3bx8mTJ3nooYcabrs0k/3BD36Qm2++mY9+9KNdH+NAl4sopQZbPp9vetJjXX3RmkKh0PJtlVJKDY5mMs7dEgwGeeKJJzh48CDxeJxHHnlkzUz2xz/+cTKZDJ/5zGd6MsaBnviolBps+Xy+rUx2/bZKKaVUu2KxGE899RSPPvooTz755KrbTk1N8au/+qu89NJLvO1tb+PAgQNdD7Y1k62Uaovruos12a2ob68dRpRSSrVjcnKS48ePA5BKpdbsLAKwY8cOej2tTzPZSqm2lEolXNdtO8jWTLZSSqmNTINspVRb2umRvXR7zWQrpZTayDTIVkq1pZ6JbjWTHQqFsCxLM9lKKaU2NA2ylVJtaTfIFhFisZgG2UoppTY0DbKVUm1pt1ykfhstF1FKKbWRaZCtlGpLPp9HRIhEIi3fVjPZSimlNjoNspVSbcnn80SjUXy+1j9GNMhWSinVrnPnzrF///6Wb/ee97yHO++8k3379vGhD30Ix3G6MLo3aJCtlGpLO0uq18XjcfL5PK7rdnhUSimlVGN//ud/zgsvvMDx48eZnZ3lL/7iL7q6Pw2ylVJtWWshmnTVXrHxfywWw3VdSqVSt4a3YWVtB6fHCyoopdSgOnPmDHfddVdTC9IMDQ0BYNs2lUoFEenq2HTFR6VUW/L5PKOjow2vW7Ad/uzyHPek4tyZiN5w/dKl1aPRG69XjeVth89fmuOuoSh3J1vr6qKUUhvNyZMnefjhh3nssceIRCIcOHCg4XaHDx8mlUoBcPDgQZ555hnuv/9+fviHf7ir49MgWynVMmMMuVxuxUz2uWIZY+B4tsgd8cgN2YKlS6tv2rSp6+PdKF7Kl3CM4WyxrEG2UqrvCs8/j5NOd/Q+rVSK6F13rbnd7Owshw4d4vHHH2ffvn0AHD16dM3b/dVf/RWlUokf+ZEf4emnn+a+++5b95hXokG2UqpllUoF27ZXDLLPFytYImRth9dLFXZFQtddr0urt84xhpdzRSwRrlVscrZD3G/1e1hKKdUXyWSSiYkJjhw5wr59+zh58iQPPfRQw22XZrIBwuEwDzzwAE8++aQG2UqpwbJaj+yy63KpXGF/PMrpQonjueINQbYurd66s8UyBcflO4fjfG0+x/lShX3x1tsnKqVUpzSTce6WYDDIE088wcGDB4nH4zzyyCOrZrJzuRzZbJZt27Zh2zZ/+Zd/yXd913d1dYwaZCulWrbaao8XShVcAzdFQwR9wrOZPJmqTTLwxsdNJOKVkGgmu3nHs0WG/BZ3xCOcyBU5VyxrkK2UelOLxWI89dRT3HfffcRiMQ4dOrTitvl8ngceeIByuYzjOLzrXe/iQx/6UFfHp0G2elMwxlDMLhAdSvZ7KBvCakH2+WKFsOUjUcpzWzTGtxbynMiV+LvDb2S9fT4f0WhUg+wmXavYXC5XuScVR0TYFQ7yUq5E1TUEfN2dHa+UUoNmcnKS48ePA5BKpZrqLLJly5amtuskbeGn3hTmpi/w0v96mmtTr/d7KGtyizbF41dxK91tkr8eK5WLuMbweqnCcD7LC5//CumXX2MyEuKVfBHbvb7tnC6t3rwTuSJ+n3BbLAzArkgIxximSpU+j0ypjS9dqDCzoO1GVes0yFZvCukrlwE4/+ILlPKDHdhVZws4uSr21WK/h7KiegZ6efu9K5UqhXKZ6gsvk05XOXtsiv3xCBXXcKpw/ZeUrvrYnLLr8mqhxJ5IiLDlfWRvDwUI+oTzpXKfR6fUxve3p6/yP1+ZwXZ08SzVGg2y1YZnXJeF2SskN29BfMLZo89hBnilQWfeC0bta4ObOcnn84TDYfz+6yvOzhbKzF+cIj5TxheJk7ucYQwYDvg5kbv+R4MG2c15NV/Cdg37E2/UX/tEmAgHOV+srLjgj1Jq/ebyFebyFaqOy+tzhX4PR32b6WuQLSJ/KCIzInJ8hetFRH5PRE6LyDEReVuvx6i+/eXm53Bsm7Gdk+y6/S7y83NcfPWVfg+rIbdo4xYdfBELN1/FLdn9HlJDKy2p/uLrF4im01ihTQQ2jWAcw5mXz7M/EeFqxeZKubq4bb1cZBCCRGMGtzTneK7IllCATcHAdZfvioQoOi6zlcF8jyi1EZyeyeETIRr0c3pmsI+CqsHT70z2HwHvWeX6+4Gba6cPAn/QgzGpDSYzcxkRH0NjmxjZPs7YxC4unT5J9trVfg/tBnYtix26yevnOajZ7EZLql+6eo0Lly+zxUSRmJ+tt5/ACqeZemWKm6MhAj7h+JJsdiwWW1zatp9ct8KlS18gmxu8H15TpQqZqsNbG3QR2RkOIuIt/KOU6jzHNZyZzbFzJMotW+JcXiiRK+uPWtW8vgbZxpj/Bcytsskh4LPG83UgJSLbejM6tVFkZq6QGB3F8nuZwIl9dxCOxTl79FnsPgd4yzlzJXyxAFYiiBUPYM8NZl12Pp+/LpPt2DZff/EYPr+fUWsTgcQpksMhottsSpcyuI7h1liYMwWv1zNcv7R6P1Wqc7imSnbhGI4zWM/3iVyRsOVjz7I+4wBhy8eWYIDzOvlRqa64MFeg4rjs3Rznpk3e55Vms1Ur+p3JXss4cGHJ+anaZUo1pVIsUMwukNy8dfEyy+9n9113Uy2VOf/i2kuw9opbcXByVfzDXkBljUZw8/ZAlowsX1L9woljnC9V2L55HH/2EvGRLIX5cyS3GXxVm1denmJfPIJjDK/kvUB26dLq/VSteL/zjXFYWHihr2NZKmc7nCuWeUssjH+FNn2TkdDi6o9Kqc46PZMjFvSzLRkmHvKzLRnhtZnBKHFbUf4azJ/v9yia4hoX223v++3cuXPs37+/7X0/8MAD67p9swY9yG70zXLDu1tEPigiz4rIs7Ozsz0YVvc42SzFF48P9h/xt5HMzBUAhjZvue7yWGqY8Vvfwvylaa6+fq4PI7uRk/YO+/tHwtf9O2glI9VqlXK5vBgkz12c5tKF81Q2byNW8iGBV4hGXI5/42lypecIWTD98gWGA37Ga/2djTEDs7R6pTqH34oRj99KvnCGSmW1g2u981KuiDE0LBWp2xUJAmg2uxPmzkIx3e9RNGW2MEu+qpOGuylXtrmYKbJns9ebHmDv5jj5is2lzGB9Ji8yBs5+xTvZg/+ZUKgWyFayuKa3jQi+8IUvNJxT1A1NBdkiMiwid4jI2+qnbg+sZgqYWHJ+B3Bx+UbGmE8bY+42xty9adOmHg2tO4rf+hall1/CvnjDw1RtyMxcIRiJEoknbrhuy56bSYxu4vUTL1Iu9H/WuD1Xwhey8EW9shZfyBrIkpF6UByPx6mWS5x/8XmyyVHio5sJzpwmHCtz+fWTnM2kOXv2GNHRCs5Mmtmst0JhznY4X6oMzNLq1co1AsFREon9WL4QmcxzfR0PgGMML+VL7IoESfitFbcbDvgZClicH9C67Ku5MuVvhyx7cd4LTC58o98jWVOhWuCr01/lm5d7u6jGm82ZWe9zac+mN47Y7RyJEvL7BrdkZP4clDLgOpC5sObm/WS7NhW3gsFQdapr32AVZ86c4a677mpqoZlcLsdv//Zv8/GPf3xd+2zWmkG2iPwKcAz4PeC3aqff7PK46v478P5al5F7gIwx5lKP9t1z1StXqF7xMq/l06f7PJpvf1yxtygAACAASURBVK7rsHB1huSyLHadiLDr9gO4js3C7JUej+56xnFxMmWsWva6bhBLRpau9rhwdRanWqW6cy+lYpmRyglSI+OcOvsSxVKC14uGiu9bBAtlTp2/xmQkSNAnvF6sLPbY7mcm23HK2E6eYGAEny9IYugOypVZisX+Llp0tWJTclxuja29bPqucJDpUpWqO1hHv+byFf7ny1c4NpXp91DWdqlWJpS95AXcA+zV+VdxjcvV4lXmSoNx1GU1bj6PO2BzX9ZijOH0TI6tQ2ES4Te6+lg+YfdYnNfnCpSqA/bj0RjvfRxOQjDuHZkZYCW7hA8flliUnfaTBCdPnuTBBx/kscceY2hoiAMHDjQ8pdPeUap/+S//JT/zMz9zwxoP3dLMsur/ANhjjOn4X4mI/BfgXmBMRKaAXwQCAMaYTwF/CXw/cBooAB/o9BgGhTGG4rFj+KIxgpOTlF46gZPNYiVuzMCq5uSuXcN1nOvqsZcLx+NYfj+Fhf4GAk66DAb8w9cH2f7RMJXzC9jXSgTHe3N4ay1Lg+xidgEjPq74/Pivvozf51ApLZBfyHPr1QkuDNucNc+x2/8OLr1yAfctWxkO+EnbDn6/n3A43Ncgu1q9BkAgOOI9puge8rlXyWSeJxweR2TlLHI3pWvZ35HA2vvfFQnxYrbIVKnC7uiNEyT7wRjDc+fnMQam54vcvcssHnIfOMV5LwM4ditcOw0zr8Cu7+z3qBoq2SXOZs4yHh9npjDDq/Ovcs+2e/o9rBUZ1yX79NP4YjES73pXv4fTtCsLZXJlmwMTqRuu27s5ziuXFzh3Lc9tW4f6MLoVpF/33su7v9v798oJqJYgEF77tutw+UyGUr61TLTjOhTsAiHL+7wqO2Wi/iKWz/u8C8cCbL0pueb9zM7OcujQIR5//HH27dsHwNGjK8+zOnr0KKdPn+bRRx/l3LlzLY25Xc2UixwHbnyndYAx5n3GmG3GmIAxZocx5j8ZYz5VC7CpdRX5CWPMHmPM7caYZ7sxjkFQnZrCmZ8nsn8fob17EJ9Ps9nrlJm5jM+yGBpbvYQokhiimF3o0agas+dLiN+HL359L2Rf0MJKBLCvDU7JyNIl1YvZBfKxIbKVAkPZV0lF9/LKyS8xNOtj6/bvZGtlCxco45ZO4b+a5vxcgaTfImPbi/fRz3KRStXLBAYDXpAt4iOZ+g5sJ0+ujy39MlUbn8DQKqUiddtDAQIDtvrjmat5ruXKjA9HKFUdZnODM7YbXHoBfAHYfheM3ARzr4E9mOM9NX8KxzjsH9vPTcmbmM5OD3Rttn35Mm6hiD17lcrUdL+H07TTMzkClo+dIzdmO0diQUZiwcErGbn0AoQSMLzbOxkX0oM5AbLqVhGEgC9AwBdAEKpu6yUjyWSSiYkJjhw5AnhZ7dUy2V/72td47rnnmJyc5J3vfCevvvoq9957b4cf3fWayWT/GvB8bcGYxU8eY8wDXRvVm4xxXUovvoiVTBHYtQsRIbBjgsq580T270cCgbXvRN3Aa903hs9aPVCJJJLMXZrq0ahuZFyDky5jDYeRBl0k/KMRyucWcIs2vkgzf7LdtTSTfWEhw9zQGFfnznJruUJk0zYyR15ntLqFzbfcSuxChjPlWU47z7E7dwunphfYvDvJq3mXqmv6vupjtTKH34rj8wUXLwuHthIJj5PNniAavQnLWrtko9PStkPCb+FrIvu7fPXHfmeMy7bDCxfSbEqEuOemUf7b89NcmCuyOdHdjFpb6lnsrbd7Gb/Nb4Frp+DqKdja/c4DrSg7ZV7LvMZEYoJEMMGe1B5OpU9xav4UBzYf6PfwGqqcO4eEgviCQUovHiOwfRviG+x+C2Xb4dy1PHs3x/Fbjce6d3OcZ87OMZevMBILNtymp9IXoHANJt8JPh/ERr2ykbmzsOnWru66mYzzUo7rkKlkCFthooFayWA1SsWpkAwl8Unz749gMMgTTzzBwYMHicfjPPLII6tmsj/84Q/z4Q9/GPC6k/zgD/4ghw8fbmn8rWrm0fwx8BvAr/NGTfZvdXNQbzaVM2dwcjkit+9f/IIM7d2DqVaovN7f2tDVFLMVzr14FbsyYLVpQCmfo5TPrVoqUhcZGsKpVqkU+zP50c1WMLa5oVSkzlrsMjIY2ex8Pk8gEMAnQqVY5LJlE8pdYkhu5rXTnyd6xSW09Ttwx29ny9BWJtxNTIfmcbOvsfD6DFatdjht230PsiuVawSDozdcnky+ra8t/TK2Q6qJLHbd5ACt/nhsKkPVcfmOXcMELB/bkmGm5vs/sbihehZ7s3eomegIxLfA7CtejesAOZ0+je3a3DZyGwDRQJQd8R2czZyl4gxezbNbLlOZnia4axfhO+7EWchSOTvYdcIA564WcI1h7+aVy/MmR2P4RAYnm33pBa8Oe2TPG5eN7PbmGFQG62+v5JQQhLD/je+7oBVsewJkLBbjqaee4tFHH+XJJ5/s5FA7opkg+6ox5veMMX9jjPlK/dT1kb1JmGqV0ksv4d+0icD27YuX+8fGsFIpyqcGt2Tk6lSOQqbClXP9LbVopN66b6VJj0tFhry6un6VjNjzJcQnWMnG9bReyUgQe24w2kbVl1QvZjPkgMv2NcaKNiPxm5g5+Q2i1Tj2W+7DVP2Uwju4I74dN+jjlDlB6Mpl5tLe48jYTl/LRRyniOMWCTQIsv3+RN9a+hljyNgOSX/zRy0GZfXHa7kyr83kuHlLglTUy/DtGI5SrDhcG7SSkXoWe/Nt19etbroNKjnI9O/o1nJVp8rp+dNsj28nGXojc3jL8C04xuFsZvCC1+rrr4NrCE5OEtwxjn9slNKJExi7/z8EV3N6JkcqGmQsvvL8hnDAYudIlDOzOZx+TzheuAj5We9ozNKjBMO7vX/nz/VlWI04rkPFqRCyQtdlrAO+QMsTICcnJzl+/DgAqVSKb37zmxw6dKit23dTM0H2cyLyayLynX1o4bfhlU+dwi2ViNxxxw3XhfbejLOQoToz04eRra5accjOlbACPjIzRfKZwfoCXZi5QjgWJxSNrbltJOF9aRUX+hVkl7GSQcRa+TC/fzSMW7BxC+trddQJ9SXViwsLzPuKFKtlthbGuVI4TPRyHjOyn1BiK1bARzm+k6Q/wt7oODORGWT6OFdm8hggU3WIxWKUy2Wq1d4/rnrwHAzcGGQDJBL78UmAfP5UL4dF3nGxXUOqiUmPdWHLx0jAz9Vq/wIYYwzPnp8nErS4ffyNQHB7KoxPhKn5wTgSs+jSMfD538hi16V2QSAGMy/3Z1wNvJZ5japb5S0jb7nu8lQ4xeboZk6lT/W81/BaymfPYqVS+IeHAYjceSdusUTp5Mk+j2xl8/kK1/Jl9m5ae5L53s1xKo7Lhbk+Z4ovvQDBGIzdfP3lkZR3ZGbuTH/G1UDJ8RIs9QmPS4WsELax216cZlA1E2TfBdwD/Ft638JvQ3PLZUqvnCQwPo5/9MYv+uDOCSQYpPLaa30Y3erSVwpgYNf+UQJhi0unM5h+/6KvcR2H7LVZklvWLhUB8AcCBCORvmSynXwVU3ZuaN233GLJyABks+tLqhezC2Qtl3LJMBHcxMUXniRYCTK35wfZngqza/8opMawSXB3chIThNecV+DyDHbFJl3LZAMU+tCnfLGzSKDxvG6fL0ggkMK2e9t5pt5ZJNlCuUh9+3Qfe1K/NptjPl/hwESKwJJa1pDfYtNQiAuDVDJSTMP8Wa8Ge3n3BZ8PNt0C2YsDsThN1a1yav4UW2NbGQ4P33D9LcO3ULJLXMgOTl9kJ53GmU8T3D25eJl/bIzA+DjlV07ilvr/OdbI6dkcIsJNm9ZOzmxLhokF/ZzqZ8lI9rJ32rIffA0+L0Zu8rLc5Wzvx7bM0iy21WCsQSuIIOtq5zeI1gyyjTHf2+D07dOLZ4CVXnoJ49hEbr+94fXi9xPavZvq9DTuACyWUmeMIX25QDQZXGy1UynaXLs4GPVpC1dncV23qVKRun51GHHmSiDgT60eZA9SyUh9SfVidoG0z0e06lB2zxC8cBk7dQu+4Qn23DJCOBYgNhKmMjROOJPn5u1vZSFymdKxr1AtOmRsp69Lq1eqcwT8SXy+lScW+/1DVO3evi8ytUC5lZrs+vZZ28HpQy1xqepwbCrD5qEQu0ZvDFAmhqPkSjbpwoDUDl96oXEWu27sFhCfV5vdZ2fSZyg75Ruy2HVbY1sZCg7x6vyrPR7ZyirnzoFPCO7add3lkTtuxzg2pZde6s/A1jA1X2A8FSbcxFEkEWFyLMblTBHb6dNRhEsvQCDivV8bGZ70/h2Antn14LlRFhvAJz6CVpCKUxm4ozLr0cxiNP+q0akXg9vInFyeymuvEZqcxBpauddmcM8ejOtSPtP/P5K63HyZatlheKv3ZZoYCZMYCTP7eo7KACya4rXu8xMfaVwG0IgXZGcxbm//uO35ElY8iATWPqg0CCUjjuNQKBQWg+ysz8dQ1cfMif+K3xEu73wvu7clGBrzOnIMb4nijt6MXXb47l3fhQRsrlZO4qTTpKt2X5dW91Z6HFl1G38gietWcHqYXUlXbfw+IdZqJjvgxxhY6EM2+4ULaWzH8B27Gj+fO4a998NAlIzUs9ibGmSx6wIRr6b12um+Lk9tuzavzr/K5uhmRiMrf57dPHwzmXKGK/n+LqoFXresyvnzBLZtxxe6PqCyhoYI7dlD+bXXcLL9z64uZTsuuZLNSKz5XvMjsSAGWOjH915u1qvH3rIPrBXmb4QSEN/c95IR17iUnTJBK9gwi123ngmQg6qZcpH8kpMD3A9MdnFMbwqV016dZ3jfCpmUGiseJ7BtG5WzZ3oeAK4kfbmAFfAxNPrGF9SWm7wfClfO9H8SZGbmCkNjm/Ct8se8XGQoiTEuxVzvPvjdko1bsNcsFamzhr0Pfyfbvy/9ellHOBTEqVbJGiGSvYZ74TRucif26B7u3P9GX/LESJhgagflYJDwzBw7N+8hH7lM/ujfUnEN/tqqW73OZNt2HsctL/bHXonfStS279372pv02PoiOPXMd6bHQXa+bHP2ap6bt8RJRhofFQgHLDYlQv2vXwW4XKvF3rL6Zy+b3wKu7QXafXIuc27VLHbdzsROQlaIU+nezh9oxL58GbdUJrR7suH14be+FfH5KL34Yk/HtZaFko2BFd/DjaRq22aKfQgKr7wI/rA3UXc1w7u9Sb59XMm0ZHtHYMPW6t917UyAHHTNlIv81pLTr+Kt0Dje9ZFtcPbcHNbICL4mlvYM7d2LWyxSner/bPdqxSE7XyK1OXpdT+dg2M+mnQmycyUW+thqrphdoFIstFQqAl4mu377XnHS3geJf7i5zIkELRBwy/2ru61nnP0ilHApG0idPAKuTXrr32PrjhE2Db/RV1p8wsjWESrDY5RmL/OOW96L8Tn4sy9iuy7VYPi6++2Van0RmgadRZYKBLz3RS+D7HSbQXb9NukeL/c8XysBmWiwcMdSEyNRMsUqC6U+ZqmqpVrv4NvWXgkvNgaxTTD7cl/a+RljODl/krHIGJuiqy+oZfks9qb2cjl/mUy5v6vXls+eRUJB/Nu2NbzeF4kQuvU2KhemsK9d6/HoVlYPlFMtBNlDkQAC/SmDys1AcgdYa4x3eBJE+loyYrs2fp9/1Sx23UabANlOV/gocFOnB/JmYozBmU9jDd84iaUR/9at+GIxyqf7PwEyfdmb8Di89cYv1NHtMUJRP1fOLOD2qUZtYdbrxNJqkB2OxxHx9TTIdgs24hd84eZatYkIvqCF6WNf8nowbBmXrFTwLSwQufI6Et9EbsvtvGXPje/p1JYovk2TFAsL7JAUQcI49jzFikPB5yMQCPQ8yK5U5xAEv3/1xWwtK44gPQuyHWPIttgjuy5s+Qhbvp5nstOF5oKTxZKRuT6WjBSuAQaGmswTbbrNmzS20PvVChcqCxTtIruTu5va/qbUTVhicWq+f9lst1ymevEiwV27Vl10JnzrLfjCIUonTvRwdKtLFyoIXuDcLMsnJMKB3meyqyWoFiHSRAwRjEJim1ci1QfGGBzj4JfmvufqEyDX6v1+7tw59u9vfcGoe++9l1tvvXVxJciZLndva6Ym+0UROVY7nQBOAr/b1VFtcO7CAsaxF1sbrUVECO3di311FqdPbeagNuHxijfhMdhg5UHxCVv3JKmWHWYv9GcSZGEhQyAUJhhZ+wjBUj6fRbjWMaNX3JLddIBdJyEL08dMdr2sw+fYZP1CfOY1LLuKM3onQ+Ob2Nlg0lsw7Cc6sp1SzKI6/TpJieNYOXLpLJlqf3plVytz+AMpfL7Vn38Rwe8f6lmQnbUdjPHqq9uR8luke9yHOFOskggHVlwdry4a9DMSC/a3y0j9kHl09TKhRcO7IRD1VoDssfmSN9ZUaPUfgnUhK8TW2FZmi7PdHNaq6r2xQ7tX/2EggQCBHTuwZ69iBmTRn/r72Gqw6u5qkpE+BNn193EzQTZ47+PSAuR7f+TAMQ4G01QWG66fANmt98bnPvc5jh49ytGjR9m8eXNX9lHXTCb7B4H31k7fB2w3xnyyq6Pa4Jx57w+k2Uw2sLhQjX21f4fX6hMeR7at3N4olgyR2hLh2nSOSrH3h3tK2QUiiURbt40MDVFc6N2hVrdoIy0uky4hayDKRahUyAZ8xNOX8BkLe9t+hjcNr7jE8MiWbdhjKfJzV9nOEK7PoXrp9GKHkZ5nsivX1qzHrvP7Ez3rMNJuZ5G6pN8i04dykVS0uezfxEiU+XyFfLlPh4KLc14PbH+Tk9t8PkhshfzV7o6rgXQ5jSUWQ8GVJ8YvNxweJl/N923iWPnsWazhFFZq7R8G1vAwxrZx+7ji61KZYrWleuy6ZDTAQsnG7WUL25aD7F1et5w+TIB0jPd51Mpy6QFfABd38bZrOXPmDHfddRff/OY32xpjN634qEUkKiIBY8x5Y8x5IAz8A7xgW62DPT+PWH58LQSDvngcsfw46f71ba1PeEysMVFvbEcCDD1foMYYQzGXIxxv/ktpqUhiiEqxiN2DhVGM7WKqbsuZbK9cxO1bT/J8Po9lWTilIhlLiC/MQyiIs3X3YjlAI8Nj2/GNxSmUy4yLt1CJufwy6T4E2badxTWVNTuL1PkDSRw7h+lBW6l2e2TXJQMWBcel0qNJ0tVaR4Zmg5O+dxkpzEG0+eQGANFRqOa9w/M9NF+aJxVKIdJ8ZrWe9c5Uel+Xvdgbe3Kyqe3rgXg/v9PqXNewULJbKhWpS0YCGGPI9rLDSHHem/QYbPKIrT/klUj1oWTEcR0EwZLmP9Pq2zru2kH2yZMnefDBB3nssccYGhpaLANZfkoveZ994AMf4MCBA/zKr/xK14+krPYN/z+A/wM4JSJ7ga8BnwN+UETeYYz5+a6ObAPz6rFTq9asLSciWMOpvn0gVcvehMfR8fh1Ex4bCUb8WH6hmK0y3Nx6MB1RKRZxHbv9THZt5cdSdqGl9n/tcGsfyL42MtkApuIgLQbonZDL5YhGIoBhwTWM5HLYoRS+oREmhlf+wPcHwsRSIxSHrjJaHiVQcXFyU2SqDlvicS5c6N1CGmut9LhcwD+EwWDbucWJkN2SqTqLtdXtSNWWYs/YDpuC7d1HKxYnizWZyU6EA6SiAabmC9y6tb2/07a5DpQykNrZ2u2itfdJYQ6SvZnzb4whXU43XY9dV19yPV1KMxYZ68bQVrRSb+yVWENDIN73ITt2dHdwa8iWbIwxTb+Pl6rPRUgXKyTbuH1bivPNZ7HrkjsgcwHKOQitvaJlsy6cOEZhlSPARbuIMRANrJyEWS6SSJLYO7FmJnt2dpZDhw7x+OOPs6/Wqe3o0aOr3uZzn/sc4+PjZLNZHnzwQf7kT/6E97///U2PrVWrfQoPG2PqhWg/CvwXY8xP4rXw+4GujWiD8yY9zmOlWvwDwfvl76TTfalhq6/wOLyluV/O4XiQUq63hyxLOe+QfrjNIDta61e+2gdGp7jF9oJsXz3I7lPJSD6fJxIO42IoZucJVCuUwiNEonHG4o1LRepSY9twNgdAooxmBCpzVBwXXyxGoVDAcXrzmKq1SY8rrfS4nN/fuzZ+6TYnPdYle9zGb3HSY3T1136pHcNRZrNlSj0ua/FWbzStByeR2hGPQu9K9RYqCzjGabjC42oi/gghK0S63NtkjDFmxd7YKxG/H2toaCAy2e10Fqkb6nUbP2OglPaWTW9F/X1f6u3z7Rq3pVIR8Jqh+H3+NYPsZDLJxMQER44cAbys9lqZ7PFx74dyIpHgkUce4ZlnnmnjUTVvtW/4pZHcu4B/B2CMqYjIYDRs/jbkZrMYx8YabvEPBC/INvZp3HweK965X6JrMcYwfyVPLBVqOOGxkUgiwNWpHK7j4mszK9eqYm1xg0ib5SLBSBQrEOjJ5EdTckDeyEw3q769W3ZoPxRrXz6fJxTwUxKHwNUL+FzIJcbZNxJb87B2NLaJwOhJKr4QyVKAKbLkcwWIeu/lYrG4uMx6N1WqcwQCI0iTH/x+f+/a+GVsmx2h5gPW5Xrdxi9TrOC3fMSCzb8bJ4ajHJ/OMDVfYO/mHmazi94RjKYnPdb5gxCMv3H7HqgHyc1OelwqFUr1vI2fm8/jlsqEtzdu27cSK5XCnu3fRM26dNHrZNFOuUjA8hEL+hd/cHZdJQdOtY0fi7X3UjHtZbU7ZGLfHSte5xqXdDlN1B8l7G9uPYi6QrVA2SljjFnxuyUYDPLEE09w8OBB4vE4jzzyyKqZbNu2SafTjI2NUa1Weeqpp3j3u9/d0rhatdq3zDER+U0R+T+BvcBfA4hI63/1alF90mOznUWWqk+UrN9Hr+Tmy9hlt2HbvpWEYwEwUMr3rk6tlF0gEArjD7YfpPRqeXW3aOMLW2uW3iwnwf5msnO5HAGfj3zER3TuMsb4sLbsZccqpSJ1geAI0aEgTsTHUDWMSJn0lYs44d4tSGOMoVqZa7oeG8DnC2L5wl0PsquuIW+7JJtY0nklfp+Q8FuLtd3dli5USUUCLdUNJ6MB4mE/lzKlLo6sgeK8twhNqI0f4dHRnmay50vzWGKRCLb+IyQVSpGpZHq6NHU9G93MhMelrOFh3EIRt9zfxUfShSqxoJ9Au2Va0R52GGl10mOdP+R1yunhojT1mupW6rHrLLEwmDXfx7FYjKeeeopHH32UJ598ctVty+UyBw8e5I477uDAgQOMj4/z4z/+4y2PrRWrpSV/HPgI3uqO32eMqfddeivwm10d1QbmzM8jloVvlaXUV2INDSE+n/eBNjHRhdE1lp0r4bNkzQmPS0USXqBbylWJDrUf9LaimMu2XY9dF0kMMXex+4v+eEF26zXV4hMk6MPtQ69sYwz5fJ5tyQQZv49oZg7jDxLZPMFwbO0MUDAwQjgaoDjkMEQCy1mgcOUl7O33Ar1ZkMab9FhturNIXS/a+NVb79XrqtvldRjpzY/bdKHKrtHW2mUCjESDXMv3eAGPwpwXmLTwg2BRdBTS570l1v3d/zxLl9OkQqmWD7ODF2S7xiVbyS7WaHebM58GqdVZt2Dp5EffltbWNuikTLHaVj12XTIS4FKmtGrWtWPqQXK4jXxnJNXTcpF6uUez7fuWqt/GMQ5Wg+O2k5OTHD9+HIBUKtVUZ5FYLMZzzz3X8ljWY8W/YGNM0Rjz68aYjxhjXlhy+f9njPmT3gxv47Hn57FSrU16rBPLwpfofQ1bKVclHA+0lHUNhCysgI9SD79Ii9ls251F6iKJIZxqlUqxe718jWtwS62376vz9alXdrFYxHVd/EDaB5HcAq4/SWo4RaiJOmKfL4g/OIQ1LCTCY4QrBjJnqdRWfexFJrta9bKRa630uJzfP9T1Nn6ZdXYWqUsFepPJzpdtqo7bVnAyFAks3r5ninNv1Fe3qj75sQclI8YY5kvzLddj1yXDtcmPPazLdtJprEQCafEH4iB0GDHGtN2+ry4VDeAaQ7YXrSmL8175Ujs/9sIpr1ykR/O6HOPgw9fWj0VLLARpqsPIIOtNsawCWl/psZH65MdeMa6hlPeC7FZF4gGK2d4cQisXCuvqLFIXWZz82L2AylQcMLSVyYb+LUhTzzQHA34yxRzBcplKOMVQC9mrYGAEGXHwh0ZJFMHkZyjXvph7kcmuVOcQsRbrrJvlDwzhuhUcp3uHtev9rdcbZCf9FlXXUOhyAJuuHR5PRlr/sq8H5j07xF7OgVNpvR67Ltq7yY/ZahbHOG3VYwMkAgkssXofZLdYKgLgC4XwRSNeJrxPsmUb15h1BdmLkx97UZddTLdeKlIXGQbX9uq6e8Bxnbay2FBb4Vh8TffKHlR9DbJF5D0iclJETovIDS0BReTHRGRWRI7WTv+4H+PsFDeXw9jVtjqL1FmpFG6xiFvqTT1juWB7E/LbCLLD8QDlot2TJdbX21mkrt7Gr5jt3sShdjuL1EnQwq04Pe8yUw+CQwE/lauvY7mGUnQzqWTzX66B4CiBJEg0RLIUAjdDvlxFLKsnQXa1co1gYLjpSY91gR5MfkzbDgm/hb/FOv3l3ugw0t2sWrrgHaVqJ5Od7HVHhnoGut3gJBDxFrHpQZCdrh3ObzeTLSIMhYZ6NvnRrVRwC4W2gmzofeJouXpgvJ72ez17P7uu14ay7SB7yeTHLqsvp95OPXadX/zYpk8LV3VI0980IrLyMn9tEBEL+A94LQHfCrxPRN7aYNM/M8YcqJ0+08kx9NobKz22P3e0fttefSgVc94XaXiN9myNRBLBnk1+XG9nkTp/IEAwEunq5Mf1Btm+kAUGTKW3TX7q5RyhsB+ZncJnBJPaRbKF9m3BwCiBkIVvOEKiFEIokJ6fxz+U7Hq5iDEuleo8gRbrsaE3bfwytrPuLDZAqrYke7c7jGQKVWKh9iaLxUN+LJ/0LsgurDPIBi+b3YMge77c/qTHulQo2UjLqQAAIABJREFU1bNMdruTHuusVApnIYPp8o/ClWQWj8i0H2SH/BaRgNX993MpDcZtvX1fXb2OuweTH13jesupryPItnwWrnF7Oom309b8dBSRvysiLwEv187fKSK/34F9/x3gtDHmjDGmAnweONSB+x1Y9UmPVrL9ySiLNWw96jBSytv4LCEYbv0PpV5iUsx2vy7b6ywSWldnkbrIUJJiN8tFSjYS8CH+9g4kScgLonpdMlLPNJtkmEj6Kq4VILppoqUeyYHAMFbAgqSPISdMwHFIX3oFSQx1PZNt2wsY47Rcjw1gWXEEX3cz2VWb1Do6i9QlLB8+6X6v7PQ6JouJCMlIoDeH18HLZIeGwFrHYiHRUS+L6HT5CEEpTTKUbKuOtS4VSlFxKhSq3ZtbUrfuIHt4GAw4XfzMXU2mWCUcsJqaV7KaZCTQ/TZ+7XYWqfMHIRjryeTH9Ux6rGtl5cdB1cxf8aPAQeAaQG0S5Hd3YN/jwNJl3qZqly33oIgcE5H/KiK9a6nRBfbcHFYy2dakxzpfMIgvFutZJruUqxCOtdaiqy4QtPAHfT1ZlMbrLNKZ1fgiiSFKuRxul/6w2+0sUudb7JXd28xPPQguhoOEswsYf5xwMslQC4/F5/NjWVGskSAJf5Jw1VCcew1iiR4E2d7917PSrRAR/P4EVbs7h+C9pdBNRzLZIsKQ3+pqkG07LtlSlVQb9dh1yUiP256tJ4sNPZn8aIxhvtz+pMe6xZUfe5DNdtJpJBTEF2l+Rb+l+j35MVOstrUIzXKpaLD77+diGsTXXmeRuvrkxy5bDLLXmcleel/fjpqK9owxy9c87sQjbhS1LS8y/SIwaYy5A/gy8McN70jkgyLyrIg8OzsAje0bMcbgpDPrmvRY16saNm/So93WpMe6SDxIsRdBdgc6i9RFEkMY41LqUvmCW3TwRdr/4Fnsld3jcpGFTJqg30/arhAqFSEwQiIZx99iuYDfivL/s/emwXXd55nn72x3X7GDAAiQIEGKO0WRFElRsmjLklfF+5Kky05SmbR7Jkn15Is/ZKq6q1JTqZ52d8+kMlNJLNuRYyuyJdmSLEuyZJFauO8LIKwEse93X8/ynw8HFwRJkARxz2XaLj8qlEjw3nP/Fzj3nOf/vs/zvGq1huauIZQHkR0Hv7/ichHTtI+vKCtTvqlqCEOvTLWtpJ92gmSDHQNYSblIMm8gxMr02CVEfC7yuln5yY+mDoXUyk2PJdwH82NaT2NYxopNjyWUnn+/SPZKq9gAst+PpKr/ZiQ7ntXvqRt3O4S9GoZlkalk8SMXA08IyijULcT4VdjTY1q2HrucSENZspNJlqpkDw4OsmXLlns+ZrFY5E//9E/p6Ohg48aNvPDCCyte33KwnN/UsCRJ+wEhSZJLkqS/Yl46UiZGgMWV6WZgbPEDhBCzQoiSnf8fgV1LHUgI8Q9CiIeEEA/V1tY6sDTnYWUyCL3oHMlOpRB6ZclrIWcgLFEWyfYENIo5A7OC5sdizplkkRJKFfFK6LKFbiEMC6mMyomkSEiajLjPlexkIolbU0nOXEOyLAx3HeHovUufFMWPUqWguH2Esy4ozmJoLjKZTEXNnKaZQ0JClu9t8lgJqhbCMNOICugDS4S4pKcuFxFNIWlUzhxbjumxhJIGNlnx6l+pxV4myXb5QfVWlGQvmB7d5d0nVFkl4ApUnGQLy8JKJlHLINmSJKFE/23Mj5mCgWFZZemxSyh9FuKVPJ/zZSSLlOCNgmXaG88KolzTYwlOmx//5m/+hrq6Onp6eujs7OSxxx5z7NhLYTkk+8+A/4At5RgBdsz/vVycAtZLkrRGkiQX8FXg5cUPkCRp8YzWz+IMuf83wXXTY/kkuzQt0kxU1j1eknmsJFmkhBJBr6RkpGR6LDdZpARvIIgkyRUh2Va+ZHos7+IjuxWs+6zJTqdTuFWVwtQ1FAH5QBPRFdxcFcWH6tGRotUEC24QGXJCYFkW+Qqm5phmBkXxrbiycj1hxPmKe8IwkSVbT+0EwqqCKQSpCm1u4zkdRZYIuFe+KbgvpASumx7LrWTD/OTHyslFSqbH0EqmUt6E+zFe3UqlEKZVViUb5gtHsfh9T0wqnXvlbBZLCFc6xq/UkSmXZN8H8+NCskgZeuwSSubHO50bAwMD7Ny5c1kDaZ555hm+/e1vAyDLMjU1NWWv8U646xVSCDED/L7TLyyEMCRJ+l+BNwAFeEYIcUWSpP8MnBZCvAz8uSRJnwUMYA74htPruF8w5+aQZLks02MJizVsagVPkHxGR5IlXCtMwYDrBD2f1vGH3U4t7Qbk084ki5QgyTKeQIBc0vkb1EKySBmabJiP8btfprF5ZLNZon4vemwSgYIWbSbsu/ffqaL4UFRQayIEe924rSypzAyqJJNOp/GuUNt5N9gke+UhSdcTRhJomjPnWgkJwySkltdaXYySgTKuG4QckqAsRjxbJOJzlbVej6bgUuX7oGOdA8VtV6LLhS8Kk2N2JdABAnEzYvkYIXeoLNNjCRF3hJHUCLqpo5Vj+LwDyjU9lqBEIgjDwMpkUAIBJ5a2LCzE9zlQybbNkzLxXIWM/uWaHksoJZPk40Brece6DZzQY5dQGq9uChNVuvW+2d3dzVe/+lW+973v4fV62bFjx5LHOXz48MKf//qv/5rDhw/T3t7O3/3d31FfwWmjd73TS5L0A+AvhBDx+b9Hgf8qhPijcl9cCPEa8NpN3/s/Fv3528C3y32d/xlgxGLIZZoeS5B9PmS3u+LttVxp0mMZN1LVpaC5lYrqsnMOJouU4A2FSM853xa28gZI9kCZciC5Faz4fRrjO49cvkBDXQRtJInp8uMJhVaULasofpAkXPVBgsKPasyRTY9QUDUymQyVknyZZg6Xa+XHViuYlR3XzbLHqS9GeP5YlTI/xrM6LVX3Pk79ZkR89yGRoTRO3Qn4qu0ItVwc/PeeUnMnCCGIF+K0BJ3x9y/WZdf6KvSZisdBlpDvcZz6zSh1eM1Y7L6S7HiuiFuV8TiQ6gP2YKaKyZ9KZsVyz2VFsydGOmR+LAwmsLI3yjl0U8cw8+iaibmCDaPsU3G32QXJxQkjqnzjNXJ6epqnn36aF154gc2bNwNw/vz52x53ZmaGkZERDhw4wHe+8x2+853v8Fd/9Vc8+2zlhpgv56q+rUSwAYQQMUmSdlZsRb+lMGNxXC3Njh1PiUQwKhjjJ4Qgn9aJNpR/I/UEtIrG+OXSKzc9Tk9P80//9E8IIXC73Xg8HtxuN5JlYuZz1GzcyqqmpUJvVgaRM5C9atnEWHYrYNka75IRspLI53OYloXhU3Bl0ljuVSgeD8EVyAUUxT6ntFovXi1MOHeNeG6CglpfMfOjEALDzOBVVl65kWUXiuxxfLy6EIKkYbJ6UVJHsVjkzTffJJlMUigUyOfzFAoFRC5Ga7GPjQc+waaP/cFtj+lTZDRZqgjJzhYNioblSCJD2KtxdaaCMXNC2BW7mg5njldKGMnOOk6y03oa3dKJlJMcsQiLE0YqSbKVUPnFIyUUAlmySXvL/QsRS+b0FU0svR3CXo1rsxVKScrFrhPkclEyP1YIlrCQ5v8rF7IkI7P05MdwOExLSwsffPABmzdvpru7m6985StLHufw4cNUV1fj8/n43Oc+B8CXvvQlvvvd75a9xjthOXdIWZKkqBAiBiBJUtUyn/c7zMNMO2d6LEGJRDD6+hCW5Uh1/GYUS6ZHf/k3Um9QIzWbx9QtFM35teZTSaqbV6/oue+88w5CCB588MEFIpPP58mmC8zEk7z55ht845tlN20WYOUMZAf0f6VKuCiacB9I9tzUFACGEUOyTIRWRzgUQF7BdMKSZMNV60bxhqjKqFzVZyhozRWL8bOsnP3aanmSAVULO17JTpsWphBEFsk6zp07x+nTp6mvr8fj8RCJRAgoBi35SWIzboZO/oJ17e241uy77XEjqlKRhJG4AxPySgh7XRhmmkzBwF+Gvvu2KCTtMdLlmh5LcAdBcVXE/FgyKVa5nVmrV/XiVtwVNT+aiQRqfUPZx5EUBSUYuu/mx3hWp7XauTl7EZ9G75RFrmjidfq6nIvZemonOpeeCCTH7AmSZfKHUsV5MYxiClkIfA54CyRJQpEVDOtW86PL5eJnP/sZTz75JIFAgK9//et3rGQDfOYzn+Hw4cMcOnSIt99+m02blpqB6ByWc1X7r8BRSZJ+Ov/3LwF/U7kl/fbBjNlGGadJtjBNrGSybD3cUijJO8pJFinB47crBfmMjj/irC67mMtiGgaewL2bHsfHxxfcxY8//vgtx33h2X+m+9oQk5OTjmi2hCWwCiZqdfma41JWtiiYcB+6q3MzdjRmMTaGJkB4VxFZQbIIgKK4kSQFLSSQ/UFCSTeSmSKvVm60umHa1VJFLq8zoypBcrkhJ5a0gPh8tbkU32eaJseOHaOlpYU//uM/th+Ui0HPGyDtZMS/hTee/W9cO/Eq6zUNmh9a8rhhTWWy4HzrukSyy8nILqGkhY3n9MqQbCdNjyX4qitCsmP5GLIkO2J6LKGS5kcrn8fK5R27/yiRCMbUpCPHWg5yRZOi6UyySAmLx6tXhGRHVlZMugXeqC17KiRXPj3yDjAt01EfgCIpFKzCkvJIv9/Pq6++yhNPPIHf7+fpp+880/Bv//Zv+cM//EP+8i//ktraWr73ve85ts6lcNctjBDin4EvApPAFPB5IUTlBCy/hTBjMcdMjyVUOsA/n9aRZHCXYXosoWR+LI1odxIL49RXMIjmnXfewePx8PDDD9/yby6vjzUN9aiKwtGjR8teJ8wTYgHSCqZn3oySROR+JYwk5mxpkkhNISFh+VuIVq384qzIXmS1iFxVQzDvwWPm0V1UTC5iLgyiKa9qpWlhLFHENJ1LQUnodoWmFN/X1dVFPB5n//799gMWCLYMHU/S3L4Jb8fjHB9IUBw+ByOnlzxuRFVIGSaG5WxiQzxXxOdWca1wYuliVDyRITc3P7zDuWsvvmr7d2I5m9wSL5Q/6fFmRNwRksVkRcZSO2V6LEGJRrByeawKJgwtRsLBZJESrifmOHyvK2bByDvnLbjB/OgsTMvEwnLE9FhCyfy4+Dxua2vj8uXLAEQiEU6dOnVXgg3Q2trKu+++y8WLF3n77bdZvdqhjcttsNxP84fAi8DPgbQkSZVd1W8ZzFgMORRCUpw76eRgEElRKkeyM7o96XEFcoCboWgymqcy5sdSssi9xvcNDw/T09PDgQMHbptmEYpGaG9u4tKlSyQdGPm7kCziwMZFUmUkVbpvo9WT83GRciqO4fLg8UWIhFeWNw2gqgFMK4u3ZRXBohtFmJhKpmKVbLNUyVbK6yJcTxhxTjISN0w0WcKnyAghOHr0KFVVVWzYsOEWgl0ii48//jj9xRouT+oweXlJol2qjDuty05knZmQB+BSZXxutXIJI9mY/TNzMgnEGwVhOk5QYvlY2UNobkbEHcESFsmC82bd6yTbmQ2MEonecNxKoxIk2+dS0RTZ+U2jU8kiJSzE+Dn/sy4RYUdJ9m/w5Me7kmxJkv437Cr2r4BXgV/M//93WCaMWGwh29oplCrjRgUuSCXToxN67BK8Aa0iWdmlZBHNdXcZirAshGEgDIN3fv1rfD4fe3btQtymIuUJBGirq0YIwfHjx8teq1PxfSVI9zErO51OIUkmSjaL6Q4iu1xEAiuXCyiKD9PI4m2uwyMFCeYlJCPOXKYyJjjTzCBLKrJcnlypEgkjCcNc0GMPDg4yNjbG/v37kQuJJQk2QGNjI5s2beL1zji5QOuSRLsU4+ckyTYtQTKvO0pM7PHqFYw9c4qYlLBgfnQuLztdtE2P5Y5TvxlhT+XGq5vxOLLPi+x2RgJYIuv3i2THs0VUWcbnclamFPZqzme/lzZ0Tp3Limr7CypRyS7F9zm4sVUkBQlpycmP/7NjOZXsvwA2CCE2CyG2CSG2zo85/x2WATOdQRSdNT2WoESjmDHnPyTFvIllljfp8WZ4Ai70vInhsBFruckihYEBEi++SPzFF7n87LMMXL3KrmCQ9MuvMvD9n5P6sP/WNfsDaMJi0wMPcObMmbIHpVh5A8klI92lzV7MG0xdS951SqbsUmzjY4UhhCCTyeBRs0i6jqFV4fJ6ytLQKooP08rhqa9CcweoykgoZozZfOHuT14BTDO7kGqyXAghGIllSS+arKkofiRkZ0m2bhKel4ocPXoUn8/HtgfWMXP2ZYoWtxDsdDGNJSw+8pGPUCwWeX/IgNqNNtGeuLTwuFIlO244Ny0tmdPtceoOJzIkcwaWw7IW9DzoGedMjyV4wiCrthTFIcQKdqWy3EmPNyOoBVEkpUIkO+GoH0h2u5F9vvtHsnPL3yzqlk5WX14BIOLVnO/M5GKgeUFbeffwFngiFalkm5a5MA7dKUiShCIpjk5+vF9Y1lh1oLJjo36LYcbnJz1WOXyhZ978qBexHG6x5+e1094yKpU3wxuszOTHfCp513Hq+ugo2TNnUGpq8GzdyolsloDXy56DB0nXbSRhhel98zLJvuEbnuf2247CB3dsp1AocPbs2bLWKnLGXavYuVSRqxdmmBlOMzV457G3klu5L3IRPZ8jr+t4pHli6WkkHCzPQLg4YUT1BQhnXMgixUwhX5GpbzbJXr4eeyZd4Fedk7zfO8Ox/usmN0mSULWQYzF+5nx8X0RVmJqaore3l7179zI9eIWB8Vl+md/KhZkig4lrnJo4xasDr/L64OucnDhJXV0d27Zt48SJE6SimyHcDBOX7clwgEuW8SkyCQc3tqUKnRPJIiVEvBqWEKQKDt9AcxUwPYKd7uCtctT8GM/HbdOjy9khR5IkEXaHHTc/CtPETDlvurcnP1YumnYxErnlyZ50S+fI8BFeu/oarw++zrmpc4ylx9DNpe9lIa9GXjfJO1lQqkRHxhuFfMJxb4FT49RvhiIrv51yEWAAOCxJ0rclSfqPpa9KL+y3BWYsBpLkqOmxhNIFznC4mp1P2wNT3D7n2mgl6YmTuuzlJIsYMzNkjh9HjUYJPPIIo5rGyPQ0jx06hNrawaTiZmyzQSyQp/eXF4j1Tyxas02yq4IB2traOH78OKa58g+5lTfuqMdOzeUZvDSLrEiEar3ExjNkk7dvo0tuFWEKhF6Z0dkl5DNpirqBqicQAnC3EY6UOXxiXhutuQ2kcIRwzoPLypOQdYpF56UDpZHqd0NeNzkxMMtbnZNkiyZtNX5m0wVG47mFx6hqCEN3hmQnFiWLHD16FFVVeXDHNqb6zzPt9jFgjPDDc+/z3eNn6JqcoNZby5rwGkZSI3TO2sk4pmny/vvvQ8N2MAsw07tw/LCmOCoXiWeLyLJEyCHJE1TQ/LigY3W+wLEwXt2hDWGsECPsCjvaYi8h4o44Xsk2k0mwRGVIdiqFcLD7shRKJDi0iGTnjBznp87TPde9sNEXQnBq4hSJQoKNVRsJakEGE4McHTvKy/0v887QO/THb+yClqrjjg2lEcKuODtOsiPzCSPObcAWxqlXgmRL9nj1Sph4K4nlkOwhbD22Cwgu+vodlgEzFrPD+h00PZaghMMgSY6313LpomOmxxIUVcblVcmnnLuR5ueTKG6XLGKmUqTffx/Z68V/8CAoCr/+9a8Jh8Ps3LGTE5cvcKZwjFw0yfQug0v+Dznz+mGm++y4Os/85LF8Js3+/ftJJpMLbuZ7hdBNhCFuS7LnxjMMd83h9qms2VZD47owqltmvC+OuE0bvRTjZ1VYMpJPpynoOko+RdHtJuCtIhop7xKgKPbP1hJZ3A31hPIuXJZOXik4njAihIlpFe5Isi1L8OFEklcvjnNtNssDjSE+ta2RPW1V+N0ql0YSCzdeTQ1hmGmEA1WVUpVZyWe5ePEiO3fuJDbWz0x6iliNm11rvHx263q21mxFK2ynmF5LR3gbraFWOmc7ybly7Ny5k9OnT5MwXRCoh6nOhepURFUXIgKdQDynE/aWNwX2ZoS8GpKE8y327BxoPmdb7CX4qsHS7Qg0BxAvxB0bQnMzIu7IPckdloMF06PDxSMlGgVh529XEslFpkfd1Lkyc4XXr75Of7yfSzOXeHfkXbJ6ls65TsbSY2yt3cqWmi0caDrA0+ue5rHmx9hYtRFTmJybOsd4enzh2Itj/BxBITWf9e4wya6A+dEUJgJRkc3i4smPv0lYToTffxJC/Cfg/yr9ef7vv8MyYMbjKNElLp56vuyTW1JVlGDQcZKdz+iO6rFL8AQ0chnnqpS5lH2DWypZxMrlSL/7LpIs43/0UWS3m+7ubsbGxjjw6AHe7nqXS7ELrGlu5hMNj7Gn/kGqdrfyobeTX7z9Y3ouD2Cmh9BcMoV0mvXr11NbW8sHH3ywIjlDyfQo3VQBFEIwOZhkoj9BIOKmbWs1qktBUWQa2yMUsgYzo2l0PUkyeZGp6TcoFu02uOSyP76VlowUMmkKhoFayKG7/Siap6xkEbg+9dE0s3hbm/BYHrxFgSU7nzByPVlkabmIaQne7Jzg/FCc2qCbp7Y2sL0lgqbIyLLElqYw8WyRkZhdzb6eMFL+ZqBEgLvPnkEIwZ49exjtOcGsAutaN/Jo86McbNvCF3auY0dLhMlEjuePH8aXzxFV4NT4CXbs3QHAu+++C/WboZiG+CBgV8jzpkX+Lvr+5eJ2ySLF4tyKNx2KLBH0aM7HnuXmKlPFhusSFAckIxk9Q9EsOq7HLmHx5EenYMbiSKqCfI+pTnfDQjRthSUjiZyOJUxmCtd4ffB1uua6WBVYxZNtT/JQ/UPM5ed4vvt5jo0dozXUSkf0+sRQWZKp9dWyuWYzh1YfIuQKcW7q3MKwlIBbRZEl58yPSySLCMPATCTKq/h77CKdk+bHBdNjheQii19jcHCQLVu23NMxUqkUO3bsWPiqqanhL//yLx1f62LctecnSdI+4LvYIy9WS5K0HfhfhBDfqujKfsPQ399PdXU1kUXtMyuXw8rfFNav52Hyyny1yYBgAzRsg/DKRncrkQjGjHPawGLewDLEQra1k/AGNJLTOYyiiepAUH8ulUR13ZosIopF0u+9h8gXCDz+EZRAAMuy7Fzsag/j/glGrs6wvW47ez01ZN94hyhwQBK0iyou9J/k7aG3cdW6WFMdRCseRNq6jf379/Pzn/+c/v5+1q1bd09rXSq+z7IEY71xktM5Ig0+GteGb+ge+MIWrvAww4N9ZAwL1WU7rNPpLqqqDiDPGw8rnTCSSSSgmEUq6hihMCguouHyEgVkWUWWXBhmFn9rIy7FT1UGhgJpkrEYOJhdapg2aVfUpSvZ06kC8azOQ21R1tXdShraqn10jSe5NJqgOeq9IWFE08qr5CUMA01YnD99mgceeIB0bJyZxBBWUwPusyfo6xkg1NBGVeNaHqivp94f4+dn4vSOw/amDB9mBrhsjLF951rOnT3Hgf37qfKEbW121dqFhJGkYeJRyjMilVrsEd+NXo1k8hLJ1CU0NUw0ug+X696JbdirEcs6SLIty9abhptv+aeYbuCV5fJ+Hp6InfqSnYOqtct6Si6fY2xmjLVNa2/oBMTyNomqRCU7r5vMJRX6pjIYuUG+tLURxYEOpZmIo4TDznU0TB1S4yiJUaTJ85hnh2D1t8BVnvfjduiLDdGbOYM/4aXeX8/Wmq0LyS4BVwBFUvjnzn8GQK6VMS1zyeqsLMk8WP8gh4cP0znbybbabbYO3qs5Jn/Sh/ox+sexCh9i5fKY6TSiYH9WlGCA4Mc+huRagX9KUe0R7U5Wsi0TCekWkp0tGpiWQFNkNEVe0TkoSzKKpJRVyQ4GgzdMhNy1axef//znV3y85WA5wrr/DjwJvAwghLggSdKjFV3Vbxgsy+Kll14inU7T3NzM5s2b2bRpE77c/CjncASMgu3+n+qyLyhVa+1qyFQX9L5ptx8btkK07Z7GpirRKMWhIaxCwZEopZIx0cn4vhI8geu67GCVAyQ7nbrF9Cgsi8yxY5iJBIFHHkGdN5x2dXXxYexD1j68lsRUnocC+9jeUkfuvXewIlXEojXEBzqZjo2TdbuJpSTycZ2rUwZ71r/PxosaW2s383YgwNGjR++dZOdNJFlaqD4DTA+lSE7nqGsLUtN8/X0YRpah4V/h0tJoIYGUUCjE19KybQep1BUymT4sq4CsuZFkCeG0YewmxOMx/NYUJhKGpwaP5sbjK98Uq6g+TDODf1UNqttPOKsgizTjMzPcW33izrDM+Qr0bSrZY4kcsiTRtsR45UQigc/nY8uqMEf7Zxiay9ISdS7GL2GYzA0PUSgU2PPwPvrOvERWNgnEU2TkOuJJA8/UcQYuHSfg8yFFU0TyPorep6ir0ZC1Oi5NHMHTOEFt3Tjvvf8yT+8/AENHITlG2FsHQMwwqXOX95kuTXqMLjI9lgi2x7MKvTjH9PQbBINbCAY3I91DukDYqzE8l8UwLdQyNwOAXZ0T1i0t9pPxNGeTWSQJmtwu1vrctHnd+O71NWV53vx454SRYrFIT08Pp86fYmhgCGEJ6tbV8bnPfo7GUCMAiUICCYmw6/qGzbIEV2cz9E6m8boUGsMeGsIeQp47/w4tSzA97yEYi+eYm+8c5goqPflJ3u+b4dH1NWWTYzOewNVy6wbmnqDnYLYfkqOQmrB/X7KKUl2LmZiD/reh4xM2GXQQ09lpTk+eIOgOcLD5IA3+G8fC54wcF2cusq12Gw3+Bq4mrzJXmGNv494ljak13hrWhNfQG+tldXA1EU+EsFdjMll+UpI+NUX6vQ/AyCAHEsh+P66mJmS/HxSV3IXzZE6eIvDIgYXnWIWCnWi2nC6DN3q9Uu4ASnrsxedXtmCQ1U1kCQrGfIa2LOFSZDRFQpXtjuFycLuEkYGBAb7whS/wD//wD+zevXtZx+rt7WVqaoqDBw8u6/ErxbLOXiHE8E0fyt9Ww0EWAAAgAElEQVQsUUyFIcsy/+4b/47urm6uXLnCG2+8wRtvvEFzTQ3tsszuuW60sWs2uY62waod1y/+dZvsC83kJRg4TFH2ktKakarXoKgKsqqiqBqyoqBqLtSbdqzXJz8mkOvryn4vubRumx4rSLLzaZ1gVfk6yXwqSVVTyw3fy124gD45iW/3brRG+yYmhODFoy+iR3U212+nbm4NTavDFE5/wFxR8GZOZ3Suk1HDIFu3BbUlRIsWxd91itzoGV4dridVG+ez+bM8vNrDW50DjI+M0Ni8/JuMlTOQvNcvPnrRZG4sQ7jWewPBBjj1q+8x/M5rNH3kM+x54usEXQoT/QlSMwJfdC3pTA/Z7CCBwAY7YaRYOSOIZZmkkilcwq52CF8LYb/3rjGEy4Gi+DDNLJ4aH0ooRCjjwiWKXItN3P3J94CSrEOWlx5EM5HIUxty30LuxsfH+e53v0tbWxtf//rXifg0Lo8maYk2oMheRxJGYgWdoa5OHmxtJZdPkogNkFVMWkSEtk2H0CyFiYk55kZGmBm4imKdJjtdQ7/Hzd7Ik7Ru/CT4NnBm5A2qVuUZGztMQv00YdULk1cIrWu09c56+Ruxksa0ZBYrEWyft41odB9CFInHT5NMXSKfHyUafRhNW151tqRjTeYNqvwOpBrd1GI3heDwXIreTJ4Nfg8+RaY/V+DduRTvSSka3S7azSJtwsClqCDZyRzMfynB4K3VQl8VxAZveWnTNOnu7uby5cv09PRgGAaqR6V+Qz0RX4QPz3zID575AXue2sPe9r3ECjFC7hCKrCyQ686xJJmCQcTnIp03ODufUuV3qwuEuyHkueGc1U2LN69MMpspIAG1QTc7WiKsinjpS7ZzcXyEa7MZjikS+9trVvyjtTLzsbTlmB5NA7pfg/z8WO+6TXY3N1CPwkWKV04j0tNIg+/B2o/cU+HpTtBNnVMTp7BMNw833UqwTcvk2NgximaRx1seJ+KJ0Oxv4ugvfsCb+aN84mv/O3534Jbjbq3Zylh6jLNTZ+3neV1cncmgmxbaCjeNVrFI9sQJFM0k+LFDSBs/vsSjBLnzF8h/+CGejRspDg6SPX8eUSziamvDu2ULsu8O3QBvBBIjYJmODGwyhYkmLTKTFm2C7VFl/G4V0xLopkA3LfJFk5xugQC/25ZISrKELEtIMnZR6qbfuyIr6IZ+g2Szu7ubr371qzzzzDP4fD527Nix5NoOHz58g9Lgxz/+MV/5ylcc9ZcsheWQ7GFJkvYDQpIkF/DnQFdFV/UbBktYXMleIbg+yJ8c+BPic3GuXLnCpZMnOZLJcP7lw/zJp3YT3LDn1jgpWYHaDvKeRiYuvMdczzmswgUINUK45ZbXaljXQVPHA0iy/cG9TrJjaA6Q7Hxax+1Tl72zvBcoij35Me9AG62Yz2Eaxg2mR31qikJvL+5163GvWbPw/TM9Z+hL9vGxnR+jJb0RLSjjGrrE3GycH+oynfk0Xo9MS7WbHc2tPLx6Kw0hH6kGL//60lXUqWFeHWpnWETZX12HJMc4/tZLfO4P//2yqywiZyAvkuDMDKcRQlC7+kaCHRvqYfrNXyBn3PQ/d5T60FbaD+wnMZ1j8mqC9qo6XFoVmWz/Asm2KljJLmQyFA0dxciiqype9yoiofJGk5egKH6KhRkkWUKtqSHS7cZtZRnJOCd/AjDNHIrsRpZv/V2lCwbJnE577Y03znQ6zXPPPYcQFn19ffT09LClaTXv984wOJshqJWfMFK0LAbHJzCTcfZ88ik6L75GOjNDS2gt7hGJ/rf/X4SYH6KUzxGUZ5F9aZSETKxwil/+3xM8+YkDtD75COmGx7iUU5DHxzlx6hU+vvUhGDuLkosRVBVHzI+JnI5bk/Foyi0EW5IkJMlNVdUBvLkWYvGTTE39El9gC5HQlrveyEqRgPFs0RmSnY/bcg53mIJl8cZMkrF8kT1hPw+G7fN3byTATNHgaiLFxNmz9A0MMKYobAt6cck3EiPJ5cK7dQuu9vbr78VXAzM9NlH02Nchy7L46U9/SldXFy6vi9CaEDVratjzwB7WRtYiSzJdHV28+OKLvP/C+wztHyIXzbGtZjv90+kFcl3ld7GrtZZVEXtjmC4YTCRyjCfyDM5m6ZtKE/ZqHOyoJTBPXg53TzOXKbBvbTWt1f4bxt7PFCNUBUdodfnoGk/jUmQealuZXr1kSizL9Dh2zv65rX/iFkmPEgkjXGGsqjaU2BUYPw+rdq78tRbh/PR5UsUsddpmqv23ks9zI+8ylxhm35qPEXaHGejp4eIPf0hysJe4K8E/9v0FH/3KX7B58xbkReeIS3GxvXY7JydOMpAYIOy1CzzxrE5tcGUd5uzJU1i5LMENdUjBpTdFng0bMGdnyZ4+TaG3FyuXQ62psTvc/f3owyO4N2zAs6EDSVuicOaZTxjJJ1YcdfnLX/6SiQm7MGJYxkJGtiVsv4sscYs8xL6uCQQsEGZZlmCeO9fV1fPEoY+jeRSURedxabx6SZc9PT3N008/zXPPP0fbhjb8qv8GOcid8Nxzz/Hss8+u6D3fC5bDEP4M+B9AEzACvAn8h0ou6jcNEhJ1riq6kr3EC3H2Nu7lsUf2s7P3PcYD8NNZieeODfONDR/l5tM8E48x0d9DbHwMWVGo2fNpaqRppLk+zKowVv0WTMPAMgySM9NM9PWQnp1h7YO7cXl9doC/1+fYUJp8RidYVZ7sRJ/Koo9nkAMaWp0PJXj9pulxaPJjPjU/Tn0+vk/oOtlTp1ACAbzbti48LqtneeHkCwTUAI80PEEuZtGgThHvv8Y/J/JcCYR5qCnLFzZFaarbh9tdu/Dc0O4d7L7cgzj7AtrEBTrrPoKu+ijWbeDI4DWe6noT76an7NbxHSAsgVUwUWvtG2YxbxCbyBCt9+FapNE20xkufP87mEKw58//mmPf/xGnvvtdgopC47ZdDJyfZnIgSbi5nXj8FMXiLLJbxUhXaFoedrJKQTfQjCxpT4Co5C07vq8EVfFhiSKWZeBZ1UDwooZmCqbzM44cvwQ7vm/pjcFEwpaSNCwychrpGZ7/4Y/IpJJ8c189P78U54033uBb3/oWUb+Ly2NJHlkdIl8cLGtdCcNkeGSYZq+XpJUnOXSemrSJvzeDnisQWr0db30QKTOGqlgUV88Sr44wXXBTfO09rMlzHHuxh67zJ9j16U/R3LiZdKiTwWvvkn34s/jkizB5hUhgqyMxfon5ZJGlCHYJuqWTsFxMSq0Mxo4xM/osTeENPN7+dbzq7UfaB+fNYo4lMuRi4A6RtgS/mE6QMAwOVYfo8N/YQQuODrP+wgXWFYskdu3giCdATJb4eFUI/zwxEIZJobeH7JmzFPoH8D24E7W2FvzzxCc7u0Cy3377bbq6umjc0UjtA7VsqNlAR7QDTb5+5X9gwwN868++xXP/+hx97/Yx2Z6gJ6KyORphdaTqBnJdQsCtsq4uyLq6IJYlGI3nOHl1jjevTHCgvZqeqTTjiRz722tYV3drpbU0rn1NvYxlBekcT+JSZbY133s1+vo49RVWstNTtnSydsOSmvkSeTfdTSg1RRg7b5v0lql9vx1G06NcS16j2beOghq5ZRDN5Fw/gz2/YIOriuzk23y/cwbzwhWCSGz8zOfJWnE+fPcXvPLMf+VI+24OHjzIli1bUOaTw1aHVjOYHOTyzGUerrfvI4lccUUku9Dfjz46infDGlQja1ecl4AQAqW6msKbv0IYBpEvfwnv1q1IkoR7fQf5SxfJd16heHUAz+YtuNa03bjhLXXU8/Gy8+TFPEOWJAkhbOnSkgTbEghhNydkWUIgYZr2sxXFfqyiSCBDMWeguhRUl7wwkAZYMJmGw2Gampt45713+KMNf0RPTw+//7XfX3J9iyvZFy5cwDAMdu3aVdZ7Xg7uSLIlSVKAPxRCLL3q3wGwT6qWi5MEdbgSuMavs3F25XP447Os2v8pfi/SxE+e/1deeuklvvjFLyLLMompScb7ekjPzaBoGo3rNlC3Zi2ae/4mMBSw9dq5ALTsAaC6eTWh2jquXTxP57vv0Lb9QSINjXa26KKEETOdpnj1KvrICGptLd7t25fexd6EYt7A1C08K6wkCd2icDWBMZdH9qmYs3mM6RyyV0Wt9aLVevH4NFIzeUzTQrmp1SnBsvWYpWSRkiY7d+kSViZD8PHHkdR5Q6Cw+FX3rxifHOf3Wj+LfiVJpEkQv3yRfxmeYbC+ij+ovsxBd4pQ5hByYgYiPnDZhEzSNDY89REu95yhLTGOPDnA8AMbaV3rYnDUw49OjvANzxGU9o/csZ0p8jeOU58eSiFJUNNyvYpt5fNce+FHxGauEvjIU7i8QbZ99cu8/4Nnee+ZZ9j5xDVE3VquXdbZXLUJSVLIZPrxuzYhDIEwLEckHDcjn06h5zNQNMiHQqiSi6hDQ4oWJ4wE1zShym4iOcGoO46wrIVuTbkwzexCIsjNGIvn8WsKrt5ZCsYUmnqN1890MzSR5vMHOli1oYOnjJM8e2KKo0ePsm3HHo50TzOc8FCt6XaVXLk9ebwTrk3PMjc3x6c2buTCq9+jvW+KUHE9cqSRyN49RNUcVkZHa9mBtK+aY7GXieGnKbwRK9rKhTdfxTM8QW7wKM/98AL+Ne1YbbVYyWnOXHiDg20dMP0h1YENjOoSlhDIZbRGE7kiUdc4yVTfDQTbEhY9s12MZ6eIFWJYwkKWZGoiO6jx1tA7d5E3B15hf/Pj1Ppqlzy2JEmEnBxHnYuTcFfx8lSMoiX4ZG2EZs/189aMx8mePYsxPYNaU41v1y6ikQjegs4vpuO8isynq8NE5idxupqbKA4Pkzt/ntSv35lvxW+2p9plZ6FqDefOneODDz6gal0Va7ev50Dzw/i0pVv10WiUP/njP+HvX/gRp4dOsGoqi/JoDwc6nsCv3fl8kmWJliofYZ/G+70z/ODYNRRZ4uObGpYk2MCCljhRSLBnzVp0U3B+OI5LldnYcG+bZjMeRw7473xPsSxIjUP8GsSH7RjFuk0QXg2D79mGu+altbMLJDsRhwf22xF2g++DKwiBpc+fuyFn5Dg7eZaoO0qNaw39xG4YqGQYRc51PoeR8PLBuI+50S7WzkzSUe/hgU88hnfzQxBZTaTKz9VjR5idG+Gll17i8OHDPPbYYwsShZ11O3nr2lsMpK4gS6sWfAz3AjORIHf+PFpDPe7mKhhkyfg+M50he+okxvQ0/r17MGJxzOlpSgxWCfjx79uHe/16chcukD19iuJAP4HHHrv+uysljJRhfvzEJz4BQMEokDEy+JQgmYKFKksEvRqyJCGEwNAtjKJtjFTdCqp2/fpeMExSeQOXIhP0qPNEXaAXTIyiiWUJXB4FRVaQkTGFiSUsVE3l+//6fb782S8TdAf55je/uaxK9o9//GO+9rWvrfg93wvuSLKFEKYkSU8D/+2+rOY3FEIIXK2tRAYGeHA0R/fxX/GBFEcp1mHOyKBqPLT/MU4fPcLPn/8ZdYqHxNQ0qsvDxgPbaepoR1FvumCtfhiQ7CQSIWD1XgCqm1rwR6IMnD1F3+nj1K9ppyoUwhgbpTBwleK1QYypaZBAra6m0D+AMTWFb98+1LuMds9n5k2PK0gWMeIFCv1xhGHhWh1Ea/SDJTBm8xhTWYpDKYrDKXuHalgUMga+kAshBB9OpDg7ZGsOG8MeWqI+mqM+vHdIIMmlU6iaC83tQZ+cpNDXh6ejw64wzePKxCVOnD1OfbGebdpGjHiG5NGzHJ7qRWvW+PfRYdaGCnjqH0M2DRg+YX/56yDaCpFWfKubWN26kcFrOTbPjSKmWhhr8lO7Fk5OKLR2jnJQOY57zb7brnUhvs+rks/oJKZyVDX50eZzrkWxSOrIEbovHya9vpaHtj7BSJedx92ybzc9x0+jvvUWLWvbiHkbGOny0rilhVzuGgH3A/PHMCtCsgvpNGZq0r5IeqII2U1ohe3Pm1GqLptmGv+aRlxKgKoMDEQyGIk4WtSZ+DXTzOJ219/6fUswmczTlNMxJy9jWjqnk2lOj6TZ/9Bu1uzaw7nn/gsaKutCAd57910e6NhCdcBFz5TM7kbQjcSKSfbJzk48hSLGO++x7mo/QbUBOvbS/NSj+GP9WMks7r0PkUwUOdL5PAlPjH0bP8nmmq0kqw0KMxF8q45SmDGovXaV6UtdTM16cNe76e55i707P45rqov6eC+me709WVK7NxOZYVqMJ/L0TqU40ddPa/BDNKmNvXV7Fwj28SvPMTZxhmjdNjpW7aLWW0u1txpVVjHNArWqyaXEEO+OvMuWmi10RDuWlI/YZrH8vf8ghbBjC3Nxu+2dnSUzeJxfezuQWpv4vdZ2ql32+xaWRebiRfTeXiRNw7d79w3VvXq3xmfrorw6HefnU3E+XRtZeK6rpQWtsZF8Zyf57m70kRE8/gJu/wyDV6/yyiuv4KsPYEXyKGc7udA9QbSqjtq6WqqqapE8kRvSMq7O5RGrVrNemSDcGWfujMH7VV4OtR5CU+5+DQ55NJoiXo71z+B1qRRNm4wsJfXzaT5ciot4IY4kSexvr0Y3LU4OzCCTZn19w7KNqmY8bpv5b4ZlQnLsOrE2CyBrttY6n4BrH0DiJ3aq1s7fh9u8R0lVkQN+u3Aky7D2cfjwVej/NWz8FCyhib4bzk6exbAMdjfupnvMsGMj3dc/C93dP2N0KM5Ib4AGOcWnamtp2bWN8KZVKMYkDByGYAPbDn2JdGaOmpFx9nXs5fjgMD/72c9IpVIcPHiQoCvIhqoNdM52Iqk+Ytl78x4J0yRz7DiSquLbswdptnNB9rQYejrF5ZeeQbag45FP4W1fR3F4mMzRY+TOn8f34IMLj1Vragh+9KMUBwfJnDpF9tw5/Hvswh2yAu6QI+ZHU5hYFmQMy/75LiLYhVQeyxKobheaW7llBodbVRBuWxaVKRgEPHYWv8ujYsgmetGkkL1OtItmkXQxjUBQG67luR89x9NPP00oFOLLX/7yXdf6/PPP89prr5X9npeD5VxxP5Ak6e+AfwUWAmyFEOXNmP4tgiRJJBtb6dOqSZx/CV12kZxSSRWvkT/zL2TqtiDLq9CVOo509tAermH71p34PbUUsm6EdZuL2+q99gds8jIg5om3PYlw44FHGe26wmRfD/Frw4RHxhHZLGptHZ4tm3G1tZIVI5hjRbKnr5D42RmUDauQ1tQABm53I9HoXqRFUTv5edOjx7/8G7EwBcXhJPpEFtmn4tlYhVIyTSoSWp0Prc6HldXRp3OYo2nUyQy5RAHhlvmgb4bBRI64V0bRZHriaayZJJokUeN10RL28GB9iKbAjRerXCKOLxxGFItkT51GCQbxzGdmWlmd4cGrnBz4gNRYmo+vOYRV5yd54RXGxq7gWRvk4bYmVq2twqzZiKfhE/MHjds3iNg1GDllf9VvoWHHRhLTCYr5qzw02cXxyD6mm8N4J4boKz5E4cJVHsVFcM3SraeF+D6PynRPDFmRqJ03OwrTJP3BBwxePsNEfYGt+75KIZ7G5fWx9fEnQJKIrO3g/ed/Qr1uUZMaY2Ygyrq9j5DNDZK3xpAIYRVMZAdHXZeQz6TR02NYsozlq8XvcuF26HWuV7JzeFc1oPkC+LIqsigyOz1CgwMk27KKWEJfUi4ynSqgZ3Rqk7NowTRjDet4+2evs6a2hR3+DVz6x/9C3+x5XMKkzVdFzGrilRdf5oEtH6MnbtJrmdREk+BuWOKV7wxd1xk9eYq9swnUqWtYES/S3s+x5eknkUcGyPVP49+zh6lqiRPiNKnUNHvMPaxLtEBUEPZpBOraCEmzBCKjjG78Jg93X+DKh+9yRSSRG2XeevP7PNq2nqp4P3JNK3P68ki2blpcnckwPJdlPJHHEoJsoYhfmaStpopryQ6mL46zr9XP4NV/YSw+wDZPM+t1kDx19iZ1Horiprl6D275JEOmi0szl5jJzbC7YTcu5caOSMSnMTiToWCYuNVlmrBm++HaUZu4zUMYOj2GhuEK8nvx4wS8aWh6EKNQoPtXP2Fy8ApVG7ax9dHPoHhuJUE1LpWn6yK8Oh3n5ek4n64NU+uyz3lJVfFu24ZrzRpy586Ru9JDsreXF+ZOIPtdmFWzPJgP09TQQDKbY27oMrFBA02R8fjTTPss5IYtdMWCDM3KZJR+Qi0+Ik1bGH3/Iq7jPfhdPvb6NmNOz2DGYrjWtKHV37pJvDqT4cJInEMb6wh7XfRMpkjmDPavq17y5xd2XR+vLssSe1tN9MxRLvXGkPNVhAMNuF21uFw1uFzVyPKtm2lhGJipNFpr643/kJm100D0LCgu208UbYVQ03VD3cQlmOwE1W0T7tS4neu+RJVWCUewSgNpNA9m+yF6On/NcOdRvKv34tdUgopCQJUJKgo+Rb5tl2YgMcB4ZpwdtTsIuULEs5M3DFRKTHVy8tJpRnr9rPd6eaKpCU99Pf5HHkH2eOxN3Ph5GDuPVkix46k/4MRL/x+5q2f4yke/yksnzvLzt95jMivYvG0H+WI94zPXuDrTS5PHxcaGIGGfRtCt3tWbkLtwwU7GevQgstcL+ZhdbV7U1dMLOc6+8gyp9CTJvQ+Q9kyy12rD1dKC0TFDoacXtboa102/I1dbG2YqTb6rE62xEVfLvOfLG3GEZBuWSdEAryoR8iwi2IksZkFHVSxUt4S0hDcGwKPZxt+sbiIXDXzzm1vVpSApEnrOpJAzMGWLrJlldetqLl26RCFXQNM0jhw5QniZPoGBgYGy3+9ysRw2tX/+//950fcEcMj55fzm4tvvHiabnkMqqoimg6i1Er7xASLJfnw9ZxirTZOINOLKVDOdKCCbMkEMMldTNMyl2bajjlWRJaq3Lbvtds7EpfmK9sMgSciyQvP6jWjdvUxOTDJVzLJufQehA/sRosjc3AfkCxMoQQ/KwXWIS0OYXWOos0VcD24gmxvENLNUVz+KLNs3u3xax+1Vke8g2bCERVpPkyqmSKUSWH0ZAqaPcHMN/jU1SMrSFxHZp+Fu1VCrPEwPJRk7O8HlBhfjlkUhqhH1yKzyeclVC+byRSbTRbpzRc6OZXl1PM6h5iifbqnCrygIyyKXSlLX1k7u4kXbHHLoEJKqUhzPkLg6yanMCWbTCaoKVex5ZCd9P/w+8dErTKxuZVP7flr3NTKX7QJtFaNT5/GoHkKuEMHqtfgbtiIX0nYXYfIyVQYEm6sxEtUU4ifZM9zDL9tbKbZoeK0MBV8Db53t5hHhonbt1lveu5UzkN224TM1m6d2dRBFkxFCkDl+nNzoGOeNfrytq9i0+Ql+9drfU3SnaE50UBVdw969e5mYmODIsWMcRKXY34tV/ASqEiBrXsXP9ooNpMlnMpjFWQwUPP4mwh4vktuZQQPXSXYGRZFxVdfgn1HQhM7A1BANHdvKfo3rg2hubduPxXKYsznq3XPkIgo/eeMw0aooT33hk1x49u+Jj5yjVq6hqAomJgdZb4ySHruG2+OnRm7gctKk2T3Cus3taPeQ+26m03T/9KdER0fJqlVkm2TW7XyczV/8DCIRI3XlClpLC13+BL3jvXiVIo+u28oq+QDGRB4zpePpiLIq6uNafgO7g7Nk4mP0HHiSrbKK3HWEy/IMfcpZGqQq6or9eArVTPkfZq3vzl2IeLbIkZ5pEjmdgFtlQ0OQ5qiXkakrnC7K7GnfA1o9J698yCtv/R2YU+x1b6R2roGc3oUW+wnqwW8gua9vavz+9WQyfWwQBo2hrVyevcLbQ2+zr3HfDdnQi8er14WW8fNMjNoyAn8tVK+zyYgnTN94H8lUgR2bPkIgPQATF5ma7OHDy1fRk0nYuoXuOhUjfpld9buWJD5RTeXpuiivTsV5eSrOkzXhG+QmSjBI4NFHSWo5up75H6zSo8xt8bLLu46duz6De9UmjEKB2FySq32jnJm+RHdCJjcmEbsQR5d1anwGprcXJaERtXSCUUhcGGSiq5eu1SdoCa1GUhWKw0P49+7FtSg7fjyR4/2+GeqCHh7tqEORJSJehb6LxzkxIdj24H4ioRslUmF3mKuJqxhGjmTyHNl0P+uMOD2dBUb6h1AbBklIWZj/cWhqhNoNv4evaf31c3dh0uOiSnZiFAbeAdUD7R+dJ9Y33UNMwzaJNu+G9kOImV7ODr9DZvAtNq37JDXNe254uBKJoI+OYug6PQWDs0lB0r8VbayXfK6XnLcWyxCYpoVlCjBhvc/FjoifVREvvpAL1aWQLqa5MHWBOl8d7ZF2wD7HG8N290kUMrz13k8Y6vbSWF/PE9FqPPV1BB55ZEF2iCQxG6hmVI+T7X+LKa2R7oZmCj1vcfT/+T+Zbt1OPlTHi+9dpGtGp211M95iDbn4JBezV/AVM8hYSELgUwQhl0Rj2ENzTRCvz4fL40HzeBDTMxR6+3B3rF9IxiIXv679B4pGkdO//D7Z+CD1+9dTG0gzOP067yVPsqlmO9pqD/pIEv3Ym9TU/v4tySKezZswpibJnj6DWlVlRwF6IhAfKjthJKfrSMgE3XZwgrAsCvEMum5ieTV0GXL5Aoplobg9tlkaUCTQ5s8Xn1u1N/VFE1mS8Mzn/CuKjOSTSGVT5Ip5JBR8Xh9G0SCRSOB2uwmFnPEKOY27kmwhxOP3YyG/6dggZZFIEg0FcRNF7+0hqCsENj3M9NQ5WjNDzNYG6N/cAoNDDF58m88//WVSgSjdPXOMfTBC1So/YZ9GfchNXdBDXciNW1Wwmh6kNzXCcP8rrJrtZP0DX0RRvKSPHMFtmKz+6tfofO0VBvo/ZOOOdpLpkySSU4yO+Ghu3kJHRwe0QGFggNy5c3AySWjHelL0MT3zFjXVj6Mo3vn86psGuwjBSHqE4dQwqWKKjJ6xNZcGRK95UCyZvsY8RasL7zUvNd6aha+w+9ZdZdEtc4UM8YFxrmQU5guVoesAACAASURBVHxF3P3DaInLZKpa+Nzn/iMeT5W9A7YE07kiP+2Z5K3hWS7FM3y6tYYNkoFlWWi6TmFgAM/GjajV/z9z7x1k13XfeX5ufDn265xzQs4gCBLMBEmJVKApyfJYtseqnRnPej019pTX41nvuMa13qmZLXtULpuWLFuSRUkWJYoiRVIkABIgcmoAHdA5vU4v53Dj/tEQSYgUJZsY736rurpf97n3nHfPvf1+53t+v++3BiNTpbKYYUQcx2pUKV/W2NrVzMhrf09x7ibzTd3U33sIb1nm6vgPyYaDmNXpTYH797jViYKIV/HiU310h9txpa7Q7MpRdN/NyuoaUmqR7Q43Z0NhxpYn+PcP/FsuXD7PiSuj7DZEOnuGbtuytYo6okdhYzGPpIiEmzcDkMq1a+jRFUb1DMVgiabO3Xzjx3/M2to4tiwRf+0P+eV7fpdA03aeeOIJEokENy9dolXR2ZiLUtPVQzZ7FUPIo1TvjOLHe2FoGoZWRdALVJxOfHIQv9uNeAeMhAAEQUQSXe8EwmpTPf4lCadZYTYZfWd1/1HwTpAtv//6LM+niNgmDu86/2ncRhUkPv2xRzj93F9QXTxF2FvHjof/NxRHHW8vfIfFiR+hZGPEz32VA/s/zcXZBZazSUi20LClmWC9+0OZKtu2qU5PU7lxg9kLV5lt7SKkZWiqDbP1Y8+AZZA7dw7R7Wauw8F0epqeYA/11jKSqOKpa8Ws0ahMZ6hMpKhvdjMruSmFtrPbusKx0joTdz9Mj2ZQmPkxa9Yay61pQoaPwPxZrmdN3A4VTyiMNxTGEwrj8vkQRBFBEJmNFzk/n0SRRB4crH+n+M4wilzNzJOKFfiL//FVmuQ0tm+JFAbecj9Lnjpq9w+gJJ1os2+irf8/SLs/haO7G0FVEQSRYHAP8cQxGuQqNS33cm7tHKdWTvFA2wPv5C2/1466zv9zttmLSezZE5hmCMt1EFFxI7lVSrbFRGKViF5g8erXyDd0UKrmyb7xGpLuJLjns/jlrZTXpjm7MMKyJ8n24E4cTgXFKeFwy7h8KqpTxi9L3OVy8eXRFf7rZIKt9X6Otodp9v3kuhh899oktfUOZLPMoaSHwLSHqdgcpfIURbvCkmozFaxSEgq4shbSihulkKbTWKTF72RejNO5IVFTXCMZ0FgMhLkiBVhNpRgOBGgItiHenEJ67pvIw0MoXZ2sFw1G14p4PW72drWgl4sgWnSlz1DrjjIbKzB1bJrmwX009+56RwHJr/opVdaYX/0ejmIBed4imPHTWRtmPGPRjJ8Gn4xhZ9GsDMXiNCuX/pq62FH82+5BkCSM1KYuuBy+xT4nZzdZaWcQeh782eYxP1ET6XsEPDWMllaZr+lASc7x5sS3aIyNsGXgUwTcNZvt/X5WKho3phdIu3248xaDOQ/1BR+sz2O3BNC8PioOAU0WSNkWU4Uyk6spGlYl+gWZRqfMDfMihmqyvWEngiBQNUzKurlZ9GjbnH7z64yOWoQjIT778CMYFy/h7O/fJGx0jcl0jlOLNxmPxyikayiXK5jWCpYuQLiTocJNalYnKA50UxfQKSydRol5GOhoxWGlmMpPUJetoKgeioZI0ZZIGAITiwYiUOOwqXPYRAQN19gYznANgV3bkUpFHA51Mx89srnIqZpVzh3/O4zkFWp3thCpq8fpbMah1jOVHmM0dpG+UBdCv4L21ijmqW9S/9AXblNVEkQR9/4D5H/8Y4rnL+C97wiCK7RJ4JUz4Kn50MfONiyMVAVbt7AqBogCgiigY6GZJl5lUwrVNk3KmQIlCwy3A1GVkQQBC4GqroNVuU0SUxYtnKKAUxTxqCKCXkYrFrAdbpy3dptKRhFTNnCLbvSqSblQpVQuIMsyQX8AM1tA9LgQ/5Epcf+z8Ys4PtYDfwI02bZ9VBCEIeCgbdtf+aidC4LwKJvKJRLwZdu2/6+f+rsD+BqwG0gCz9i2vfBR+73jsEweTU5S0mVyeS+WmUSVbdp29NNwzyFs19Ncef3rNMzN0+l0cLa3lZh3jW+d/gH/+yc+z96mTm6OJ9EtEUuRmItvmhAAiHKZlD6PrBo0hfsYT4wyc/K/0B1voF5twrf3EIIjRGfXDuZjlzj75n8nU7W4eVNC113AFFu2bOHo0aN4urqQIxGKZ85iXVkmdO8e0toV4vHX8XsPbxY9vqeobaO4wY3EDTLVDG7ZTdAZpNnbjE/04pq3cYRVPEMRCkqZZCVJvBwnXo4Tjc/inozidnipr+2kuaEXV7CG9VyR73/pz8k4DebaW7EEgYFyjC1BHWd9O3NzN3j++f+DJ5/8fbzeEE5JoNXr5Ld3tHFqIcWrqym+ObVOm6rTYss0Ts/i8vtxDg9jVQzK00mumxNkasqoayqqnqNUqpC7uU7eWYdwdyPO+gqp2By+kp92/2NEGlrwq34MyyCv58lVc5ssvZYnVUmxYpSp9/qpq87S3DSHmRtmvZCiKT5Ls9zKYsjF2NQNHrz3CKdPHePitetMLG0wOLyTzvoggm1jVUx0p0wxU6W+048kiWjRFSqTU+RDIY6v/QjRXSVx7Rhkq8i5WjyhMHPM8Zcv/Uc+1f8IPQd/g6effpqvjI3RUMgTn5yidcv95HLXqIrLOLV/WkHQh6FSLCCaVWxdoxAI02I7CLjdCMqdy/3+iVY2gLezFccZBV9ZYyEdvSPn/4nbo/xTTHYuXSYdK7EzXOSiJTBliuzdu5dL3/t7zJnT1PhrOPDFP8bX0UflZor7lX/BWPcwx888y7xZolw5jr91C1oshXz9FGuTQdL9vTQdHLitcNjSNKx8HjOXQ5ufp7q6wWrM4EokQNblYbdjjL33/zKCp4biufNYpRLpfX1M5afpCnQxFGwhFh/H59ssEpO8Kq7BMOWxJIHVIlg2q2onO0Ir3J+f5XWzjht3PUy3ZlBdeYG50z9i9xf/b1rHTyMqRbzBRgqpFOm1lXfHaNkspUokihp+l0pHvZ94WiHrduNwudGEm4yMLrO0IPO4NMu6ssKSoWJU+qjqXpKVBa68usCB++/ngXufwbz6MtrFl6nc7MHR042jvx+Hox6Xq418fpz6+i4OtxzmxNIJzqye4UjrEWRRxq3KqLL4oQojtm1jJTMYV09iFIPYtVtgrbL5JcIbok5q9gJi7BTX5SCFG8doXa5Q5wzTOtBLjTxHoLadBt8egkkPE+lxbhSuMlDdhpmw35EQM0VY1DTWNZ2tPpWUQ+Hycpory2mGgm4O1vk5/forpNeT9CgOWtQe9Eor6YllBDFOtb2X+foIG/48bjtHW96Fu3YPnl3NDMgZtJPfIh1bRXKG2H7vTrwtg8Q2cgiZC8x7JObNIDFZ4GOqTWD7VozrN6hcukR0YpYltx+fQ6G11sv8hUUULY0vP4Eo2Gg123CEBsjF5pi/9DrlpWt07TyC6XBgRl+kuH6Z2KSLwIJC3oZ4oxtTURC7D3HV08OTO5rw3Uo10atZ1q5+jdjSy2ixdcL7j2KmM4hOxyZDunYdVq+Ar2lTy1r+GQXR71ETsT2NTC2NM7Y8QrvdzJB6mMXqm8wsX2IlvkBb9wOs6R7Ozi3RtTJHyeUk7IxQU9EwnBr5sMVwUwWvZwIGnriNMS+bFqP5EleTBS6XdXKpa4jFDQ45drJyLc+Go4gmCZhZDY9gM3b2Rxw7t4bH7eTj2x8k/vJZ9GiUiwU/l+0RJm2LnJVHtisENJPGpEYoHyOiqjTW+PA2DnKzVsU/NkdLPM3IYCcJf5njWY3yQoa9LQNM+J2UO/08te0xpFuLHdu2ieUqzG9kWYzn2CiWqF67QED0Yzd14B4fxzE5jkuBQDmBr8ZG0UucPffXsHGO2u4ufPUH2dgIEw7XMdB2gEDoIOfWzjGmuTjc8RjlTIDc1bdZH/s2dYMfv63wW/J6cO/eRfH8eSrj47i6brlNl9MfGGTblo2ZqWLESxjJFIJWgADYhgZI2AhUNR23AU5Do1Q1KJo2VUFEciq4nTJucdN0RlDdWOUyZrkMWODxYNhQsSwKhknRrKBaGk7BQhQszHKWkl7CVCUMLNyyG1VQyOgZSsVNZSg3KpV4ElOvomLhDH40F947DeG9ot4f2EAQXgG+CvyBbdvbBUGQgau2bb9/X/wf0/FmMvAU8BCb0oAXgc/atj3+njb/Gthm2/b/IgjCZ4BP2Lb9zIedd8+ePfalS5c+ytD+0bAtm+iL3yFbUREahqlvCyFePIFn7x4cXZuyQ5qpcfGNb1CZnKSmbwsXgk5OL0dx6ir/6dHPoRZl4ot5apq91Lb7WM5kOLM8xnQ8hq47afG2EnQGkIpriCe/hVnIYPftIljfjyxXWV+/QFqfRtMcaLlOdm07yN6Dexm5cZ2TJ0/idDp57LHHGB4exi6VyP34dUSPG8fh7SQzpyjnDcob2+je2UNZLjCaGCVWiuGW3QxHhmnztW1W/Jo2lZspzIKGcyCM/FP22rZlkXjjVTKxZRJaAiO/jmpX8ZQ1puYXySplTMWNIrtprmsgUjdE3Z4HaRjewtjYcc6c+Tvc7iCPP/a7hMO3W2svp0q8Oh1jcm0BK7dBRzBEy/Ag9cEA7oUsS7mrVOvKtAc6OPHtF1DMAmXNpmHVpHb/HrY/9QB+oUopewlnrAe32IlrW+3PTHGxbGtTkmntGqVTpxkOGfiqbSSSQZKVEZKWxFstDfhkD//1mX8DlsXK1GXGpmdImy5cjf301zXQuFEhZYOuiLRuj5BOZEi+8hrr8RVelq4jq2vU6NBQDOLO+2ira0f1dzFmr3NOGaG+mmOvs5Etuz7J914fpWt2AW9LN0f+4HdIp9+msDBPrXoU99aPrpP+XiSjS8wcf4Eb559jtmmIodaneXBoO417Gu9cH6m30bUUDQ0fJz+zxoU/+j8505VgoynCn/3Kf0PyfDSGPpu7Rj4/RnPTZ99hmW3LZvRMlCtrWZ5on+LZjMrlhSQRO8P+6y9T53LR+PTvYzf0UdUtOkIugktFbNtmxTPPc997Fk1Zoa8lTMV5D/dHduNdWCYTTYHiwNPRhGSUEcolBFNHlAQESUQ3RHJKE5eWJxgxUzi8CY621XH4Y/8r2uoGxfPnKfe1ct6zTsgZ4p6We8hmLlEqz9PY8Il30roAzIJGZSLFyUQemjwc7XXCxA/RfC2c0IfZSObglb+hWjiN0tRE1wNPQ3aNuw8+g+itQ69UKGRSJFNZLi8kKZQ1uiIeuiNuBGzMqo6eLlHKbjCVe43Xol3cVVrG7V5gxROiOTxIbYuXolEkl66ysGBi6DKf+vzn2GqvY66MUzVbqcbLSD4/3nvvwVIsNmIv4XQ0UVNzmPXiOm+vvE2Lr4UDjZv1JscmNrBteHDo9hxkSzPR14sYsTz20jUES0Ma3I3cVIvkUzELGuen5/mbhTM8uvEiOd0ml2qkZi2JrUhkO/04fGUiaplGh0nPwFPU7fkCk6lJbiRu0ORtYn/9fvSyxdRylkvzKQpFjVang56AG0kUSBkGJ0slZlI5NjZWUAtxOqoa98hTuML1xHsfQa3zoSzPIKxFKccXkdJJlKoPNdhBY0MdrY0+ZDOHWYozlrzOxYiTXQd/l3v6m1EkkUIyz/WT3+aH+TmicjN1/mb+zeG7qXf4Of/9N6guLFC/bZCh+/Zj6RrWylVYHUEXHBTD26laCtVigWIux3Iqg52ZI2ytI4gLLIpeTlkynkIjIe32POhwUxmlvp2dW57mQPe7C3bTrLAx831Kc9fwlttRMk7Uri58XQ6I34RQJ3Qc/tkypqZO9OR3KGdtqqG7yJUS3NCu0uCo40DjQXweJ5QNqokZpjde5pXCTUYVL07Rz9HLcxAQKTf5cQkiTknEYQs4CTHcUkfD9qPQ+P6UMsOyObY2xvHVy7hdndS6+vBrBg25BEJ0GXtxmjp9gclSjIIdwK12E5NrcMzPshRqZqp1EAmTWjVOnyPPsKuBlqxJwKHhkeZwbt+LNPwQAAWtwJmrLyJfuEHr8AGmGny8OjVOpmzSUY7QtqJR3Knz8bsfpCv4fglC27ZZO3uJ+LVRVru2kgj4yVWS2NUYdmYSKzlDyalStTZosWxUIcJqMkKl8i4/umPHDh5++GFKQonTK6eRBIntoX3or79CMT+JdqAP27UHnUacisj2liCiKFA8dx5teQnfkSPIy69CpO8dgQUAK7WGMXMTKxGHagGBEqJHQvKqTHq2MdDTia3fKkrUNCzLRLMtLFHCkBVQBBRbZ1OkDyRJweMJoaoebE3DKhY3i1zdLgSzgmFoVGyBiqhiSQqiIGLrVarVDCIWXsmJYqlgmBT1EiY2siiCaSLpBpYiowTC+Ly/gNPlR8DExASDg4O3/U4QhMu2be/5oPa/CK8esW37O4Ig/D6AbduGIAh3IgF0HzBj2/bcrUF+C3gSGH9PmyeBP7r183eBLwmCINg/b2XwzwzbsnBksjSZWbxWAiERomikbhPrVyWV/Q/9Cy47vkPy+jXu6t1GuKWLHy3P8EdvfJPfve9ThBo9xKM5lsuLLCszON3w6Z0DdPt7SZdM4mtJSuenyRttTDdEWC1fp7BwAsksIAgGoi3jUWvw+hZYWU5hF64x1LyLwS/8Kj949TW++93vcuPGDZ544gk8+/dROPU25niU2m0PM5t4ibxxgivJedaqZRySg+212+kKdCHdytOyLZvqbAYzr+HsCb4vwAaojF5HXZ+ko91Lr7eZYiXA1Ng1rk3NkvSKrPb20K1beBMampYjNnGS2NjbjNaFCe49yP67/yXnT/0tL730xzz00G/R2Lj9nXO3ht18ZrCW19/4B9Y1HfGeh1k3JGanVlnNXCbvTFOb9rH89gsIWoG408NdRYPmnu10PfpJAj4HGxs/RHGECfZspzKRRovmcbR/cC6XKIh0Bbpo87XxxniKKTVFk7iKW9ygztOMuT5J72yG6z1DvD0zxuHeLbQM7qOltYO1sZOMxUa4vNqCVQwgux1ItQ6uXFnGf+EU1blL3GicI6gUaVcVtrTuoq3rAebn0yx5OhBKBg2TZbY0P84lxwWMdJT143+HZXWQlgT8yQSplRieSDd5aYpyZQU3dzbILhfypGOz2EBZDSOITvx3wijkPZAkFxXrFiPRVotTCeAvxlmwKmQTq4Q9vT/nDB8O0ygiSbencegbJdZSJQI1Aiu2xkrFQcfaOI3xCWzVSfnQFxi1GpDW84iCwFyiyMOdNXgWC7QaPTz1+Od5/oWXWV+/iKvmFDea7+LJz36C4FKUjdPXKS6uYztc4AqA2wNuL7g82Mho0zMsaevIziotDoHOHY9gVk1Kl69ghP1c8SVxCI7NoNM2KZcXcLnabguwYZPRdvaFqEsXGZvPUOzrxdO0E3XlMg+1tXLVG+HGvc9QubCGuLbA8lsnUTtqKM2fxu55jGTRJFFxMpU3kGo9PNpbS3PQ9W4hc6GE4TQ4tvpDVgoG7dUERmSBQu9WtuvbaUwHERckPI01hA62sb5tnr//hx/xwvPfIPJrv0ljKYnbKqH0HqB47hKFN9/Ee+QIPu/QpiNkdZ0GTwNbI1u5kbjBTcdNBsIDBN0qc/FNo6afzJmRqlCdy2DrJlJxFDmcRt5xP0Jwc7FnGAYnrh7nW2sTuCmi5jXEfIC9UojerUeQevqZ1aKMRKe4mYqz4kuwcvl5tizMMvDEHyDVSozER3hTO41Y7WMjr9Hc7mdfRxifIlHKaxiaiWdpjY8vr/HS+hR5j0LV5WTDX8u0EqS+uso50Yk3b1MfaUcqrKAYbmobeunt6qXJ1GEjjbGWhPomfEeO4KjU0Dh3AX3hMi9XRbpqPdR4Hex64tcIXHmVH954iTmq/LcXK/QFmqntHOZAY5DQRhTz6mXckRJCeQ26d0PbQUKSglUxNlnHXJWOjRSvTeZ4M5WmTQ/TWjXp8krgcbO9cYCaxkZCTXWMzUxw/fp1HPllzmh/QXPwX9NaU3vr+XTS0PtpEv4QuZvnkc6vECzMYDnaEVt3QfPunylfausmC8feIj9nkPf3s67HuCZeRXT4cPi28lqpQp1k8+jWRhamYjy/7KbO9nGouI5p6chKgLDuJybXkKlk0MsVVLWMT92gMr5C5+o6/Z/4D0ih2wuPE+UNCsVJnqhppLYIqaVjZOMrxHNFCvkq64ZKzKpDdtVQ74IapUhNJUmtO0ZHl4v7Oxaob7QIegJ48wfRL61gWyLO1h3IjmbE0vJmjrkk41W9HN79CS5kSiyPnWW4/kkO3vcEf3v8OUaFVTY6g/TfsLlun6bh0Yb3STrqK6s4l2bxdErYwVOQSSIVKhSLZexCEaucQS2VKCsa47absGbT666jZXCY9p4uJqLTnD1/jqmpKR555BHu6buHr468wpnZ19jq20JwNo0xsoHWfgJB6aVg9VHSTA71RHDv2omRTFC8cAF/qw+hnIJqATsxgzk7jhlLYAsiYqgGqaUZMVSD4PRjCQ70pTjlooZpGWimgSHomApYkoBqGLh1HdGSwelGlBVsoKoVyeViOBxuPJ4aRK8XK5fGquSQPC5kxYlXduIRRKqWTcUyKNhVdFFG0gVKuoli57GwMQUbW5QwJRXZ1LFUB6bTh0u+M8pXdxK/SJBdFAShhlsbaYIgHACyd6DvZmD5Pa+jwP6f1eZWcJ8FaoA761bxESHKEuFnfg395jzG+jSs3UDJryAtBaDcuymi7w4jizL77v0sI6qbjUtnaW/u4H53hLfya/zpqe/xxf2PoqtZ5iaidO6qY1fLDjyKB9sw8E1dofD6yxSLq2S6ZYJhFTmeQC+UcChBLCWAnNSRIs2UJIloao2FzATX85PsmG7hUPd2lpoiXLgyzp//jy+x/75H2NvTQ3VmBj3kZTnVSK46jSO1TH/TxxmI7H2fjJS2sKmB7ejwI0d+SrbMNNAnz2CdfwFnOIBS309B9jExdY6pFYvxunpWt+zjyLZdhKPzVE9XEN0JvLu8uFYKmKvL5I69QnGoga7BXcyMXuHHP/4zjhz5PG1tRxAEEbNQwHr7JHViBf/wNlbcXirjN8inLpITlmg3bOoqAvmCSt6u5TPNQ4RdFQode/CFnBQKY5hWmXD4bmSHE6XOhb5eRI643lVE+QDIokx7XTeW2I3V6iD75ksomWXcbonWjTTxhVGeD9axr3sIhyiCt47GPU/SuHyeqXNrXEiUyTcGGVAsgpdPk7/2OuOtSVQ1QJMvyMOHP0ND96dYmZtlNrmGURPgkf3t+Jpkds8vsG/b05zO3CA3O0FwKUpGDtBeLrE+NsnwI4eRVA/l4jy2ueNnsvL/FFSLBYrZdXRJQXLVEFBcyM47m+8mS15s28Q0q0iqA299E67sPKapkUpGCbd/xCDbLN2WKmJVDSpLORKiTZc7zRXLi7a6TH/0Ko1BN9oDv0Tf/ocY9LtRJJGKbvLK6BonllI80hxCXi4wULebbf1z3JzNI6nXWJ77Josd/5GuzjY6Ojd3XyzTwjRsTMPCNCy0fIWNN0dYNVYxLJ0WJYmrbieNbcOU3noLE5vrbTa6pXNf6304ZSfF4iyWbeBx93zge5MCDtqHarnx9iKLN2IM7t6CkFtFjJ5n99DHiXj7+MHiXRi+IvnlKMV4ileW1lBXPWT9fYjCZgHWga6aTcvjgkZ1JoNVMaFG4Yenv0qxGsWZE6g2LOAa2M+Rfb9Oq6+VfCJBYnSO/EKc/EocR8DDvoEBLkxM8vXn/4ovfuILBJfPoRRv4j18N4W3T1M4cQLPvYcpSXNkM5dx1B2lP9xPtpplNDFKQA0Q9viZ3rDJVQz8qoy2mEOPlRA9Mi7POKKyupmaEGzEsmwmFtY49spXiXoL4Gxg52weOycxUN/G1nufxtk9jL5SZDjXyNaOAxR8OsevnGBt/QTF5ATrz/4We578D2yP7OTvrpygRq3yWN8Beuu8iKJAKZclv7RMbnINM6dzPj1DpZxih6NAy5H7aWw8SGtpmeBSiYMdIeIrGWYmjqGJJrvueZht2/bcZqttVQyqizmMRJV4RaK9divbjBhXcpOMVN5lOj3qdrqaLZTFH3IzYDAWz/J4JUvz4w9jzQeovP73iE0+XPd/Emr7MfMa+moKI10FYLWwyun5r1O1YkQkH2nhLuranDSZIxStHPWWA9dyCdZX2B1sJbzTw1sj59CndL5j/neefvg3aAtv3neiqFDb8BBCIkNZuYRhpCkuNeHsbkP5gADbNi30tSKxa9PkF1YR2lvZes8AqfgpdtutHKi/B8FWiWbKXJtb56vf+wHnKmk0h4OGYh9Phe+iXJ9kzhrHmRV5tP9XUR0eSh6T8fVxxia+R8mTI1NcIfXVP2T7E/8Ob+8Atg2L6RivjT+PlE1Ql5VYLVbJFVVKRoACES5rJikZpJBES38du/oO0u13Erx8BjE8ibTTgZG8gpLy4jD3UZ65jlIXxH3gIFZeQF+qYkQ3UDyzKP19CJKAS3Zx8P5f4Ur2WWbefJGWJz7Nbz3+O7z4xt9xPL3O9U4/haiG4zuvct8nPobzljqTmY6x8tJXWSrPs6G6COTc7JQb8Ule4vYK89oqWVGlYjYybEQoRaqsVteYq55DnJ2GxS7qQx08deBRzs2N8P3vf5/2jk5oaMLnjbKzr4mQZw/CahSpvZ6ytMZq7gY3YwN4HTLbW4N49u8nf+zHlCeWcPszmLEoRrKCJdYgdhxCHRpCdL/7Wa9Xyoy8+BXkjl0YqkwVlbJRxhAcSIgELQXVK2FZZcxSGbtcxFYdKC4Pbn89xXKeSiWPplVwuwM4ZbCqIrbqQ1A2iQTTMtGqJcqVHKJpEDRFBAQMBCpIaEhIkoAg6birFSREDLcTQTB/ni/c/yf4RT4x/x3wItAtCMJpoBb49B3o+4OigZ9mqH+RNgiC8EXgiwBtbW3vO+CfA7JLQdrRi77aRP6EB1GO4pRDSLHxzXw0xQOBZoRACzv3X5GM8gAAIABJREFUP86Ey8fauRM06Do7tSo3PMv8xfkK/U0NDDtb6LP6sJOzTI+cJHnpEvlMBsOjYOzrJRJpY358BMt00ju0i0NtW8nl48y8epxMZY2u7haaAkNMRguMEeOysUbnjQQhU6TbIzChhXj++Ak2+moJxeawX7xErn4fTT0P0Fm3jmKtI9hVeI8/pbacR4+VUZu9KA3v2cI3dYhPYkWvol+7jOCtR7nv89yMR1k5/gq5bIHrIZX15sP8y7s+xuGmLswek6v2GMXZ65gLU2zUBnFGtuGZGMEamyRaWMUOCeRjZU698ud0dXwPPw3oY1FKms6yLCOpZYz1ERbX18BMcsSUCQg+knYTS1WBB/fsob1UJBVpxVFfA2KJfH4ct6v9HVdHtc2Pka5SncvgGo68T7vzvXB6vORTCba1HiH35ABTx76Da3UUb65M60qG0eBVXl/ezxPtA5sHSAo5324wxjnkX6WlZZTE2RFmR68w22SQb2ojYCjsPnCU+t5PgyBx6cYMRdHJA4PN4JRY7h8kls6Tny8jtvez3Osknr9MTclES0B2bBzh0XvxeLpJJy+jl3Oo3juXj1YpFNCqaaqigtNVS9DpvmPKIj/B7QojDlzNjTg3RCRLJ5Ze5YPDy18cpllCVd/NM6zO50hWdYSQg4yWoOiJUD//AwJ2iSOPP8Px3ocYr1TZEty8x52KxP0D9bw6usabsRwP1HnQYyWOHvoUc/Nr+OxZ4vErvHnlOTof/s132FdREhElUBwShWicxMlRzEqZicoyQSFBOFiH0XeYypUrGMkk0wNe0hTZ37D/HcWNUmkWWfbd5kL604i0+PE3eFhZL9C1kMPZeRjGfwBzb9E+8ASffOrTfPvvb+DtSbIWryG8OEeX/h0OfO4PibS0IYkCtmWjRfNoKwUEVULocvP157+MxTg+I0upJYzsauf+3b9Bs2/Toc8XieA7EkGrVkhNLJAZi9JWDLDg9hFbzfGNE3/L5w8+xcz0BVY1L9q23cgTE/hOnsO/tR9Tv4GUnyTiH2RX/S7yWp7z6+fZHTkMQDJZQklpWCUDpcmDygRCbBFa9lL2tjEdzTC5niN67suYzjUS4g56pguEtBRhf4DtT/067s7NZ1EOODEyVbTlHO6EyMcHHuFmXTfnx7/MlFoi/tyfUDPwBB5fhEgoS6NLZ+3aGPmFGEaqgmAJqH4Pl+w5lssplEiRxx9/ih2dd29OQsnGjisEF66gJkZoaDdo2PkreELvv3tFp4yrP0w5WaAwUqS52o0Dm3sdCxg9HaTUJhKFKsmiRlLYibvipHfjx0wG4TW9RPkrKxzZN4w37KBSDSPbTRhjCcy8jiALGDUSJ8ePsxx9BYdcpS4vsmvHQzQeeoJoweDyeID42gkKyjIx/07cVYFAOkakLPBAwxZOxiYoTOp80/o6HXsf5GDzXuocKq7ETXxzUSxPhMrdg1RSVTxvHce9fRfOvj5gc6fTiJXQVgrk0zli69cQOhQGHjrIydWTWLbFfW33vWOME1u+zurUt5n1N6DaXu5Jujj60GPU9zQilFK4yt9k7sJJLmW/zP7g/bj1Pva4tzK0u5fT8y+xnj3HuFJk4sW/pL7+LuQahYnEMcxyga3lBjShFYfaQm99LXE5y5npEZpNnf6GHL37tnGo9y7CzjC2ZZFJZSg12NgRD76WX8G1UUI7+xKKCI6BB5A8FtSGURrcaCcn0WZX0MtB1BYvcq0bVXGw+/Ff4/o//BVLx35I9ajAp45+kcD5M7w+eYy5sJeUtoD93Asc2NdP1Zpg9vVXKKXz6MP97PLeTXPrXuYLUd64/hy6EcXlcdOQldjeeTcN9zxMyRNkYWOeK4snmI5NsZwepys2h2dFpUkKIwVDXI7GyG6UCXX7mG2Lcd+eXWivxZFmwbX/IALnKVcvMDnXQTiv0Cql8bgX0WcmKcWc0N0Czf2ovc3IwdtZ4VI5x9UXvkw5GaNu4BCSw0OllMUUVVQLvIaEKxhAccgIQgjLU0XPpdArZTQzQ1nNIwkiTsWBrlco5xNURBlFcCIUChiSjWZUMcwq2BaiLeJBRVKdaEC1oiEAbocDRZWZn7zGI5//da6dPYlTLmFhIGEDH/4Z+Nxzz/Enf/InCIJAU1MT3/jGN4hEPti2/k7gF1EXuSIIwr1AP5tB76Rt23fClisKtL7ndQuw+jPaRG/lggeA1AeM8VngWdjMyb4DY/snQRAE1GYvoquI7eiiXOpEbZBRPBmEbBRS85syRoLIoK+R7kceY2VqDM/NMXyz66wvThBvCbNY04T2Ugp/roKQtxB9EQKHH6f57geZnbjG2PXv43SJHD70eQYHH0UQJNyAK97Aur7BzaBJzJXH4wjhXnJwTY9xIygRoYZeHfqsBBvpFNcX02hui70LSeqio9S11FHn3UOqeJFk8k1qax/C1gWyE6voG2X83fWoP3EpLKc3K8uTM9h6hcpiAt2zHe/RTzIyfYr0mVNI3houNrhYUx082befw02bTI0kSjQ0t1Dy1dLq2k505CpzlQSpUB+OlEDo2hKZjiIbPptoscTy2BSSNYtiu6j6PVTLGq4NlaoZJSJZ3Nu4i9a+w0zGNK6+dYqW+lp2yiI4nVSDXYQDEsnkSQRBJhDY+e58ySKODj+V6QxmqvJ+dv49cHi8JFeWsUwTvz/Ezo/9JgtnzuJQX6Zy4wza9A1ePPt9eoO/Qb1DJRsvszGexGeYuNuC3Lx+gdj0NWKNCo7DD6LMzNPe2UZ//6cQBInLczHW1jYY3LqFqGQzsbGpW2p19iBOTRGOObDrm5lqmseVXSORMlGWlynnC3j8vaS5TDE3h+rd+TPfwz8Gtm2j5ZIYWoWSM0RQdhByuxHveJC9ec03ix/DeLtaES8KBMsWy9m1j3Ru27ZvBe+b/2bMXBUzUyXhU7ByaZYlCS2jE8ku4/J7iOx6jD2ynx8nskyVKvS7HGRi64iiyL29NbxxM8HpYonDfgf2SoXHH3qKN8/NEKyuEJ1+mVPNndyz5aF3+rdMk9WzN8jdXENwyhTabYzlAo0ejUrDDmpKVbTFBVY6/USdBQbDg7T6NsdqGHmqWoKA/+fPZ0t7kLmZJFqsBLYLtfEg4vKbsHqFlpY9bBl+nJuTz1MdbGZxTsK3cg35G/8FzzP/HndzF9WZDGZBR444Gc9P8PpX3kBxrFPjSyA2d+DGS7jmGZqD77fAFgUFT1sHYriRws15DsyavFoeIX3T5M/cp9jtDdFWXmG5bojswCBL09NYo+sYzfVcLs/zTHuYiKeeg00HObZ0jNHUBYx8B2ujGvW1vs26j+osLI+T8vYwmqtncSGKbdsw+TIOZZZZcTdbNyxqjHWSboVwRx8TYh29FR2/c5MokIMOpEAEM1VBWy3Q5+ygbuB3eGv+L0kE0py+MkPEYRNrSnPmXI5WuwGn30ewrwFfZwMvvvk8s2trKJEKTz35awy3Dr07z4KT6vQsOWMEq6eRuuFP4/F/+PKw6K6gtHiJyM2YCTelDR05dZmaYYW6pibE5s3nzNzRjFa9mx+c+D6vZVc5Xpeh9uRf0m23IhUqGPY58pEg85Uoi8kZktkVvN4EYbFIhx5k29O/i6d9c6zdLnDvvgd9pkg4VSVUuEbUu5XVyBClZIb0Roa4fxc39TzlDXC8GuWV2gyHlDgNVgrHhgG+Q+ieXTR6xgknVjFHNPSVFEpbH2bOwK6aVB0is7lzuGoKDN77eS7Hr1DUixxuPoxf9WPbFiPXXua7106y5m/HmXZwV8DPU1/4OF73LQLHU0Pz7l9CXIfrQozTlWMc8izglrtQShoP++uZre5gdGME3YqSX/w20RWNksPDLmEXNeEt1Le24m2K8NrFE0yNTxOscVDxr9Pcu4+HBp/BKW+qVpRXJskmriDtaScSvhul6KZw8xRC3WF8Q/WI+XmYeBH8zYg1PTgHGzCjM2jKINX5HPpqESnsRA452PLw55j80TeJnjlG4UAZud5JILsDd+o8KX2VC9Zplk/Z+GMG/ryCMrAbr7+LKS3B2Ut/Q74wis/joEFuwDG/SM/Oh2k5+jSCqhIAtnf2sa2jl4XcAufXRphPxqjPuTFXV1HyqwypJhk7TmzWzZtry0w13qCxUKBx7AquzCC1DU4GCpeIZI+zttaEp34Yd81BtEQfenQZt+rGs7vzfYRTppBg5IWvYGWy9D34SRIVk0Q5hyXIeC0ZSddRAi5U57vEnKg4UMMNKJUKZjGPbhpUFYGKZWAJEpZtg6lTRcfU8giIiIg4UXHKThwOF4Yoki3kMQwDl9OJ3+9HkiRsXceBtFkL4HNjmVVEXIgfoCL1XhiGwW//9m8zPj5OJBLh937v9/jSl77EH/3RH33ocR8Fv+je7z6g41b7XbcsL7/2Efu+CPQKgtAJrACfAT73U21eBH4VOMsme378/2/52D8NS9PALOIa7kJQnWhrFUxvCKWpFalTQSjEIBuF7DJqdYXOOicdtXvonKvn1NmT1I+uk3clieMm4fMS6ArhbWhCU/LM/vhvyOZmqa/v4P77/xXBYOttfcs1ddTGBfTuu/nuwk0uFWJYTRaeQhNqaYqMsELa1Ua3sgeUadT1FVxOL+XaMNGFGMunjxFN1jHc2UTaniN2/a8Rl7vBBMNtEBOmacq7CKklxEp60yjH30wlq1I13bj372V04Tzps28TbO7lh24H0Vyc3f42PrX9wLvXyLIpCDYTGwWmmvxkXTVo0Ukwssj+ZkIlha2TRTqG21mKxFhOj2GJOdwOmRq3D0Us4HHpBJRGjh78DM76fl74wYvcvHmToaEhjg4NYYyNw/Bu7LSEKV3FNrJEIve/Ty9ZCjsRFBHj5wTZzlvFFJViAbc/gCSLdB46SNTXjFNtoHr2W1hXjvFXosaepImalPBQRRJFchtx0ms3Kdd46Pr0F5gevYLHJXLXXb+JLPuYieW5NjFHjUel2N7MUqHMdr+bIY8TjyRhyialS5dQ6gb5Vs8WRueWCHpkGtI51kan6Ni1HVnwUS2t37H7WCuXsSspDN0gEwwyoHgJOdT/CUz2pnubeUsFxN/fgWjJ+Esay/l1bF3/cPvmD4FlVbGx35lzI1VBEAViokW+msL2KRiXzuA3yrQN7gBvPV2iSEQReXN+iUpsEaO0OS5RkuhU/UzGZC60trJPddFWqaEu0ErcsnDlkrx99q/paGylrWaA7MYGqydvYGV0vG0R6g/28xdf+1Nq7RgNrUNccTXTshpltc3DZKBIk6eJoZp3A7dqdQMAp7P5577PxoCTuYCDnF8lmKxgpJwodh/qyiiCv4mHH34Uv9/H3PQJ4p0NaHqGxY0Zis/+Kf3dD6GE64l7Mly+eI2FlIFbzlNXG8Wq66JFrcF2HcUMtGGaFuWcTrmgUSlsfjeq1rsDcdehdvnYVdU4lRtnMRomqMxwpLueHSEH1LWh13hJnHqb+KLAsVaVby9d47OdBwg7/ezz7ubEzTdYTcbxBHbh3taJUFxBXzzHWDHAda0FVS7TX+vGvnqSa4W3yZca2KJKNLoSWDsHGPIHyedMRlZzjK5k2drgYaDWiXlLjtLQNHRHlUo1R9UoMOw9wqXsRareItWSSG49SUw6S7PUjKVLCAkB/YJNIW+i1ho8/rF/xXDruyYfRipF8fQZDC2N0ADhoYfw+Qc/YJZuR6ay6bxY29aEs9WBvqRgjJ/HuHQV6nXEoB855EAKOFAMgU9seYKehTmeWzrGis8gpS/jjEapXn6T2IAXUTJxiBbtYROfVmGobhdtj/xbBO/tDF3AEcDh9uNuGaRtbZFIdJRrhVXSlpdqQMbtltib85CJr6LoawwnV/HITq57tqGsZim5TRZGLVSxm1rbzaAep3dslta5AsHdQwjdQa6Nvo3PjtG373FMh8pacY2hmiFq3bXkM3FeOvc9TmQyVJVu2vNuxLBFy4573g2wb0EKBvF56tnXcoDz6hwnM0vsqkyQzhospMrkyiaCqxtndZFoYJV1WcCXb+RqvsTVzEWYu7h5HkmibYsf1blI1d7J3e8JsIvFORJjLyLIEvWDn0LI2xROnUR0u/Dee++mioqxG2LjkJiG+bfA1JEKi7iaOzFad6NvlNDXi+hrRQRZpL3lENLsGeYmrlNwW6iJOdqkCo2CxpgtEDec9OaqpMMqgjWKsDKKLEm43G6GWnrxxAUypQydu7bSce/j8B6pO8u2WSxrjGshYupOlpQzrERg/7ZfxkoWEK6NcLiwzGxsio2qjTO/QUlQiK1vIK3McaWvA9PRit9RT0Ask5036apvIryzH4f1LPrcJbSuNhxdne/0uZZZZuyHX0PJV6g9fB8vxMfZ6RokjEzAVFEtE90joTpurxuxbBvDtNBFBUP1QqmIqIvI7hBYGrZexMTGsCrImGAL2KZCFQlBlKjqGuVyGUmSCIfD70j52aaJVSwiShJgY1sai0txfumXPsezzz7L3r17f+ZzZ9v2pj9FsUhNTQ25XI6eno+6X/rh+EUk/L4OdAMjwE8KHm02pfX+ybiVY/1bwGtsSvj9jW3bY4Ig/Gfgkm3bLwJfAb4uCMIMmwz2Zz5Kn/8cMNObYv1yTQilIYQeLKFHC1Sm0oguCaUxgNzcgND67o0gANnOSQrt7SgXDLzLU8zVh1loiCDLBi35FZqqN1EknR07Ps6+vZ++TfsSoGiYjHh8XN/IsDabJF0IccQf5N5WF61+B+XMHi5ePc5UfoaoCUcaH+at7EUyiQV66hqwglNIi1NMaSnWpifZLpRxhcs4fOuEOg4iiRq52SvkVwrkXSG8PfsJDd2NlS9TufoWansHM6VF4qeOE2ro5I1IhPn/l733DpLrPM89fyd2ztMzPTlhkDEEEQiCJEgCYhCDsiWtKStYstesreu6tdfXLleta73/bNle36rdW7ds1u510Npb15ItWRJlS6QYBJEgIBAkAokcJufpnE/eP84MiDDT3YDIcrpPFQrA9JnTX5/+vnOe732f93mXJ+mpq/xPn/0UAEulOteWKswXahQLGvlMhs32LHviVTo//wDB9s1Y1Tr1iWXKrx3Dml7iQW8fnl2HOFk5x+XJN9GXAuyLPMnug4eQO/yk8xn++s/+nGw2yxNPPMG+0VFKL/8EpauTkq8NM/8OtrhILLIH7xqd+QRBQI57MZdrOJazrqbZG3TJYL3skmxwJQE99/Qz63mO9lwR++KLhI69SlVQ8DgytiyxaAoIPgkp3snGT36FspajXJlm757niEb7mcvXODaWJWSWyHWlSAsKeyMB9kQ+eODIQ0OYi4vo5y+yfTTB0ZCPesiisFgm+977DO67F0VsQ6sv4jh2y+2RG0GrlClnJrEdh4Init8TJqRICB+SR/YqRNGDgHDdxs/fl0QRPYSrNZa0IqXMAuFUb5OzrA3Lcm0wJSngtoXP1qkHZDLFIlmnygYlTH36HIpksvPhT2A7Dsvj1wiPjXHKEOn2e3loz3ZEUaKwtEhhaYH20jyXjl6i1p5kS1snI4FhcpUJ0PciLr/D93/0v/Pg0JfxXDZQJC/h0TYqgQl+8Pr3UDIF/AEF3TcCpWXmwmlK8RAd/g72du69qThT05aQRA+K0rzBQiriRRQEMgGZrsEY+kwJY2kAc7GAUv05yv6n2L//IeYDYf7h0mHycZthoY/FUprM6e+h22WyIiyGPEjdNuERP0agny1WnB2px/i76XYSlSqXsgvXxXqqT8Yf9uALKniDCh6/jKnb1CsGbcNtHD8iUTFKBMYVzk6+QWA+RueBp0l0xWh/9BH8P/sZT4/l+GFK4r9dfJvPsYVQXWS3Ospc4jTvOie4N23SNnmKsxmRq7Gd7B6I0yvZjH/7+1ybfxGx5ifRmcDnL5MeTrA9uY3AxJuIUpQt5nnG53O8farOJa/CYFsQ+Ya1rfp8+KJhQr2bCS8OMpo/RTB7jAtpH2mpQKRaw1tTwCNhiQ7+bh8PH/oN7unrxCqXsbJZzEwGfWwM3VfBHokStCQCodYySTkth0fyXC+E82xI4uk5gH3mx5j197Hs+9BnDJhx5zACbI318Dts4I3pDK8LYXZVz9A1B+1OD4HEBuL+CAl9jlQihGf7sxhyFOomrDgTmrpFtWhRnNd4b2aWs/JWsqZBonaNHZJDUlVIBhR87RJzySrT1+ZJl0vUxCRPiyHEwhh1UWF2bo5ziodJJcA10SKklmkvjDH82jyObNGjXya8ZQsVzce1S29TKucQKjb/ePQ7/Lw2x5Rt462EeCAkk9qp4jU3MnFthllVxyOLOLaNbVno9Rr1hTnMSoFwdzuvZDR+WC9gOxBURbp6/CRiMbxOkO5qmH0eAW++RDZ/jazQTyU+gMfxIUTyxM1puvwPcMa5j3jAg+PYFAonKZUvIaZtIhsOYV2apX7litto6JFH3I6L4FoTdu2EznvcLpWZq7B0Ac79PXL/InK4G8djYherWIUaolkhVSqQfOUaYJKugRjsJNG1h91ahvNL06Q7klwYHiWqCdyrVdjjreH3eZhbWmA2bNC/72GGa9nr3TCLpsWFco1LlTpVyyYgi+xPJPlUx1OcmX8ToXqa3NIggchupMGH6auWuHr6h8xXy+zvHKUtqFK++A7FdJKfd42Q1RxssUTAXqLz8vfZdClJXAsQ1ip4v/ND2u7dTmzzMHP1eebeehmhVGdxdJQf5dMszObYvUEkbHrwYSEEZHTZRBBEDMte+eNg2asbcAFFVVDkEGKtimjriJKJaYuYggfH8SEYGoLHxpZFDAPqdbcNezAYJBgMIq6IrR3Hwa5UcBwTvA4ODlevzfGl577CX/7lX+Lz+di5c+eaa+7w4cNEo1FeeOEFduzYQSAQYGRkhD/5kz9pac3eLVqJZO8Btn4UEWTHcX4E/OiWn/2vN/y7Dnz+w37fjxJWYaUjVtTVVSpJP3LC56Yp58toYwX06RJKKoAU9WCXdfRineWxcXY5vQRGuhlv20WbT+VQ2EN5c5hpw8AniewM+fBKEucrOrqtoTsOuu1QsSym6jp1VJxsiQ41x+PD/ewfTiCvFt0EUvR3jvDeuaMcvvwKL1d+zJbkMMdKISbSNvtiB8F8B2muyLVUkp9G42x1Fhn1TqDofnyhEQIPfIaSEGV+eoGJhWWmF18ntJQm2dHJVKDO/E9fwggm+G5bkoX8ArHlKs9/4itMZOtcXUpTqBkokkh3WGanfZWytEx3TCWx6+MQdHWnYhiUVArflg0UvvsKxtIiVkZiV/JZEiN+Toy9yhvpN7AmE0QLUX7wgx+gqipf/epX6VZVyq+/Djj47r2X6fOXETzXCAZHCQY3rfudyXEvxmIVq6Ahx9duguFZibJolfJNPxdFgZ7NCSx+jYuzc/ilHNm2dqR4gGFvB7IWRRlpI5jqRokI/PzFbxEKbWbXrmdYLNb52eVlgh6RBa9ALhzn45EAuyK3p7z8u3dj5XK0XVwkFe+gkJsl6zOIXLqM49h41CSaMYNh5G7SIN8tauUSlfQ0piijSxEi3gCiKHyoHtngbnIkKXCdZIuqjByIEKzlmDCqZNPTvwDJdl1LJMmPXTZwdJvlgMRUPk3I78BkDrWaxpsMUdJVZl9/GUPT6Isn2N7fT84XINSeQBYFIu0dwCgj5TJHTl1kfHwaITNDW8CiIxRiYdHAW9qDNvUOR3N/TsyTIBKzkGdrLFYcSoU4CSuHN7yDSjnDVLxCvLOTe9vvvd6J7kbo+jKq2ppbjCKJtIVU5gs17umN4h2OYncG0K9uR7/4DsbrxxD7Rhkux9jY9gAeY5xZfZFub4CZtgjFnJdQMc/2aonAjIJQSxCKeAl7k1wqhihm0vT1J0l0BwlEPPhCCpL8wUMPy8KxTFTRRvE72JJF1+6taIdfJ28ZCKaKdvIoVy5ZjLfFSG4aoH3HfXS8f5GPn5viHzoq/F3Y5pc37mdDR4onl7r47ulXeOmtb+IpS0SSn+RQ2MQ6eozLr79Ojgss+QJc7uvF26GT8FhsLLdjVWbRilmsZDeJjg46+weYLVucW6ox6fPy0OYUyVgIWVFXomCwVKxjl5Y4tPFpwkKUA6bGz/MlRsxehqYsxmcyzEgBYu3tbJu+RP694ziG7s5dScLp8KP31vBpI/iLNoJWdNtUN0FBKxDz3tJO3BtB3HoQ9crL4DmFs/kxrLKFoEiIAQXBLOM/m+djD3yKvNgP+y16jx2hp7MLq6OL/LlT6FY/U8ZWOGcAS2u+t2b5OC4XSLUpDA4/xCPtzxAVHTDrYNTBrDOgVVlK7WX6vUuU5qcgcpynRtuR9x6gX1TZqddYqlV5vwznDYM5n821dB0xa+ARumg7UyR57rss+ydQRJlJX460T6FmOHSlLbbGNKyqTtvcCI49Rn2uwDsZH92xD7KJoiRhWjbZhRLXIpvo8B9gKFVmc2+SVLINSZQQBRFJkFBLi7SV09QD51kW3yeXu0i5vMzC4BY6tSL3dNzDKWkjvvw49coyRSONYeTxax041QrGxAyWN41neBjfjh03NUq5DkGAcJf7RwnC1Vfcn2euIogykiQjtSk4yQhyag/aVAZCHSzmJBAF+vqjjBgaFNuZ7fGjCg7jOS+vFMK8rTlsJ0d5QxvxgR2U6jqHbYdawaBqZVnWTQQB+rwqW4M+er0qoiCg1z1ozr384PxPWM7P8mzfITqGwkSTKfIjuzj90mmOL57li5//Ipt2pdh24QKfHpSZHRrheK7Oifk5zi0vcsVyiJgSsm7g1Rz8b19Afv8t4stXkA2H+a2jVNMl7Lk0A6UQ6gYZBRPbo5Aun6amZSlIH1wzURCRRZBEEVEEC4E6YGkaVqaCYxk4Hi+S6kFSFATDwi5r4FNwHANZidIWfWCFXFvYtgUrBNvWNRyfiCSpZDI5PvOZX+Lvv/v3bNu2DYDTp0+vu+4Mw+CFF17g1KlTDA0N8Zu/+Zv8wR/8Ab/3e79BJD0SAAAgAElEQVTXdM3eLVoh2WeBFPCLCST/jcDK5xG9XkTvB2RNEAXkNh9ymw+roKHPV9CnSzBdAmBRX6Sm6mwc3E6irR21bnDk4jLL40V2t/nZvTHGsXyZo/nKTe8lCQKKKOARBQZkhXRJIL6YZnDjEJs33l4sJYoSO3ccINUzxBtTP6MgKzw0fICfvnyYwmCcA0/+Byqn36a3mOEHvnb+VFKJZRd5XJnnqcEuYl17CAGh7g2Uc1kmXn2F+dlpcn0hMoffYBqZM939CPUSoasZRkce4viCjWXniAVU7huM0ycuI88cAUHjUtsmtNQIBG8nhXLER+y5p8h/71WMyYtgZhjctZ98dYJIZJk33vgBuh6gt7eXX/rMZ1DGxihfG0OKRAgcOEDdqVKpnSDW0Uk0un76CEAMqQiyiJmtrUuyJVlG9fmo30KyV7/f/i0djDz6Sxw78QaaEuRydx9Fr8NnQxG6dx5EN3K8+sr/SbXq5Ymnfp23rmYYS5fxqxJ6wGbGEXiyPb4mwQYQVBX//fcTf+UVer1eTsvQHZXIz86RvjKG39sOdRtNX/5QSLZWKaOVMtRFBUuKE/UGED1Sw46Gdwu3Ic0Hc9ub7ECdmUK3NDK5OQbu8rwftFQPYGbrIMCkaZLWytwbsZg5eQxJ1El1DjI5vkgw2cnQrs2EEm1ENJ0fLOY5W66xM/yBxMgbDHLowd280d7HVLaK7auwYYPIQmmBqayP3uoWOuwLpINTlGwPJiECZZXucgXNn2RCNLFjabztIzw9cJBOf+y2cZtmBdOqEAxubvmzpsI+3pvJU9VN/KqM6FfwjvZhBYvoZ8/hpK/QnkoRkTvZve1/ZPHUX1M6c4FkVWMkrjO4SUdW2hBKnZjLIuaMjZ304K+cZmOxyrAUwZPzYKkqZcfBsWwcywT79tjLhXKNlGHyqCry89kpCh6dEOdwcgbSTJzMu0fJSQoevw9Zsnns3AyXghI/+/nPuX9oKxHdYNPxdxHMJSoqmM5/5WzFh1LRKfbnebMzyPvRLra1R7k/McC2zh30JAZQjBzi1RqMPOYSIVx7qsGSxs8uL/PTyRr3Sz42tH9A5M7PF/EqEiOpThz74+RyRwkyyVmnxGz3p9G1GUbKC/TpaTCjqH29SLE4UiyK7YdM9nVkIUw0cR9i6SWoZpqSbMu2KOpFUoHbM2uEOlzf6bHDCLNHkQcf+cAib/Y8CALx7h18QVA5mi/zfqKd+bOn2CxfY8OWKNWOh9Etl+xcX6uCe4qq4HDK1FlYjiFos3xmIMGA/4b7naSAx5XFKcD+5Eak5EYOv/IDMpfPcVJ4n8c/thdp80EQBIaB/cDl2SVev3SMhdg4uiVRsNqZr0pMmhWqwhydajudgQihuRz9ZZldh7aTJs2ejr10BlMgCNSuZUiXdTbv7EFVJNJViyvpGoWcB//cJPv3bGdTKkzAsw5lCbrft1d/gJ7uKwQv/YjM5Lu0XXoTJR5jORKhUlgmoqrU6klkOUQ0sBv99RPUr10jeOAAgX37kJMtNvVKboSFM65zWNfNkVNh5fopK67J3msZJjMV/HtdU4Y9PMRux6GgFViuLfPe8jInJmocNqL49S660jHma5NEPFEClo1XFNkbCbAp4MWHQLWok14qUS3qVAs6CBJJcZRC8gy1wTGCHX1IkkhftI/lh5fJHsnyt9/5W7703HN0xXZTO3eOnkqZjXv38uWdD3N4eoyXr5zHqNQQDIO6kMS+eJz4xCRFKcLSwL04NS+F8TKyHUaxHUzLoGzbiBYYuomIgyIKSJKIJAiAsyLNsLAN99+25XZqFkQQHQFRUhA9bibTUQQwNERbBNmPgIBtl7keDLcdnIoGtg0+FcnjR5FDhMNhenp6eOutt9i2bRuXLl3ii19cu5XK4cOHuXLlCgDDw25g4wtf+AJ/+Id/uObxHxbWJdmCIPwQN8sUAs4LgvA2oK2+7jjOJz/Skf0LhZXPX49irwUp4sEX8WBVDOyaieMXOD//DhFPlPYet7CoL6jyiT0qL+UmePv9RXYERT7ZH6dgWYiAKoqogoAsChiWzXi6wtvjWbweD9uHO4hLjetSU7FunvQ/w5uzb7LsZIklk7x96Ti7Dt5L245P4D9xgn83OcUp1ctfaoP8/ZzMz5bP0xO+Rn/nMIPtAwxFYrSrAaZCNude/0eW/VGubLyfeEkhfy5NKDhEsHOQvrifkY4QcbEC00ehOAv+BIw8gUe1qVftdccpehXiv/wU+swstTOnKb52mEBBZvfju+nuTVOrjbB/yz60Y8fQyhW8mzfh3b4dG4P5Kz8BFDp7DuL2PVofgiggxTxY2TqO7azrMuINBKmXS2ufQxB48plDbB0d4cUXX6R2epLT/Z0YdoYvLvyIXHqBiclFUv2f460ZA8PW2dQVZtkrcHZ6mlFb58G+xvpbOR5H6ehgJL3IMUejGvVRWCgxd/xdNj/wJGLFh64twR2Qs/WgFdLU9Ro1xY8q+4h6gh+6VGQVkuRH0z+IugW6u3GmTuKvmWQLd68zN60ygiAhSR60bAEhrPLOwiIhqUZI88DCFcSgQCCQQg1FGNm3H3HFE77To9LrUzlVqrI16EW9wRtKFAUe3dTOeLrCiXGLCwsV+rdvY/Ynp1ju20/Idz8eQ+b03CUWxVkcuUZ30o9PCdKXlIhtfpSwOkBqHTKmr1wLVW29i2dX1Mt7MzBfqDOcDF7/uTS0HZ+zDLmLqKWLiEYSowj7ega44rGpLucYSDr4uh8g1v8ZJNWVQtm1Gna9ztXpDNWJZWJDERTLwNY0BMktOBIkCSTppv9nTJsr2RKj0SADkSBLqRSnj7zMaKeXK3KZYU8bqdi9lObKLBULGKYOVh8hZ4LLToGJc2fpmVtkTA8SlvvpkOvMRIuMd9sEugROOl5m7G4e23mI5zcfIOy5ofHE0pT7t/fm65oMeXh2tJM3r6Q5ei3DUkljZ28U3bRZKNTZ0RNBEgUQg7S1PUY87/Dz6RcZ9r/IoUc/T3/bI4Dbktq2Ter1aYrVk2jpRURBpa3tUSQ5BKLskuzE7ZmJG1HUi9iOTdSzznMiPui205591yW93bvB1CBzxW3+ovqJAE8lo0z0eLh0coE3F2K0bTzAA7EwMVnCcRyKpkXWsMgYJlnDZLKmIwhwX7yDSjlNm2w2HKcoCty/IUnY9zne+C/XWJiX+OHpt/i0YoM3Rjm3wNjUNJVKmQc9Mr0JGV//KLRvom6YvHTtPU4u9tNm38OFk5dQ7AjbDt7LBWOWezvvYaBzEwJQqpvEYxZvzy3w/bMZAl4JzbDxKCIbh7toF3LEYzLSegT7RqgBhK6dxLp2Epg7R+b4d7A1H+JVFSbrxCMBwlonUjiENnaB+qWL+HaMEn7qKXcetwpPEEKdkL12G8m+FVG/wpUlm5pu4Vu5hwqCQNQbJeqNMhIb4TMbbK7MZrDKAmbBQJ7Ogj+BRzYJRD3YRYPFaxW06sp3JoA3oNDWG0T3SYjXdD7R9THm9NO8OfMmj/Q8Qneom9PKafY/s5+3fvAWf/Otb/HVr36V1GOPUT1+nPIbb+LZMMxj99zD/lQ/771/FuHn32aueBlRqiD3pVDaBzHqEj+dWSIqiuxq76CrI4pXlQn5VQRsJP9mJEFElRr3UBAlGUWVkcwKjiNj6zaCoiIGAwiCgFUsguMgRSIrBN3lMY5lYdeqCIIHMRxAUBREUUYU0yiqwt/83d/w2U98lmAwyHPPPdcwkt3d3c358+dZXl4mmUzyyiuv3NZY5sNGo1n7nz7Sd/5XCMe2sYtFlNQaEYpbIAUUpIDCldwVNEtjS/zmLzrkVfjYfd0cOzbL+Ws50mWdhzcmcRyHhXyVpZLGckkjX9VxgFTYy8Mbk5jVJFY+3/T9I54Ij/Y8yo/PvorTq2BWTL7//e/z9a9/ncD99yMGAtx7/gJb4wn+umOUscw1rpZznL94GfvyDAENYgsXCeenKTsyc3072Orvpjw+g2XrfOOTj7ClvwMPJsydguULICrQuw+Sm0EU8QYK5BYqDYktgNrTjdKZovjqTxCPThI8L9GTVLGEyyy8eBQpFMG3dzdmyoNmLFIqnaVeqRDwPoC/xe5Pq7psq6ghR9eRjASCZOcat/vu7e3l+eef58jPjvC9d09yvB6nqOcYWDhDUduCHtuErEA84ee0YOJosKWcZUs8hCQ3L/DzDAwwvDiOV/FS9viJ+wpcOXmcLQefRrbiaNraKeI7hZadRjdMitEIIVEmIqsfHcmWA1i16vUGJLENAzjHRKIVm8Xi0k2NSe4EllVDEn3uhlazmAtJzBTzPOqrMH16CajhC3hxvAl6Nm+7TrBXcV8kwHcXcpwt19gVvj3DMNgWoDs6yIkLEWYKDvG+jcxOX2Fh236uTF7Eqivs6HmIzUMdZKsTINT5pYOf5p26B8Wy1/1MmraMKCgoyu1R7vUQ9av4VInFW0g2AMMHQa8i17KE5zLkzBIRu8agR0LrDRAZ/BzBjgdv+hXR50P0+SgVHOjxEt5+u7PIWnh7MYcQjLGjM4EiCtz/7DNcWFqgsHSYnt1beLdcYrczxsDHH2d0w07m5xaYH5/GnJulq/I278o+Jtp3UnbCpMIKWzfZbI0ZLOhzvHL1CuncVg5tup/fGj2wEjG7AbU8SB5Q/beNy6tIPLalnVPTec7OFri6VGY+X8e0bbZ2hcmUNcI+hXcnc1xd3kjQfw+hSAbZOEKpvB2Pp4NqdZxabQrbMZGlIOHQdvz+YeRVRwN/AirNWzjkNNc56Da5yI3oHHWJ9vx7UFqEatYNUPTsdW1TBQmmjjFQu0x8uJdx08MJzeTb81niikTOtDBvyDJEFImNAS97wn40U+L1ynkKeoGgGlx/DCvY2h3Ds3sfrx07zOlLFgHxHUbiESYrCpYnydD23fT39CD4E9dbq6uqQyB4ih3lGGNvnSRqw65HDnChOI1XijElRJldnAHBLYQHqBs2Y+kyT25LkQx56Iv7oRigNHEBq1BACjevT7gRatc2Oj+zDce2KS9nyHOe3oCNXSpizM0iyAqeDRsIHnjozgj2KhLDMHEEysvX5Y5rIeZ3r0muquNT1y6uF0WRTb3uORytQt0sUgkPUxZEsnMVREnAF1IJt/nwh1W8IQVpRQr62oVFvLLE7p5u+us+js4d5Y2ZN9jbuZeEN0HaSvOVr3yFv/iLv+Cv/uqvOHToEHsOHcI4f576pcsYCwt4t2xh28IkZ5cnyfrCVLY9xZ6BPYQmz/LiyRO0+b088+kvcM9mt+j3woULBMNhbMdGq1t4RA+qoGBb1krmREQQRQRB+OBvQQDdzVgK/hDIBna1il12EFQVQVGwazUc00SQZQRBxdZ1nErdDZaEggjyzZRVQMDj9/AP//APPP744wQCAT71qU+t+110dXXx+7//+zz88MMoikJ/fz/f/OY3W/u+7xLrkmzHcX62+m9BEDqA1Zz7247jfDhP8n9lsAoFHNtuGMm+6Xjb4lLuEklfkqT/9kUaTfrYkAqSEh0u1wy+d3Lmukm4LIokQx529ERpD3nojHgRBIFaNIqxMH99ojZCUA2yy3cfZd+bSHs1rhy5wltvvcXDDz+Mb8cOxEAA3nmHXw+bFHftITM1Rfn8YXJzF5gvZigiUkp0E+sf5NGQj2hU4pX0ZT737LPsHEy5doVzp8DS3JatXbtA+YDAegMKjg163cTjb0wwBUlCi8eQH3wAf6ID4cpFDD2LMLIdYXM7OiXqhZPuwbYD2iiRZPPNziqkiAdBElwrv3VItjcQxDIMDK2O4ln7GHCr2R+85z6GnA7+69S7vD8tcsm6j8C27Wxo89MWVAmqMpu8Kh2OxVI5R6RvR0vjVHp6iJ2M0qYGqVgWVlglv5Smkl9GJUHduIphFFCUu/fLti2L8vIEtmmRU2O0q15C8KHb961i1f3DtmtIkp/IYA8WEsGqwKKWp5pPE4i1HtVdhWVWkOUg1opU5KKpg1ahN2hzYew9bK9NSPUT7t1GrPP2LEJSVejwKEzW9DVJNoAqi2xMddEZ1TnrvYfiwiSlcz+l3x/i0597li2bV2sBHrn+O/lyhoSy/trU9SVUte2ONxbJkIelorb2i6ofVD9xI0TGMBE6HyJhfgrHMRGV20npKgpVg4ivNXeXiZrGgmbwcDyEsrJpliSJT3/ms7z0pyfoH1ui++EDXJ64jHzmNWbOHkW03fF2+iQG2/rZ6F0kEwxzqhzgWk7mnUAA2fZRqSa5lkkwEA3zH/etQbDBtRVtINUQBIFdfTEGEwHG0xUmM1V8isjp6Tynp/O4SW7Y3h1hb+AA5zJnsOU2iqWzUDqLKMj4fH34/UN4PGvo5f0J955n2+u3Gcd1FlFEhYDS2G6Mvv3u/bI4DzMnQFJh8qj7R/a6GurOe/B1peh78wj9ZpVTkQQly2ZLQCGuyCQUmZgiX/8+ADxiGAGBvJanO9jcvcYxTeKOztOf+yJ/dvwNjlyscaqni3t37ufA6BBe5fb7wqWZS/z0yE8RpgU2tG3gy888yTnjHA8JHvan9lOqOeSqOrYDUZ9CzO/KCY9cTdMZ8dGXcOekEwqBAFa+AL13V5shiCIlT5B6dz+xrSnCES+OaVJ7/320q1dROjvv6rxE+0E8BtmxhiQ7uvJsy1cNuqLrO1hdH289j89r4xtI0hZuw7YdBIE17weFqsFsvsY9PVFkSSQVSLG/cz8nFk/w2uRr+BU/Ra2I4BH42te+xosvvshLL73EyZMnefrpp+k++CjV429Tfvs414w50tviHNj8IFl1N++8+y758XNIHh+/9NyX2djbcdv7W7ZLqhVZRZaa3Ccc252zsgdECdHrzhu7VsMxDHAcHE3DAsRQCCwLu1pFkCTEUAjhljU1MDDAu2fepWbWiEainDhxoum1BXj++ed5/vnnWzr2w0Ar7iJfAP4YOIwrN/ovgiD8tuM43/mIx/YvDnbBbYTZKsmeKE5QN+vcl7pvzddFUSDS7sear/Dx0Q6uZSqEvArJkIeYX1lz0UmxKDgOVrGIHI83HYNTlTmQOsB46BzzC/N8/8j3CcfD7Ny+E8/QEKLfT+Wto4ROvEUQm8VIlFJ4gNhEjR2JOLEtm+gM9nLm1BVeP3eVDZ1RdocycP57UC9CKOVGr/23j8W70mWxXjGakmyAajFPMJnEf+9uPBs24Oj6TRo6y6pjmHnqZZuiDcFY6y1WBVFAinowsxrqwNqR9Rtt/BqRbACrYhALRvjfvvLL/PXPT3K5XOOZvVvo83tIqQryyvmXJsYAiLS3tiEQZBmlp5vBpShHamPs6E1hL43zsyOvcvDeQ9Ssy2j60i9EsuuVMpXMFAYyVSVCRyCAiPCh2/etQpZcsmGutEAPxyPoipdwrcKEXia7PH13JNuqoiidmNk6UkjlanaJkFhjec6AyjJSh4ykRui759ZGsx+gy6NwplTFsJ2biMpN45fDeKUpPrF7gJj4SeZnZ/nk44/g9d4+/2zHoWRaDPnWnpuWpWGYRfz+wTVfb4T2kIepTJVS3SDkXXs9xWSJiZqGaTvIsopA4xRvsW64EcUmsB2HY/kyEUVic+DmtdHW1sb2h55m6o3/j9SyjDiyiXy2ykaxnXAiRTTRjifYBooXy6qi61mGiyonJuvs60lwbO49Xj85QUwQ+f3Hn7i+dm5DPe/KKZogFlCZyFTY2BHk2dEuHGC5pJEpa3RGfXRHfdRMHxdzF8iL7WxMbMW2dbzenttcnW6CPwG2CVrhuivEWshr+fWlIjdCFF2piPcaVNMrpNvnbiZqeYj0QGIY2XEQgwHEiXEOHmr++WVRJqAGKGitNW62CgVwoL2/l+e3foO/+Nu/ojozxlvTY8y+P8CePXvYvHkzsiyjaRqHDx/mH0//IzVvjV99/Fe5b899HJk7gmEZHOg7QMTjI+qD3lvmVcgrc2oqz/n5wnWSLcgyUijkjuEXQL7qSg9WCS+ShDEzg5LqXLvIsRXIKkR6XZLde9+67eW9ioRXlsjX9NbOW1/JRK/MIbFBlvfcfAFRENiU+iBj2xns5AnvE5xaOsV4YZxr+WsMRgbZk9rDr/zKr3Dx4kVeeuklvvnNb7Jt+zb27N/J9OwZFoM9JGd9nD6+wKW5v8BxHNo6e/nEJz5Bf9faRdiW4xrOia04WpkaOA7INxS3er0IHo9bPG0YWCvEGgc3Iq4oiIHAbQR7FbLgrkfLthClf4btHmmt8PF/AfauRq8FQUgCrwL/nWTfAiufd3ddweYpOMu2uJi9SMKboN2/votAtMNPdq6CXTTYM9CcNK8SfCufb0qyLctGr5kkkyEe7X4UwRH4YfWH/OdX/jOP1x9na99W2oPtxA89QmluivftKbKqREe5k13yZtp2bUC209iWxdm8jeg4PLk9hWAbbofLrl2uvnAdqH4ZBKhXTCJNOJSha+i1Gv6w+/mkyO0kUpK8SFKK4kIRhDKBSOskG1YkI5k6dllHCt/+u6s2flq5TCjeuEOUXTURfTKiJPLVB/ese1xhcQFvIHj93K1AHRhg03ttHGGM6LZtFN8fY/zyOR7f9QlES3V12YG7b0deL5epFxbRJIWaGCYZdm/gH6UmGz4oVAwGgxiKQrQmUNarZHOz9LLrjs7pODaWXUMwPdg1E6U9xNS1PJ3UKF2+gi1ZRLwyUnyAYGz9ddLtVTlVrDKv6fStQ4wVJUKlqmPbGgd2bYNd29Y9X8m0sB03fb8WdH0ZoGVnkRuRDLrkdrmkrUuy46qM40DetGhTG9/+a7qFbtqEW4hkX6zUKRgWH09GENcgG6MPfZzK+Ze5/NZhtvzyl5hJzKAn+olHN6LcEAGTJD8+n58kBoY1yZErbzL7xikG6xa/9o1fIxFaRzKgV8DSG5Lb64eaNteWK/TG/dcL6YIemcG2DyLLPtlHKpBisjjJtsQ2JLGFue9fKTiuZNYdh+3YFLQCQ9GhNV9fE4tnXZ15ciUrEr25q7EgCHg2bKB2+kzTmqBVRD1R8vXmskIAK+fKW+RYjFQgwH/8tX/HkbEjXDp7icWxRb7zne/g9/vZtm0bFy5coFQukdiW4NE9j7KzZycnl06SrqXZl9pHxLP+5l8UBbZ0hnlnMstySSMZctebFIlgrozhbpGv6nhl6XrU3cpmsas1vNu3/0LnJdYPuQlXJtQgmh3xK9eJflPUcu5mSmkcyKkbFmPLFYaTwduyCV7Zy/6u/fSGepkqTfHyxMv4FT+b45vpGuriyS89yeF3DvPjiz/mxzM/prenF3le5lzGwq+K7L//fnbv2UMi0biI3nIsRMTm68NxwKi5xbXSLZIPQQBZdjPvkoRdKiF4Pa5kRFUbZvRW39dyLBTurp/CR41WSLZ4izwkA/zz3DL8E8PM55EikXV3XTdisjRJzayxu2N3w+O8AQVfSCG3UCXR3ZyIiYEAgqK2pMuul91F7w0qKJLCxwY+xubPbObP/ubPOPbmMcxHTPxBt9IXBVRJZX/HA4TfvowT8SBvdCPwR48cYblisGt4kKJ3kOSW9SODN41VFPD4ZbRK85tPbSWS4V+DXN+KSl7DF1SQ7tBuTop6EUTBjXyuQbJVnx9RFKmXb3cYuRV2xUCKNib5lmlSyiyT7L+zqKWcTDIU70TNqszYVdriUWKLixydu8o9iQTaClG7W+j5JeqVKprkwRQCdERcEiqqH82yv5Vky7KMEAjh1LIoVYtM/s6LH1fPRcm9xU1JDrV6lbBRx1m8hhkGnyPRvnntLNIqUqqCKMCsZqxLsmXZ3YSYZhFJavxgzJtu5Ce6jpRL0xcREFHV5hvqWxH2yaiyyHJJY+hWXfYKYivvmzPMpiS7WHfXZTO5iGk7nChUSHkUBta5RqLq454HH2fxH3/AhTcvsOnxTVzIXOBy9jL94X6Go8M3EbCqleZC5hz65WkiFYOvfPkrpDoaZHtqq9G/5gTz6lIZ07LZkmqs8R2KDDFXnmOuMne9E2dDeCNu3Uk1A6zd4KKkl7Aci5inRb19cc4lXf0PNjxMHRykviJ/8O9Zf1O/iogaYaY0g2EbKGKT7zebRfCornwQ9zlwcMNBuhPdvL/1fcy0iTlp8s4779DZ2cmhTx/iTP0MJbvEj8d/DMCWxBZ6w82v4UhHkDMzec7NFXh0k7vRFCMR7OmZX6gxVb5mELkhW2pMT4MooHQ3l8s0RMh1NaE421gy4lO4tlxZ9/WbUMvfVry7Fi4ulLAdh62d68/jnlAPzww+w0sTL3F66TSXspeuR5+HtgyxdWQr594+x8K5BXr7e9m9t5ctwiTyjr1rZp9vhe3YrUWxLd2VizTpyCgoCkgS2Daip3mQbNXC0bQbF/H+U6IVkv2SIAgvA3+z8v8vAj/+6Ib0LxdWPo/a01qB0LX8NaKe6No2Trcg2uFn/mqBalHHH26c2hIEASkSaYlk10ruQ9QXUq7/bk+8h3//3L/nz//8z1k6vMRnf+Wz1KQalm2xKb4JuWZQTC/j2+FqiBcXF/npT3/Kli1b2L1zlPkrFyll000jvavw+hUqhXV0pDeguuI/vhrJXg+WYVMrG7T1tB4ZXoUgrUpG6qj94dt20IIg4AkE17TxuxG2buEYNlKg8QOhlF7Gtm0ijcjDWuMUBOIbN5K4/BYz6RlG793P7I9e5Oyld9iz/RGq1jKmWUaW7/waANQyk9QMk7I/gWgLpKIxqPGRyUVEUUUUlJts/JR4HCs9S7hikC/deQnIKsl2iiJSUOFSoYJRrxKan8GwKvjCCoaj0Dky2vA8sijQrirM1ddP9cqySw4Ns7C2VvcGFFZIdkReJ5KtpVHVRFNHnLUgCALJkIfl8vrrKapIiIJLspuhUGuNZE/WNWqWzccSjUlrsGsLu7ed47+ducyW6S08tvMxruSvMFmcZKwwRru/nQ3RDWTrWS6kL1AbK1DKGXz9f/gcAwMDjQe7GpVtQk5s20vCT90AACAASURBVOHKUomOiJdYoPG9tMPfgV/2M14Yb41kC4Ibza6uX/yY19xxNoro3oTF8256Pd448i2qKkpfH/rkJL7R0aYSiFW5SkEr0OZrfK+2cnnk2M2bAkEQ2BTfRNwb57hyHKPd4Lknn0OSJF6eeJm5yhwxb4yNsY0MRYea689XoEgiI+1BLswX0UwLjywhRVays8UicpPI6nrIVw02tH9wP9RnZlE6OhDvVipyfcBeCCRdkt3AZSTqVzHtEmXNJNjIJcVx3LmcaJ6JvLpUpjvqu2nzsBYGI4MMRgZJBVL4ZT9xb5x2f/v1RkiPjjyKruuoquoS/HNTbqFtCyTbsq2bMlHrwqiDKLl1BQ0gCAKiqmLX6zi23VLAUhKk6xuHf45o+gkcx/lt4P8GRoF7gP/HcZzf+agH9i8NdrWKo+stperStfQdpQzDSR+CKJBfbG0nLEWjWPkCzfoH1co6ildCviXVFIvF+NKXvoRe13npOy8x5B9iNDmKR/KgT0yCIKD296PrOt/73vfwer08++yzpIZHUL0+Zs6fbWmc4EbRTd3GNBovkmqxgOrzIze5KVYKGjgQjDWOKK4HKebB0W3s8trR9ZZI9kpaUGxy8yumlxAliWD8zh8cnoFBhqQE+WwWdc8OJFnCu3iVcs29PvovEM0uLY1hmRZ5bwzFtOnw+RFkAeEj1Ly5XtnV6//3JNswBZlw1aFYz6NV1rZOXA+WVcExLISaghT3cnVxCdWpI09PUVYtuv0qRSFCe3tzWUa3VyVtmGj22naTkuRHECRMs9j0XAXDQhUFfGtcS9s20I0MahOi3gjJkIdy3aSmr72eJEEgLEtkm6w3cEm2KotrFrbdiGtVDZ8k0u1p8rCN9tLX28dof5xXX30VraCxN7WXp4eeZnvbdkp6iaNzR7mQuUD5vTJ6OsfI9nvZunVr4/OCG+2Vm6fY54t1arrFxo7mrkOCIDAQGWCpukRZb569AlZIdhbWmSu5eg5JkAirLThl1AtQnHFlIi3IVTwjIzimhTYx0fTYVZJf1BrPWceysIoFpNjakfekP8ljfY+R8CU4kznDiYUTZOtZ9nXu49mhZ9mR3NEywV5FfyKAA8zkVppJRd2x3q0uu6yZmLZ9XY9t5fPYlcovHsVeRbgLKsuu5ngdxK4XPzbRZetl1z2miewpU9ao6ib9iebXNqgGiXqiGJbBro5dDEQGrhPsVairz1VvxLWirGWbntd2bGxspGYBAdsC23Cdf1oo5l7dIDp6axp2SXRJtu2sbwf8T4l1n5qCIGwQBOFBAMdx/t5xnP/gOM7/DGQEQWhsBPpvEKuR41ZI9nhhHFmUW4uOAJIkEkn6KCzXsazmE0mKRnFMA7vSmJTXywa+4NoPxs7OTr74xS+STqf59re/jWmamKbJ+Pvvc6Ja5f/99rf5oz/6IxYWFnj22WcJBAJIskzXpi1U8rmmVnerWC141CqNI2vVQh5/pPm1LefqiLKw7udqBjnmBQHMXH3N173BIFqlgrPOQxTAXvksor9xoqiUcSP+t1rHtQIpGKAnkcIqw6KTRoj30FZY5NjEDKKgoGl3T7KL81cwbZGqJ0LIsVAd+SPTY69CkvyYN0Syg+EQNY+PQA2KepVMeuqOzmdZVeyqiYQPMaoykcnTlZ+nVllGjKgoooqUGERpIf3c5VFwHFjQ1t54CYKALIcxjRZItmkRXcdZRNfdCKjnDvyxb0Uy6KZYl0vrP/DjikzWbB7JLtaaO4sYtsNUXWfY72nuhuIJIfhjHLx3A4qi8MILL/Cnf/qnvP6T12EJDnYeZH/XfvzTfibPT/Lg7nsYGByiWGshFVzLtyQVmcxUUGWRznBrm/CB8AACAhPFiZaOJ5AAx/ogsn4LClqBiCfSmnNM+goIouvM1ALkWAw5EUcfG2t6rF/xo4gKBb0xcbXyebAdpAb1PV7Zy4HuA9yXuo9N8U1sim/i/s77kRsViTZAW1DFp0hMZVe6wAYCCLLkOozcBVaJbXRlLhvzbl+9u3YVuRXhbjcCXZxb95DIDQ4jDdGi7GkqW0UAemLN3UoAuoPdZOoZqka18YGC4BL8anOSbdnuRr0pybZWyLLcWtZAWNFnO1rzDDfcXPz4zxGNQlP/F7BW+Ki68tp/xw24TrKbaIZ1S2emNENfqK+pFu5GRDv8OLZDKb02+bsRUuyD4sf1YBoWRt3CF1p/4g8PD/PpT3+aiYkJXnjhBf7oD/+Qv710kaPj4+i6zr59+/ja1752k5l7oqcPfzjCzIVzbivUJvAG3AVSb6DLtkyDeqWMP9w8xVrOaQSinoa+240gyCJSxG1Ms/Z4gziOjVZb/2ZlVwxEr4Qgr7+8jHqdWqlIKNGarGYt9AwN4TcCzM5cI7J9J4ptMX/lJJISR9MX7+qchq5Rzcyjiwp1OUhUVXF06yOTiqxCkgLYN0Syg8EgNdVLsOaQqRbIZlrbtK3CtKo4VZACXqYNi2KlQnRhijo1Uh1BqppJpGdT8xMBHStuMLP19eeoIodbi2Sb1vpSketFj3dPsmN+FUkUWC6vf5+IKzJF42Yf5TXHWjOaFj1O1l2nkvXcUm5DpBe/VeTXf/UrPPbYY4RCId59912+9a1v8cf/xx/z4l+/yIkjJxgdHeWZx1zbw2yz6N9qir1J9M+0bGZzNfri/oaODTfCr/hJBVJMFCdai5StFj9WM2sM0yGv5Rv7Y6/CtiBz1XWvWMP3ez2oAwNYhWJLhYIRT6Rp8eNq0aMUbTxmQRDoC/dRNsr4ZT8J7913nRUEgd64n7l8DXPFT16KRLAKrRVq3opVYrtKdI35eaRoFNHf+nVtiEDSlUE0INkeWcKnSC2Q7JXvrYnsaSpbpT3sbZplWkV3yI3az5XXH+N1+OMtRbJXJRpNix4t3c3E3MGmS1BVHMvCaRAMmJiYYPv27TcVP7aCb3/724yOjrJt2zZ+53c+elFGI5I94DjOe7f+0HGcd+CuOx3/q4WVzyMFg00LMyaLk1iOxVDkDqrLAX9YRfXJ5Jea7EQBKRxGEEWs3Po3pVU9trdJxHd0dJSnnnoKWZbZ3tXNswMD/M5v/Ra/8Ru/wRNPPHGbVlIQBHq2bEevVcnMTDcdq6xKSIrYkGRXi6tFj41vPPWyganbhO5SKnJ9THEvdt3CWmNM3sCKw0gDyYhdNRCb6LGLGZdQhdrunlD1bNtGwAiQn19AGB0AVIKLkyxpNqZZwrKab8huhZZdoFopUZdUDDVEIuDF0SzEjzyS7cOyNeyVApZAIIAuy4i2hFUxyd5h8aNZLyHUVeS4l3OLaaxaBd/SJHWfhw197SzrHjq7WksXy6JAh6owqzXSZYcxrcr18a85Jtu174uuQ7I1bQlViSPeweb7VoiiQFvI0zCSHVt5MOcaPMDqhuss0iySPVbV8Esinc2kIquI9gEOcanKQw89xJe//GV+93d/l6997Ws8/PDDeDwetm3bxic/+UkiKxuGbKWFFLttNiUms/kalu1ct4drFYORQepmnYVKC3PQE3YJ1xoku2JUMGyjNT12bsL1FE62thFchdLXB6KAMTnZ9NiIJ0JBbywrtHI5BFVFCjaXJWiWxmJlkd5Q7101j7oRfXE/lu0wX3DvYW6d0d1Gsg18ioRHlrB1HTOdRun6kKLY4FothjtdXXYDRP1qcxu/Wg7UYMOob6FmUKi1Zq25irAaJqSGmC03HiMAvrgrfdEaS6RWnUUaFj7atit/aaLFvhV3Ihm5k+LHTCbDb//2b/Paa69x7tw5FhcXee211+5obHeKRiS7EVNpLUfxbwitWieNF8aJeWNEW6gevhWRdh/Vgo5ebzyZXPP2cMNIdr1suK1ZW5BV7Nu3j+e/8Q0eiUTYumMH/lBjPWM42Y4/HGF5onnaEtwxNJKLVFt0FimtSDzuxB97Lcgxj9sAYY1otmfFam89hxHHtLHrVlM9dimTRlKUliQw6yHW1oZf8eDkTIq+EnYwRSSf5/iVCeDudNm15XHqdZ2a7MPGQzIcwDGdj1wuslqkaduuDjMYDOKoMoagEihbpPMtRGBugFEsIAk+5LiXKwuLRNLToFfwJyMERC8FwnTeQbq426OQ0U3q68i1ZNnV2DaKZhctN9ISXoNkO46FrqdRPXe/6VpFMughXzXQzLUjO7EVuUojXXYrRY+6bTNV1xlqRSqyCn8CFD/kP5D/yLLMwMAABw8e5Otf/zqf//znXYcZQSAeUJuT7BZT7JOZKj5Vui6paRWpQAqv7GW8MN784NXixzU6P2bqLvFuyVkkfdltqR66MzIoqipKZxf61FTTmpyIJ4Jpm1TN9QM3ZjaHHG/NCWWmNIODQ1+4r/nBTZAKe1El8QPJSCSCo+vYtdodnytf04mudF00FxbA+RClIqsI97g2krX1MwhRv0KhZjT+XlrIyEyvXJNbfcaboSfYQ7qWRrOayDBWszFNotmWbbUQxV55L+nO1pwgigjKSsfHJvMYYGp8igfue6BpQ5qxsTE2btxIcqW/xmOPPcZ3v/vdOxrbnaIRyT4hCMKv3/pDQRC+Abz70Q3pXyZ89/z/7L1ZkFzneab5/GfLfc+sfcMOAiAIUKQIkiIlWVKw3Q6a7bY7pGaPwxfd0eqLifB4LmRH6MY9EY5w6MKeCfd0z3S0R3a0Y9zjZUzJstueplokRYokCJOgCALEVqh9y6zc9zzLXJzKQi25VKGyqkDqPBEVAAqnEn8VMk9+//e/3/s+hna8tW1Tk1QlRb6e33UXu0koYe9tcivdbzT28GOnTnYdl0dZj2btRn1uHsvQ0bpN+a+RmDhKOZ+jkO4eM+z2qlTLDaw2x9eVXBbV5UJzd97bFTM13H4VZY8FoVBl5IDWUpetai4UVaNSbD2Itz70uANnkUB096l+m9YpBAP9/VgljUpmGdeRYyh1k9wnk1T1GrX67l05cks3qTdMCt4Qkm4S86+FQuyzXESS7f/bpi7b5/PR0DR0SSNctihWc6ws7WzTBlAv5FA0P8KjcDeZI7F8m7piMXKij3q5QZ4A/f3bE8zaMeS236QX2uiym+E/nYrs3FpRG25xxFuvp7EwcT2AP/ZW+tb8hVPF1sVpWOnuMLKTInu6Ukc3LY55d/EGKoQdopJfsCURXYj4NLLl+nr0dkt2cMRe0w2WclXGY75dv+YkITERnGCptERF30GR543ZBYq++ec/k5/Bq3i7B9FUMlBctrXYD3B/0CbGMStV9OXOkrGQZj9nm44nW+k29LiVmfwMQS24c+eUDkiSYCTiZS5TxjSt+w4jO3DN2ohlWWTLjfXBw8bCIsKlIT+gS0lbgmtWfrn2neKwR8UwLQq1Nq8709zRbMFsukzUp3V2KWnBoH8QC4vlUhcpYbPI76LL3pF9X1MqIu9eny9cGphmR8kIwM2bN/nVb/wqf/B//gH+gJ8LFy60/Mhmsxw/fpxPPvmEqakpdF3nlVdeYXa2+4n7Xuj0nf9PwF8JIf4F94vqJwAN+KV9XdWnkJ1MKk9mJ1EldccDj1vR3ArekEYuWSEx1rmbLIfD1KenMGu1ln6TlWKDQHTnb471qSnkQGDHFkrRoRHmblwjOXWvq52f26+ABbWKvp4CuZFyPrcz675C/YGs+1qhRN3UpvKYFTtUZiO+aJTiauvNg7HWkZd97V9atXKZWrlE35G9zw8PjY0xPT+LlcpgnBnD/Kmf0Pwiy5Vxgp5ddrINndL0B1QNhYoriFav4/fYRfZ+y0WaqY+GXgaX3clGCOqeAMFSCdMymbz3Pn0D3TeoRqOOUamg9oeZzpcpp1fxZZewAiEmhsOs3CwQSQzcn6jfAQlNQZEECzW7c7tt/Ru8stuR7WDfV1/bEO1Fj90k6tOQhCBZqDHcIsZZEoKwqnQtsrs5i0xWbKnIgLZLeUto1O7UFpYg1Pm+GfVq3DItClW9vVVZNWuHX3U4Yp9NVzAti/Fddv+ajAfH+ST9CdP5aU5HT3e+ODJhB8ik70KfPa9S0SuslFc4HT3dvchvDjzuwMatFergIEJVqU9Now60twdtFsO5Wq5lvLqRy9lDjzsossuNMqvVVc7F9xjusoGxqJfJVJGVQo2+DQ4ju+lCF2o6pmUR9qpYlkVjaRF1YGDPcpZtuPy2M0d+AQZa/wya3fRcuUGwVVhULW97SXfYLFbqBslijQujuz8BjbgiuGQXC6WFzqcNsgLuYEvJUxPLstadRd7KFEi1upeYli3lUjQo7C5MKK4qPBO23wOseh3ayHCTySQvvfQS/+XP/gtjJ8cIqAGuXr3a8bH/w3/4D3z9619HkiSeeeYZJncwKLwX2m5DLMtatizrGeDfAlNrH//WsqynLcvafTrEzzg1o8Z8cZ6x4NgDT10DhPu81Cs65XznI9SNyY9bqVd1jIaJ27+zIsMoFtFTyR13sQFkRSE+Ok5mcYF6tXP3p+kw0kqXbRoGlUIBTxepSDFb3ZN131bkqP04emr72oOxBNVSkXqL4Uez1ECoEqJDcVJo6rH3MPTYZGhoCMsSaOkGpUgDRU3gzVb4ZGqJaj2Fae4wyhdoLH9CanmBmnBTdgXx6XW8rmYne3/zp+4H0tzvZAPU/SG0uokHL1ML13c0QV5ProIFWiTMxwuLaMu3cellvGODJGSVqazJ0NDQ7tYnBIMute3woxAyiuyn0amTret4ZAmthfdrrbaCqgS7htnsBEWWiPq0zrpsRSbTQS7SzVmkbprMVHYpFWkSHLKHoHLdO0hNL+vVUocj7kr3I/aZdImgR+3qjd2OgBYg4UkwlZvqfrEvbg/DrdywhzKxu7w7klIYuj3wGB7vakfYDiHLaGOjNObnOnYBFUnBr/nbxqsbabuTKXdIRG0yW7D/Lx+0gdSKwbAbSQhm0mUklwvJ4961LjvXHHr0aBjpNFat3nupSJPQCBSX7P/DFoS7OYw0T2Q6PJeb8pnd6LGbCCEY9A2yXFruPsTriXaUvjS/vqOzSFMj/YAzJkIIewCyg2QkFAoxOjrKO2+/gyIUbt682bGTDfDiiy/y7rvv8vbbb3Pq1ClOnHjwdOSd0LXasyzrR8CP9nUVPwM86MDjVgJxN+KuILdS7hhMs+4tmsmgbjkWbyY9NkNoulG/NwWANj6+q7Umxo+wPHmH1MwUQycfaXudy6MgpLV1bTktrxTyWJbZtZNdTNeQFbHj76kbkiYjR1w0VsqoQ36EfL+QaA4r5lNJ4qObfyY7GXosrKZQNNeO3FK60dQVK1UPtWoWNRFBXp6jMpsiczxGXz2F272zgnLlk/9GtqRTlT2Y3iBaxcCn2JaGnTYNvUAIGVlybYpWByAcRV6Ces6iLsrMLXzC+Ej72HLLsqgupRAuCS0Q5vqHt4ksT4KqMnQ2jttys1BROP0Ab7RDLo13K0XKhom3hcxKUTs7jGQbrZ1FLMuiXk/h8ezu9dWJRMDFzaUCumGitFhrVFW4W67RMC3UFk4buUqjo+ZzqlLHsCyOex+gEJRku9DOzsLoUx0lEUG3giwJMu0cRizL9pMOtn+Ol+s6K/ka54b39nqbCE3w3tJ7JMtJEt4uJw6J0zD1YygsQnCI6fw0MXeMgNbFnzs7bR+x73LgcSva+Di1u5M05uc73rdDWqh9kb2LoceZwgxRd3TXntidUGWJ4bCHmXSZzx+J2hLIXXplN583Ya9KY2oRBCj7VWQHh2H5Y7vQDm0PpVNlCZ+mtH8urwcqtX+ezqbLBNzKeld8twz6B5nKT7FaWe38HPbG1oZv6y1PiEzWimxJ5tlIm+d0NQ+msqNQm3YITcOq1bDqdUSLE3lN03jllVd44YUXCAaCvPzyy1072SsrK/T19ZHJZPj3//7f82d/9mcPvL6d4MSjHxCTuUmi7uie9WqyLBGMucmlKh11ipLLhRwM0VjYPjBWKawNPXYZzgOwTJP61D3UwcFdWx65fX5Cff0kp6c62vkJSeALuSisbtdA33cWaf9zsyyLYraGL+Lu6TGgNuDDapjoq5u72d5gCNXlIp/arHm2TAuzou8o6TG4B1eRjUQiEVwuF4YURE7nKY150I0A6nKRVHp25xHrhWVWFm6QLbvQZQXcftzCwKO67c78A1oi7gZZ9q93slVVxeVyoUVjGMhY6SJuSePuZOdxECNbQ68WkUMuhOTl3tQ9fOU0WqyfPp9Esa5RR9vV0GOTZtjKQhuXEXXNK7td18X2yN5eZDcaGUyrgasHQ49NEgEXpmWx2mZosDn8mG3R6dyJs8hkuYZPkejvEs3elvA4NEodj6SBDcOPbbp/tbztS93hiL3Z/RvfpavIVob9w6iSurMByMiEHY6zcoNMNUO+nmc8tINNVPKm7VAS2F0K7FbkeBzJ66XeJZgm5ApRbBSpG9ufJ3oms24H24lcLUeulmMssPeBx62MRr2U6zqrxZrtMJLPdcwo2Eq23MCnKaiyRGNxASUe33vKYzv8/fYGspMu26uSrbTrZGdtmUYb/XJdN1nMVx+oi92kz9uHJCQWS4udL2wWxm2GHy3L6uwsYpn2ZlHZmwmBUBSQpI4uIz6fjx/84Af8/u//Pt/73ve6Puav//qvc+bMGZ599ll+67d+i5Mnd+ZD/6A4RfYBkCwnKdaLe+5iNwn1eTF1i2IbL+cm2vgYeiq1LZSmUqjj9qk7Kpz0xUXMSgXX0Qdbe9/EURq1KpnFzu4QwbiHRs2gUtj8Yipns8iKgsvbvkNSLTYwGuaeXUW2IodcSD6FxmJxW+EUiCcopDYXsGa5AVbnEJpqsUi9WumJVARAkiQGBgZI1RsM1r1kIwYeKYA7o7O8UCJT3EFBAGTm3qawmqNWl6h6A7gVFQ0Dr+Tedz12E0XZLLfw+Xy4/C7qsoZIZxmPn2Rx5S6VRnv5UWOxhKGUkH0uFoo61tTHuEyDwCNH6DMtFir2/81AB61qO+KagioJFtpIRhQlhIWJYWx3nqmbJhXDJKRsf27c98fe+9Dj+lq7hNJE14r9Vg4j3YYea6bJbLXOUc8DSEWahEYAYXduu9Bx+HH9iL19MTi9ag+KBVrpYHeBIimMBceYL87TMLr4HUsyxE9Abpbp1RvIQmbU30VKUU5DaWXPXWywNyfaxDiN5eWOjhwDPvt1sNXazTIMjFwOpUMITZO5whwCwUhge/d2r4xEPAjsjZIci4FpoSd3PmuSrTQIe1XMSgUjk90/qQjYxbF/oKOVX9irka802j+XO2wW5zJlLMvatavIRlRJJeFJsFDq4tbkWft/bzP8aFpmZ2eR5tDvLq37ttKMWbcajW2bq4mJCa5ds9Olw+Ew7733Hi+99FLXx/zTP/1Trl+/zvXr1/nGN76xp/XtBKfIPgAmc/bAY69uQr6whqJJXV1G1FG7s1DfMD1bW9NzB6I7O+atTd5D8nge+IgtmOjH5fN1tfMLxGxZQm6DBtqyLArpFN5QpOObeTFjFxK9LrIB1EE/ZsXAyG4uVoLxPhq12nqnHcAsryU9duhk39dj965rOTQ0xEomw5CrD0XUcAXdNIoq1WSVpcx1rG4m/fUSK1PvsJiR0RqQiQwQVizbjUxy7buzSBNFCdpJjWtaPr/fj1GrUPRE0Ep5hhOnMeo1pmc/avn1RrGOka9DWEdVg7x/7x6B9Cya6iF00ktICzKdtYjH47haHD12QxKCIVd7v+z7Nn7bnWdya0OPrTyya7UVZNmLovTuqF1TJMLe9rrsoCIjC0G6xcBS0zKv5XAWe5SKNFFcdrc2212XHfVqGKZFvtXmprBk67vb6Fjz1QaZUn1H8dM7YSI4gWEZzBR2kECaOIVpwezCFQb9g6hylyI/dQuEDLHOLlU7RRsfBwvqM+1/xlF3FL/qX9dUN9nN0ONsYZaEN4Fb6c08zEbcqkxf0M1MumwPLCoK9R14gAOYpkW+0iDs1Xqf8tiO0LAtX2rjMR32qpiWPci7CUO3T2U66LFnMxXc6u4tKLcy6BukWC9SqLd2yALsACTV07aTbVpd4tSNuj282+05vwN2G7P+sOEU2ftMc+BxPDi+p4HHjQghCCW8FDJV9A7DS7LfhxKLUZ+5/4awOl9ESBAZ6L4bNstlGkuLaBNHEC2GtXa61r7xoxQzacodErtkRcIfdm1KtMwtL1EtFrbpnrdSSFfxBFSUfdANK1E3QpNoLG4+DWjKPTZ2s81SAyGLjkVpPpVE83hw+3vjggK2LlvXddTYGN6aTqFPRTQ8NNKC4so0lWpnK7/Cwvtkc0nyOYGhqWRCw4RkgaIoKKZ0oEU2sN4J9vl8FEslKv0jSJUG8x9dJywHuDvdWnPXWCzZ2nl/HUUJ8sHVy7hqVWIjE4TNMj5fgulk4YGkIk2G3Bq5hkGphQd1c/2thh+za6/TUEv7vpU9Ram3IxFwkSrWWnbNbIcRuaXDyGy6TNir4WlzgjFZruJXZPoeVCrSJDRq61CrnXW2zWHFln7Z2dm1QcrWa51ZffBBsZZrcUcIu8I7G4DUfCx6/NTyc0z4ujRYDB3SkxAZ3/MRexM5GESORqhPd17rSGCEZDlJVb9/761PTYEkUOKdT9zS1TTFRrGnA49bGYt6yVUa5BsW6sgIjbl5LKP7APRyoYppWcR8Go2FRSSvZ0dZFnsiuObS0qabHVt7Li/ktjTIstP2fEEbX3TDtJjPVBiNePcsiRz02/9G13AlT7RlJztdXRuIbVdk90gq0mQ9Zt0psneOECIqhPhvQojba7+23L4JIQwhxNW1j+8f9Dp7wVTOjuM9EjrS08cN9XnAglyyWzd7FCObxcjl0OsGuZUyoT7vjryka/fugWWhHdnb2mOj40iyzEqXbvZWycji7U9weX1EOyTz6XWDarHRM1eRrQhJoA74MPL1TQmQmseL2+dfT240awb6ahUpoLW9CVqWRWE11dMuNtwfflx1uRgSYVbDJl5TYORVCislprPbglvvYxosT79BMa9CuUIxpE2plwAAIABJREFUHEX3+vGbFj6fD2GJA5SLbLbB8/v9lEolok99kYassfzOjxiNnSSdmiW7ZfLdrBno6Spywo1hlRBygNyda6iWIPC5Y/TrBlVXH/l8fm9F9poue76FX7Ysu5AlF3pje9G4Um8gCQjKm3+Wul7AMGtort5JRZr0BVwYptU2ljyiKqw29E1SqGJNJ12qt9Uv10yTuWpjb1KRJuE1DW+XbnbQraDI0vaBsdKqresOtdcCT6+W6Q+6224YHoSJ4ASZWqZrJDnAtMuDC+irlTpfmLlnFybxvUtFNqKNj2Nksh0HBkcDo1hY65IRs1qlPjmJNj6O5OmcTTBbmEUSEiP+3ktF1te3tkGaTZfRxsewGo2Ws0ZbubVcxKVIjIRc6MvL+9/FBlu2pPnbFtlhr0bM5+LW8pYucur2WvhQaxnbQraCbpq7TitthU/1EdACO9NlVzK2f/cG5gv299b2ZMbojVRkI0LTsHR9R5urh43D6mT/FvBDy7JOAD9c+3MrKpZlXVj7+MWDW15vWCwucn31On3evp4Y9G/E7VNx+9SukhFtdNT2G56ZJb1YwjIhNty9i2pZFvXJe6gDAzuaLu+EoqrEhsdIL8yhd9iNBqK2ZCSfqpJbWaaUyzJw/GTHLnpxTcbh34Xn925R+7wIWdBY3HwEGIglKKRSmLpB7XYGLAvXeLDt41QKefR6rWdDj01isRiKorCSzTKeOI4smWh+iUbRRaGgMjfzQ5Ll1jrG0sp1cqVlVlcUpLrB0uA4MbmBpEv4PPb/+36nPTZpFtnNTrDP56NSqXDpibMs9Q2hZTOIvA8aOpMzH2762saSXcRICbCwuL2UxptZQfHFUft1wmqAlbpdMDyIHrtJXFVwyVLb4UdFCaLrmwsay7KYrNQYc7tQtsxBVCp2gel27W3QrRWJQGdd9rhbo6TbqY1Nplftn2O7zm9TKrKrAJp2uPx2tyzbWXohhCDiVbcPP+ZmANHSyQHszneh2uhJYbKRseAYspC5l+8871AzaixZNcYCY0jJm50fNHnT1uMGdh6QtBO0sTEQdJRYhFwhAlqAucIcALXbd7AME/fpzn7glmUxW5hlwDvQXQqzB/wuhahPYzZdRunvR3K7qE93fs5U6gYz6TLHEn6s9CqWrh9MkQ32yUp+cVtx2uRkv59cpcFKfu3koJq3XWhix9s67cxmyqiyxECwN82kQd8gqUqq82yBJ2J3pbdsJueL80iiw9CjviYV6dHJPWyQjNS6pFU+hBxWkf0S8Mdrv/9j4J8c0jr2jbnCHG8vvk1QC/LU4FP78m+E+jxUi42W/tJNJI8Hta+P6tQ0mcUSgagbl6f7k98eeCyjPeDA41YSE0cwDYPUbPubvazakpF8qsLi7U/QPB5iI52PIYuZGrIqtQyx6RVCkVD6vOirVcza/Z10MJHANHTyH89jFBu4joW3BddspCkt6dXQYxNJkojH4ySTSfpPniUiPOTCAk9ZUCkGCaVmeffO/9vyeHB5+jXqpkIxVaTi9pIL9XNEq2FU9fUgmoOSi0iSiix50Bv3O9kAcdkk9dijNCRIv3mZhIhyb+an616tlm6ir5RRom4MyS4Sf/z6T5B0i5GJ4/gqWYLeOEtF+/pmpO6DINZ02e2GH1U1Qr2RwdgQXbxQa1DSTY77NhemlmVRKt3GpfWtbzB6iVuVCbjVtkX2Ma+LgCLzQf6+3/tsukzc78LXJk2uKRXpd/Xo9RYes4f9Ogyzgh2wkynVKdc3yFuys+Dva+snPb1aQhKCkUjnbuxu0WSNYf8wM/kZdLO9D/VsfhbTMpkYftrWthZbyLYsCxY+gHKqJwOPW5HcbtSBAerTnWPWRwOjJCtJypU8tdu3UYeHkYPtGwYAyYotMRkN7p9UpMlY1EuyWKPaMFFHx2gsLmB2aNjcWbGH1U/0B2gsLCBkCWUXCa97IjRsd3NLrRsbE3Efqixxa3mtabN6x/413tqv2bIs5tIVhsMe5B65PA36BjEtk+Vyh/RH39p9csMmOFvNUmwU20tfm1IRWXugtNJ22DHr6o5j1h8mDqvI7rcsaxFg7dd2Z6VuIcQVIcQ7QohPTSE+nZ/m3cV3ibgiPD/yPC55f7qsoYTHHhbsJhkZGyOXqlLPFYkO76wrXZu8Z9+gdxna0Q5vMEQgFmdlarLjiyQY95BPJcksJRk4dhKpwwSzZVmUMlX8kR4cXXdBXdOwNzumYHey5bJMaXoVdciH0mWYtLCawuXzoXl621kDu3BMJpOo4yOMKP3kghYhq8G98hBGo48js+/w4c2/YqF4/5i1mpsjl76DWRlEL2RIJgYBnWcnRiiVinjdB5P2uBFFDaIb9lFqM5CmWipx9qnnSEc9mMuT+EsDlDIrLBftTUMjWcEyLNRB3/rXpu7cxpK89D09Rl+jjhKZIJlaxe123/fgfkCGXCp53aDQQpft8x3HsgxK5dvrn7tTrqFIggn35vtAtbqAbpTw+fYvDCERcJEs1Fq+5iQhOB/wsFRrsFRrkCs3yJbbd36rhu0q0pMudpMdSkZO9NubkJ/OrZ0S1Ip24RpqXeBZlsVMusxg2I2rxbDpXpkITdAwG5teT1uZLkwTdoUJDTxmFx0r1zdfUC/Brb+HxQ8hesyOUd8HtPFxzHK5oytHcyh/7to7WI0G7ke6pFpiS0VkITPo2/8OcfNkZSZdRpsYB9OiMTfX8lrLsri1XKA/6CbkUdEXF1ESCdsO7iAIDNkFZhvJiCpLHI37mFotUa2vhQ+FRkBr/d68UqhR1Y2ezRUAxDwxVEntLBlxB+3X5/LH624h88V5BKK9HrvZGe+RHnsjQttZzPrDxr4V2UKIV4UQ11p8dPdYuc+YZVlPAC8D/6sQomUOtRDiX68V41eSu7D32Q8mc5O8t/QeCW+C50ae29djNEWT8Udc5JLljoWrOjRErqyilNP4Qt2f/Ga5TGNxAe3Igw88tiIxfpR6pUx6vv0baiDqJrt8D70hdx14rBQaGLq1b3rsjUguBSXqRl8pY+l2R1Q0BIFGkLJeQBvp3Im0TJPCapJgrPfaW7CL7Hw+T8MwGI+fQHJrSEoVV9Hkr6zniQT7GEtNcvuDP2I2ax9zL0z9CF0IMtNV6pbFSiTBMVeZ82e/RLlcxqt5EJJAqAe3F1fkAHrDLpSbxXCxWOTS0Bhzx8aoigLqzRxKVXB36gMs06KxVEIOaMh+jVo9y4eTN1HyZURgCN2bI6J4IDxKKpUikUjseUM25LKPLlu5jKhqGLdrkFLxJpZlYFgWd8tVjni2S0VKpVvIkgePZ/86gYmAi4ZhrtvybeW0z4NLlriaLzOTLiNEe6nITwtlTAuO97LI9kZtDWuu8/G/36VwciDAVKpEplSH3FqBFW79s5tJl6nUDcajvXNs2UjCk8Cn+vgk/UlLbXauliNTzTAeHLet3WIn7I5gfe3UIDcHN/7a7mBPPAdHnms7vLlX1OFhhKLQ6CAZCWpBwkqQ1Y/eR+lLoMRiHR/TtEzmi/MM+4d7NtDfibBXI+BWbMlINIoc8LeVwCzkqpTqOqf6AxiFAkahuH8BNK1QNPD1dbTyO9kfwLQspqdu25utDo4yM+kykhAM9/BERhISA74BlkpLnTvDgxfszvTaBnGuOEfC2+Eeqtd6LhVpIjTtfsw6MDU1xblzrSPsO/Htb3+b0dHRbc2WWq3G17/+dY4fP85TTz3FVBeP+Z2yb++elmV91bKscy0+vgcsCyEGAdZ+bWl/YFnWwtqvk8BrwMU21/1Hy7KesCzrib0cBe+V25nbvL/8PgO+AZ4ZeuZgbj59XvSa2bGbXSyYGL4wwXpyR0ct9ampngw8biUyMIgvEmXqww/ILreebK4Us1h6Hrd/CEnu/KZTzFRBgD+8f3rsjaiDPizDsjunDZParQzuUIC8kukYtgN2qI6h6wS6TOs/KM3nfSqVIjJ6lD4lSMZv8Eh+lYWM4AfKEwxPPMlAtcjclf+De7Nvk1v8AHfsDKmZO+TcPqqhKF85OoBpKViWhU/x7Huc+lYUNYhp1TGM2vpNsFQqMep2wYnz5MNQWrlFaDXK7MwNqqkCVs1AGfAylZvib2/+V27+8H2E4aHv+Cm8xRQhTwSCwySTyT1JRZrENAW3LDHXRjLi95/GMGuUy1PMVuvUTWtbYarrBaq1RXy+44h22sYe0E2XrUqCc34PU5Ua11cK9AXcuFs4oKQbOlcLZU763CS0HjcOwmO2hrWL9/SZwSCaIvHBbMYuWF3Blul4lbrBP0xniPq0nktFmggheCzxGFWjyqszr3J58TKlxv1Trpn8DAJx33Ujcco+Sk/egLkrcOdVUL3wyIsQa9k76t1aFQV1dITa1BSN5fZOQ8NZiXIxg3V8outjLpeWqRv1fXUV2cpY1MtivkqxpqOOjaOvJDHL5W3X3Voq4FZkRqPe+9Z9PTqR3THBISiloNbaJi/i00j4XaTuXQPFbYcztaBhmEyvlhkMuVFbJLfuhUHfIDWjtu4W0hJfbL2bnSulKNQLDPvbGBEY+n1XkX04WRZCINS1mPVdBBJt5cUXX+Ty5cvbPv+Hf/iHRCIR7ty5w2/8xm/wm7/5m3tZ7jqHJRf5PvBra7//NWBbTI8QIiKEcK39Pg48C1zfet3Dwo3VG3yY/JBh//CBFdgA/qgbt19l4XaW7PL2Gw7A6kIJz2AcD2X0lc52bpZlUZu8h9rfj9xDmzmwdVUnPv8M3mCQyX94l3xy+1oW79zEG/biCQxuC6bZSjFdwxvQkA+o0yr7NeSARmOpRPVuFrNu4H90EEsyKaZTHb92v/TYTZrFYzKZRA4HOOo7SsbXIC4JjhaXeXNK5qbs5uiT/4aI4iP90f+NaTbQKmMUSllWwnFOBqqcP/cVikVbK+hV3Qc29NhEke87jDTlIsViESEE5x95nMxghIK+jH/ZoLZU4N7kTVakFP+98AZv3v7vmK++h2shQDr2JMOfGyRaK+GJHKVUrVMul3tSZAMc9biYLFdbSkbc7kFUNUyxeIPbpSpuWWLUvXnSvli6hUDg8/XGE7kdfpeCR5NZaVNkA5zze6jXdD7JlVtKRSzL4o10AVWSeDrc23sCYL+JW0bHzh/Y3t+PDodIZYtkVmbvS022cHkqjWFaXDoWQ9rHpNIh/xD/aOIfcSpyivniPH8/9fdcXblKRa8wXZhmwDdw3zvaHbQlAUsfwfI1O3b99C90jNDuJZ4LF5ADAUpvvYWeyWz7e8uyiM0X0INeFn3drdJmC7Noska/74B0zsCpgSCyELx5O4U6Zhf3GzMgAEo1nblMmWN9fmRJoC8uIgcDPX8v60rsuO0RPfWWrbtvwam4isjPknKNQJsT4ytTGcp1nXPDvX+eDPgGEIjuVn5r3ez52TcB+3m/DcuCesHuYqv7s7EFkFwaWBZGLoe5YQhycnKSixcv8t5773V9jEuXLrV0mPre977Hr/2aXZb+yq/8Cj/84Q97ov8+rCL7d4GvCSFuA19b+zNCiCeEEP9p7ZpHgCtCiA+BHwG/a1nWQ1lkG6bBQnGBscAYTw0+1X7qdh+QJMH4ozF8IRcLt7Ok5jbvnMv5OpV8nb4zw0iqSmOm87GsvrSEWS71bOBxK4qqcuKpZ3H7A9y58g75DT7T5VyW3PISY2dPIykK+VT7RMtG3aBaauyrq0gr1EEfVs0Op3FNBAmO9CNJ0qbvoxX51SSeQBDVtT/SlkgkgiRJJJNJJJfMePwRrKCbipHnS5KOWa3x/9yoU1PhxNP/M/7EWXwDjzH3wXVykkwp3s8vnIiiuWOU1hJCPZLrwItsVb0f6KJpGpqmra/nyf6j5IaGKQUsjJU5lKLMB4uXucyH5O/cJvCnl4nPwt3+xxh6/hKatkxU0iA8TlNG1qsi+/GgF4Hg/XzrjW3A/wjlRp47hSTHPC6kDZ0d09QplybxeMaQ5f17Q2oyEvEylymTKrYutD2yRLBusVJvEA1sfz19UqqyVGvwdNiHp8fdNMA+WlfcXV1GAI4l/MStVWZXi5jB7a4id1aKLGYrXBgNtw3T6SWarPFo4lFemHiB8eA4d7N3+a/3/itVvWpLRTYycN4uqo9+GcYu7Zs8pBWSpuF//nmEqlJ64w2M4manpMb8PGq5geuR0+suI+3QTX1dKnKQ73V+l8JTR6OsFKp8UrBsD/CpzZKROytFLGwHD7NUorGycnCuIhtx+WHk87ZryMqNlpeMWYuoksVNvbWz0Gy6zO2VAmeHQvT3yFVkI5qsEfPEulv5+WIQHmV+6X3iWhiP0uKe1aiAadi68n18TghVRQ4GEYpiJ5kaBjc++ohf/uVf5rvf/S7BYJALFy60/MhmO1tuzs/PMzpqb94URSEUCrG6urrnNR/QJMBmLMtaBb7S4vNXgH+19vufAI8e8NIeCFmSeX7keRRJ2fcBvJb/viwxdibK/O0sK1MF9LpJ/5EgQghW54vIiiAyFKAyPEx9bh7P448j2kgxapOTSC4X6nB7b+q9omgaJy49y6233+TOe+9w8qln8EdjLN65iayqDBw/jnkrT361Qv+R1hPupfWUx/3XY29EjriQgxqSV0Httzut/mhsW8T6RkzToJheJT46sX/rkmVisRjJZBJxXsIfGWDIl2DOM8dXTQ9fzc/zt2KAV27c5H944mucevLfYOk6P/qjb1LSXBwZ9nDq5M8B3O9kS26kA3IWuf99+BCIda9sn8+3vp4Btwvf6EmKU/co3s0TWvJTiZQYvQvld6YgVeTK6bNkTlzgn52LU1pcIaSFIDRC8p4dvxvvkVzHr8g84nfzcbHChYCHkLr5VurxjLOgf0ypusyJoc3FVrlyD9Nq4PPtz6DbVh4dDjGXKXP5XpoXzg5scyiwLAt31cTv17hZrXFpQ3FaNkzezhYZdKuc9u3ThkCS7C5vdsa2PeswByJJgkd9Oe6aCnfLXk5suD0Uqg0+mMnQH3JzvO9gO5de1cvn+j/HicgJrqWuUW6Utw8E+vvg7C8d6Lo2Inm9+L/4PIUf/neKr79O4CtfQXLb98/qjRtIfh8Dx49xbfUaxXoRv9b6Z7hYWsSwDMYC7f3J94tjCT9zmQofzGZJJIbQbn6Mkcshh0KYpj3wOBTy4MOg+MYbCFnZt4ZRVxIn7ef0/BVbPuLZHISjZO4Sjg/zTknj8bqxycu9Ujf4yd0UUZ/GhdH9C9AZ9A3yUeojyo0yXrX9YGUhfoLc5N/wWH27LPX9qRTZbMbu3Ku98bEOezUeH2udfikUBTkQQPL5SK6u8kv/9J/yZ//5P3PuzBkkTePq1dZhZd1o1bXuRT3nJD72CFVWD6XAbiIkwfDJMNEhH+mFEvO3slRLDQqrVSKDPiRZQhsbxWrU0ZdaHw+ZlQr64iLaxERPBx5boWouTj71LJrbze3LPyE1O01mcYG+8aMoqmoH01QNKsXtR5elXI2V6TyqS95X675WCCHwnInhmrh/fBeIJSjnczRqrTvvpWwG0zD2TY/dJJFIkEqlEC4FJJnTo4+xEJNJGSafNzTOZOb5u5urTK0F6KSu3yZVzVOIRPknp4O4vPbGqtk59ro8B97JFkJCVvzbAmmanD72GKVYkIrXwJ3M8WgpTPmnSeRSjcyRPj4YO8/zx4/gcmcIlNL4I8dA9ZBKpdA0jVCod8euF4NeZCG40qKbLYTEkjSB28oRYXMCZKl4C1WN4HIdzPyIpkh8/kiUfKXBxwvbQ0mSxRoYFuf7AnxcrFDboHf8SbaIYcHzkd5bDG4iPGbrOYtdjq5Nk4SZRIuNcW0xT31tCNmyLN6dTCMJwVNHood2Lw5qQZ4Zeoavjn8V+QA71TtFDgbxP/8cVrVK8Y03sOp1GsvLGOkM7kceYSxoF85bY9Y3Mpufxa24iXv2937WjktHo3hUmXeqbgzLWk80ns9WqDQMTkTdFF9/A7Ncxv/cF7paEe4r48/YQ4BTb272zS6loJJh4OijWJbFnZX7JwuWZfHWnRQNw+K544me2fa1YsBnd9G7SUbmzQp4owwXVtedRtYWu2a/KUA+2IaXpKqEwmFGxsb4ybvvYhaL3PjpTx+4kz0yMsLsmvxI13VyuRzRaHTP6zyUTrbD/iCEYOBoCEWTWJkqUEzbg4HRQbvjqvT3I7lc1GdmtnWqzVqN6scfY5nmge38Vbebk5ee5ebbbzL14ftIskL/UVujuh5Mk6zi8a8Z0VsWq/NFVqYLaG6FkdOtd7oHTTDRx/zN6xRWU0SHth9hp9espgLR/S+yb9y4gSHsbsLJk0/jvfl3fKgt87R1ii/Nf8QK8/zHd9/nf3nha7zx6t9RFRAbDXDk2M+tP06xWESWZVyKdmAe2RtRlSC6ft/Gb+OR3eeGTnE9FGZ1oEFkpsHczDLufAlzIMKPjo8TDAX55bNj/GTmBxxHQo7YXeRkMkk8Hu9p8eWTZc75PVzNl7kY9BLd0M2uGCZJokxo9yiVPsHlehaAWm2Fhp4jEv58z9axEwZDHo7EfdxYzDMS8RL13deIz6bLyJLgiyMRvpfMcb1Y5WLQy2y1zp1SlSdCPiLqPr9VBIbsYqQZk96O0goYdY4ef4RbcyY3FvM8Nhrmk6UCqWKNS0djePca9/4ZR4nF8D3zDMUf/5jiW28BIHncaOPjCFkm5o4xV5zjkdgj2742WU6yVF7iWPjYoW1kXIrMF47H+f+uL3EPHyenZ/A8+ii3lgt4JIhcu4KRz+H/whdQDtEIAQDNa0uDJl+3tfiD5+3Pp26BpBAYPEF/Ps2t5QLnhu3T50+WCizkKjx1JEbIu79NpJArhE/1sVha5Gi4/fv+fGGeaP95vLm0PbzL2v1Dr/L4kAdcffti29cNTdP43ve/zwsvvIA/HOZf/OqvPnAn+xd/8Rf54z/+Y55++mn+4i/+gp/7uZ9zOtkOrYmPBBg6EcY0LcL99yPUhSShjo7SWFjEajSwLIvG8jKlt98m/9d/TW1yEm18Ajmwz12rDWgeLycvfQG3P8DgiZMoa8lO68E0q/bxlNEwmb2eZmWqQDDm5siF+IF3sdvhDYWRVXWbLts0DCY/eI/kzD3iYxPr39t+kUgksCyLdNHesXt9MS4MPUamdof/Vn0dA5Xnpm6xfOs2f/PxNFenb6G7ZF58fAiP776TTKlUwufxIoQ4cLkI2MmPul7Asqxtney4y4V/+AT1sETV68JTKKCODHDj2AB5zwBfnVAwRAUpN0fYFVofjuuVs8hWLgS8qJLgSm5zbPZkpQYonAkPUanMoOv23xdLt5CEhscz0fO1dF3rWBi3KnP53iqmaR+NmqbFbLrCUNjDoMfFsFvjo0KZmmny43SBkCpzIdB7X/dtyIpdXHfTZWdnQMiE+8cZj/m4uVxgPlvho7kco1EvE/H9sez7rKEODuL7/OfRV5LoK0lcJ0+uSwhHA6PkajlytfunHhW9wruL7/L63Ou4ZTfHw/s7sNuNgZCbs0NBJl1hVlcyZOeXmE8XOTV7HSO9iu/SpcPRYrciehQiE2uhQ2nbhSN9z/6conGyP0CprrOQq5It1/mH6QzDYQ+nBg7mfXjQN8hKeYWG2drdp9QokallGI6dti0zlz+2O9imbtsPytqhFNhNfD4fP/jBD/jf/t2/4/t//dddr//Wt77FyMgI5XKZkZERfvu3fxuAf/kv/yWrq6scP36c3/u93+N3f/d3e7I+Z8v/GSXc78Ub0tYL7Cba2Bi1O3coXb6MkclilksITUM7dgxtYgIlcvDdYZfXy7kvfXXb54NxDwu3s6QXS6zOFWnUDQaOhogOPVxvpEKItYj1+0V2vVLmzpV3KeeyDJ8+w+Dx3qe5bWXdxi+9SlBJYNUNfv4bv8H4P7zOa+9/n8tihvHpKufufsjflwWRahptxNZib7SRKxaL+NaCaEQLO7f9RlGCWJgYRgmfz0e5XMYwDOS1IuDkkTN8cOsDkiMKY4lHSLlX+UCaYDCm8VR/jbcX3iZazhKMnQV3kGq1SqFQ2Jci2y1LPBbwciVXIllvrNvb3S5ViagKY+FTLC3fpFS6id9/mmplFp//JNIBuQ9txKXIfG48wpu3U1xfzHNuOGQHXTTuB11cCHr5m5Us31/JktcNXuwLb/P33jdCY3YRXVq1h61akZ2BwCDIKo+NhpjNlPnxrSRu1f7eHHaONjGBWa9Tn57GteH0cjgwzNXkVeaKcwS0ALczt7mRvoFlWTwSe4RTkVMH5p7ViQujERZSY9y5c53wex8TSuXo99TwPn0JbfTgrAV3xNjTUFyGqR9D4hFbGrWW8DgW9eJWZD5ZzFOqG2iyxDPHDk6KMxIY4W72Lm/Ovcmzw8+iyZubQc1B2JHACLjicOP7oDSgVrKt+tqE6Ow3ExMTXLtmz9qEw+EdOYsAfOc73+E73/nOts+73W7+/M//vKdrBKeT/ZlGcyvbLKzkWAzJ56MxP48c8ON7+mlCL76I9+LFQymwO9GUjCzdzYGAI+fjD12B3SQYT1Arl6iVSxTSKa7/+DVqpSLHn3z6QApsgFgshhDCHn7U5PUI+DOf+yL/4p98i0dPXmLlsT401xz9cz9BSDoXT0fwBTavr1Qq4XV5EYqEkA/+SFhRmg4j+XWv7PIGP9zHRs6jBXws+xXywQxXzH7k2DDPDa1wLX0HS69w3tOPFrX9h5vOIr0aetzKowE70KXZzS7oBku1Bie8LhTFj8czRql0l0LxBhYW/gMaeGzFSMTLWMzL9YU82XKd6dUSiiwxFLaHGkfdGjFNYbWuc8rnZti9v6cvmwiNAAKybUJTKhmoF9dPJ7yawiMD9nPlySPRlv7eDp1xnzxJ8Gtfs4M+1vAoHvq8fUzlpnh1+lU+Sn1E3BPna+Nf42zs7ENRYAPIkuD5RwapRBOs3rhJfylN6InP4Tra23yHnqC6bX12OQ2z74ArAAFbDy1LgmN9fuazFbLlOk8fi20agtzlGFfCAAAbjklEQVRv4p44Tw0+RaaW4bXZ16jom4cb54vzRFwRfKrP3vyGRu1NgtkA1XegLjmfRpwi+2cMIQSBL3+Z0C/8Av4vfhFtdLSt08hhI6sS0UEfwYSHo48l8AQO8A1/lwTidpd05tqH3Hr7LRRV5fQXvkS4v7U9036gKAqRSGRt+FHGqt+f9A4l+vnaV/45Xzr2AqHPnccXWCUYqnLpyV9AkjbLborFIj7XwQfRNFGUpld2YZNXdpOwy4N/YByXVOVazs188DijfQqiehV3w+LLdfAqnvWAh1TK9jDfr6AqlyTxWMDDdKXOcq3BnbLtfHPcZw8CBfynMa0GxeJN3K7B9e/vsHh8LIKmSLx7L81cpsJIxLNpuOrpsJ9Bt8ql/fDE7oTqtguPlRuwdM22BNtIM3o9dH/u4dxwkF84P8hweP+tEH+WGAmMUNErGJbBM0PP8IXhL7R1GzlMQl6VU0/aJmRDn7+I+9ThbWC7Eh6z/bNNA+Kb13my348kBCf7A4z2MD59p4wERnh26FlKjRKvzb5GsW7fb8uNMulqmuHAhhmuoQtgseYmcrDDjp9GHo4tqcOBInkP/kX8oAwcPZiwhr3i8QfQ3B5yK8uE+vo5cvFJFPXgNeOJRML2ytZk9C1hPi6vj0e/8BX8VwPcdZcQAvqGL226xjRNu5OtepBch3N7kGUPklDR9QJ+vx1DX9zi63t84iyFqdukw/2YYQ990nsMrK7wiKcPr0+H8S+sSw6SySSyLBPZx5OaR/1ePipUuJwrUTVN+l0qQcXevGpaHJeWoFZP4vcfzKlGJ5rSirfu2JuPrTHqI26NkYPsYG9k/BmYfde2PUt+AiNPwtrwKrlZ8MbtYbI1hBAEDsAP+2eNieAEbtlNn7fvoelct+P0+eOMjg/gCz18m4BtjD5lP38Tm+8DAbfKLz8+cqAd7K30+/r54ugXeWv+LV6be43nhp9jpWwHxm1KefTFQV2yu/EOXXm4Xz0ODp8ihk+fpVGt0H/sxKFN3icSCW7fvo2pgKVbWIa1SfIhKwrHn3gGLagjhIGibn5jqlQqWJaFV3YjtMM76LKHH/P4/bZWdOPwI8CjYxe47v0bKrVljhrLXFr6mH7FjWv4KRh+CpT7RWLTWUTaR1tKVRJcDHr5ScbeDHwhsvnnGgpdpFyewuV6OIaxRqNexqJeksUaA/sQdPHAuAJw/KuQX4DZyzD5I/APwMA5KCVh6OJhr/BnAklIrZP9HlI+FQU22Pel4c+1/KvDLLCbRN1Rnh95njfn3+S12ddwKS5CrhABbUtBLcn7GjrzWcIpsh0cekRs5PCHbRKJBKZpkq0WCGBLRoRn+8t87OTzLb/+MCPVN6IoAer1FJHIdrkIQMAVIDY4hJae4oyhMjL4KKWgG3nsC/YwzgaSySQjI9utFXvNGZ+HDwtlyobJUe/mwlXT4mja4fgKt+PS0Ri6ae1r9PgDExyCR34RVm/brgx3XrU/Hzr815iDw2eZkCvEl0e/zBvzb1CsFzkTO3PYS/pU4xTZDg6fIZq649V8mgAJzJqB1KLIbsd6EI3mPRT7viaKEqRcmUZVZVRV3dbJBnj81M8xM/0OF8/9Y7KN28h6cdsJQr1eJ5vNcvHi/ndAFUnw5WiQbEPHux/x4z1GkgTaw1hgN5Ek+1g9cgSWPoJGGbx7D4dwcHDojFf18qWRL3E7c5tj4WOHvZxPNQ//O4GDg8OOaTpopHJ2gMvG4ced0OwY+w4h7XEjzeFAwyhuilbfyPjwOZ575l8hB4do6Pl1V5KNNIce98tZZCsjbo1zB+Er/bOEosHI5+DIc4e9EgeHnxnciptHE4/ikg/PA7sTU1NTnDt3btdf9+1vf5vR0dF156omb7zxBo8//jiKovAXf/EXvVqmU2Q7OHyWaEaHr6bTAFi13RXZ9zvZnkNJe2yy1cavVSe7iWWZGHqxpWvHfjuLODg4ODh8enjxxRe5fPnyts+PjY3xR3/0R7z88ss9/fecItvB4TNGIpEgmUoiNAnzATrZkiTh1lwI9XAHH+G+jV+hUGh7rWGUsLBadrKTySRCCKJRR2bg4ODg8FlkcnKSixcv7iiQ5tKlSwy2SAOdmJjg/PnzPR+QdzTZDg6fMRKJBFNTU6CKXXeyl5eXiQUjyC7l0BxSACRJRZY8NPQ88Xic27dvo+s6irL9ltVo5AFQ1NZFdiwWa/l1Dg4ODg6fbm7evMk3vvENvvvd7+LxeLhw4ULL61577TXC4fABr84psh0cPnMkEgl0XafQKBM0dq4PtiyLxcVFjsRHD1WP3URRg+h6nsHBYUzTZGVlhaGh7bZiumF3uRV5u1wkmUzS19e372t1cHBw+Jlk9rKdZNlLvFEY/XzXy5LJJC+99BJ/+Zd/ydmzZwG4evVqb9eyR5wi28HhM8b68GM5i1/b+dBKoVCgVCrRfzR+aGmPG1HkAJXKzHphvbi42LrIbuSRhIa8ZUBH13XS6TRnzjgWVA4ODg6fNUKhEKOjo7z11lucPXuWmzdv8vWvf73ltU4n28HBoSc0h/zSxQwT4X6shoFQu3emFxcXAejzxR6aTrZZrhMMenG5XOvr24puFFDU7V3sdDqNZVnO0KODg4PDfrGDjvN+oWkar7zyCi+88AJ+v5+XX375oetkH367ysHBoad4PB78fj+pnH2EZ+5Ql72wsABAwh87VI/sJk35h2EWGRwcXF/fVvRGa/u+ZDIJOM4iDg4ODp9VfD4fP/jBD/j93/99vve973W9/lvf+hYjIyOUy2VGRkb47d/+bQDee+89RkZG+PM//3O++c1vrstP9orTyXZw+AySSCRIZVdhHKy6uaOvWVxcJB6NoSnqQ9HJVtcGGfVGnsHBQS5fvoxhGMjy/bWZZgPDrLS072sW2Qflke3g4ODgcDBMTExw7do1AMLh8I6cRQC+853v8J3vfGfb55988knm5uZ6ukZwOtkODp9JEokEqdUUlmXtOJBmcXGRgcQAwEPRyZZlHwKBrucZGhrCMIz1wrmJrttDj2qbTnYkEkFV1QNZr4ODg4ODw0acItvB4TNIIpGgXq9Tqpd3JBcpFAoUCgUGIra04mHoZAshISt+dL2w7mu6VTLSLLLbyUUcqYiDg4ODw2FxKEW2EOKfCSE+FkKYQognOlz3j4QQN4UQd4QQv3WQa3Rw+DTTlEis1nOYFb3r9etDj8E4QhEI5eHYfytKAF3PE41G0TRt2/Cjrtse2bK8OSLXMAxWV1cdqYiDg4ODw6FxWO+k14B/CrzR7gIhhAz878DPA2eAfy6EcLy4HBx2QLODm2nkMfN1LNPqeH2zeE0oYeTgzm3/9htVCaLrBYQQDA4OtiyyFdmHJG0eL8lmsxiG4XSyHRwcHBwOjUMpsi3LumFZ1s0ul30euGNZ1qRlWXXgvwAv7f/qHBw+/fh8PjweD6vlHJZpYRbrHa9fXFwkFo2imjJySDugVXZHUYJYmBhGicHBQZaWljCM+/IXXS92HHp0imwHBwcHh8Pi4TgTbs0wMLvhz3Nrn3NwcOiCEIJEIsFqLg0CjFznInthYYH+qJ2MKIcenk52s4C2kx8H0XWdVCq1/ve63tm+z5GLODg4ODgcFvtWZAshXhVCXGvxsdNutGjxuZZn3kKIfy2EuCKEuLLVfcDB4WeVRCJBMpVE8ino2Vrb60qlEvl8nj5/HMktI7kfHmfPZgG9cfixKRkxjCqm1WjbyQ4Gg7jd7oNbrIODg4PDgTA1NcW5c+d2/XXf/va3GR0dxe/fPMfze7/3e5w5c4bz58/zla98henp6Z6sc9+KbMuyvmpZ1rkWH93dwm3mgNENfx4BWqZRWJb1Hy3LesKyrCec42EHB5t4PE6lUqHmMjFLDaxGa7/sZtHa74o8VF1sAFn2IAkFXS8Qj8dRVXV9vc2hx3ZFttPFdnBwcHDYyIsvvsjly5e3ff7ixYtcuXKFn/70p/zKr/wK3/rWt3ry7z3McpH3gBNCiCNCCA34BvD9Q16Tg8OnhvXhx7Vi1Mi37mZvTHp82IpssLvZtdoy5cpdRkdlkskPKZZuUy5Prv/9RkzTJJVKOXpsBwcHh58BJicnuXjx4o4CaS5durR+KrqRL3/5y3i93vVrehVMcyjnwkKIXwL+AEgAfyOEuGpZ1gtCiCHgP1mW9Y8ty9KFEP8j8PeADPxflmV9fBjrdXD4NNIsMlOFDP1KAD1bQ4l5tl23uLhIJBDGrbmQgw/P0GMTTYtTLN0im32Pvv48s7OzZNIjCElCltzIsm/T9fl8nkaj4RTZDg4ODp9xbt68yTe+8Q2++93v4vF4uHDhQsvrXnvtNcLh8I4e8w//8A/5+Z//+Z6s71CKbMuy/gr4qxafXwD+8YY//y3wtwe4NAeHzwzBYBBN00gmk8gnTmDkWneyFxcX6Q/Fkf3qQ+OPvZFQ6HMEAmcBSK4c4/K7f42mfZF4PI4QKkJsHt9YWVkBHGcRBwcHh/3m6spVcrVcTx8z5Apxoa91sbyRZDLJSy+9xF/+5V9y9qz9HnH16tU9/dt/8id/wpUrV3j99df39DhNHp4JJwcHh54ihGBsbIwbN27wlcefx0pXMcsNJO/9mPFyuUw2m+XRvlMPpVQE7O9Dlu0O/NDQBKapsLycob9/tOX1165dQ1VVBgYGDnKZDg4ODg4HSCgUYnR0lLfeeouzZ89y8+ZNvv71r7e8died7FdffZXf+Z3f4fXXX8fl6s37oVNkOzh8hrl06RJ/8id/wifztznOIEa+vqnIXh96DMYf2iJ7I/F4HEVRWFhY4Pz589v+Pp/Pc+3aNZ588sme3SQdHBwcHFqzk47zfqFpGq+88govvPACfr+fl19++YE72R988AHf/OY3+bu/+zv6+vp6tsaH72zYwcGhZxw7doxEIsE7Vy4jXNI2K79mkT0QTSD9/+3df5BV9XnH8fdnl1WQdVkVdrPLgohj/AHoovza0WTsNIkxrdJ2xoikrTadaXUwjXUqqWU6ZTI6Y0kCk1anTptoyEww2iGKYpsYQ41TKxXUxUUIgrix4K4SQCMssMI+/eOehQXu3d27e+Hc3ft5zezsvd8995znPvM95z77ved8z+iKbKsoKuXl5dTW1p5058du69ato6uri9mzZ5/myMzM7HQbPXo0q1evZtmyZaxa1ffkdQsXLqShoYGOjg4aGhpYvHgxAPfccw/79u3jpptuorGxkRtvvLEg8Xkk22wYk8ScOXN45pln2HlwF+M/GUt0BSrLnMfc1tZG1aizqRw75mhbsauvr2fDhg10dXVRVnZsnKCzs5P169dzySWXcO6556YYoZmZnUqTJk1i48aNAFRXV/drZhGAJUuWsGTJkpPan3/++YLG180j2WbD3OWXX85ZZ53FureaM7dY//jY3R/f2/lecqpI8c0qkktdXR2dnZ3s2bPnuPYNGzZw4MABmpqaUorMzMzsGBfZZsNcRUUFM2fOZOs729jT8SGHk1lGDhw4wN4P92aK7Oqhc/7yiXd+hMzc2GvXrqW+vp6JEyemFZqZmdlRLrLNSsDMmTMpLy/n9Z2bjk7l197eDsCnxtZSdubQOXOspqaG8vLy44rsbdu2sXv3bpqamk6a0s/MzCwNLrLNSkBlZSXTpk1j4683s3/vPuKTI0fv9Fg/cXzK0eUn28WPL7/8MlVVVVx22WUpRmZmZnaMi2yzEtHU1MQnhw/zxo7NHPmok/fe3cnZI0dTVXtO2qHlra6ujra2NiKC9vZ23nnnHWbNmkV5eXnaoZmZmQEuss1KRm1tLZMnT+b1d9/k0N4O2trbqK0aV5S3Uu9LXV0dBw8eZO/evaxdu5aKigquuuqqtMMyMzM7ykW2WQlpampi38H9NLdsYM9He/nUuNqivJV6X+rr6wHYunUrLS0tTJ8+nVGjRqUclZmZnQ6tra1MnTo179ctWrSICRMmUFlZeVz7ww8/zLRp02hsbOSaa65h06ZNBYlz6H26mtmAXXjhhYw95zxe3LQWgPrx9SlHNDA1NTWUlZWxZs0ajhw54pvPmJlZn2644QZeeeWVk9rnz59PS0sLzc3NLFy4kLvvvrsg23ORbVZCysrKmD17DocOZ+bKrp88IeWIBmbEiBHU1NRw6NAhLr74Ys4777y0QzIzsxRs376d6dOn9+uGNHPmzDk6DWxPVVVVRx/v37+/YLNUDZ15u8ysIBqvamTNml9QpjLGDMGLHrvV19fT3t7um8+YmZWoLVu2MG/ePB599FFGjRpFY2Nj1uVeeOEFqqure13XQw89xNKlS+ns7GTNmjUFic9FtlmJqaio4Pc+fz2HDh4a0nNKz5w5kzFjxnD++eenHYqZWUnqeO11jnz4YUHXWV5dzVlXTu9zuV27djF37lxWrlzJlClTAGhubh7wdhcsWMCCBQtYsWIF9913H8uXLx/wurq5yDYrQVNnXpF2CINWV1eX9Ws/MzMb/saMGcOECRN46aWXmDJlClu2bOHmm2/Oumx/RrK7zZs3jzvuuKMgMbrINjMzM7O89WfE+VQ544wzeOqpp7juuuuorKxk/vz5Ax7J3rp1KxdddBEAzz777NHHg+ULH83MzMxsyBk9ejSrV69m2bJlrFq1qs/lFy5cSENDAx0dHTQ0NLB48WIAHnzwQaZMmUJjYyNLly4tyKkiAIqIgqyoWMyYMSPWr1+fdhhmZmZmw87mzZu59NJL0w4jFdneu6RXI2JGtuU9km1mZmZmVmAuss3MzMzMCsxFtpmZmZlZgbnINjMzM7N+G27X8/XHQN6zi2wzMzMz65eRI0eye/fukiq0I4Ldu3czcuTIvF437GYXkbQL+HVKmx8L/CalbQ9Vzln+nLP8OF/5c87y55zlzznLX+o5Gzdu3Ij7779/0qRJk0YNhbsGd3V1lZWVlXUNZh0RQWtr64FFixa17tq16/AJfz4/IsZle92wK7LTJGl9rmlcLDvnLH/OWX6cr/w5Z/lzzvLnnOXPOctfmjnz6SJmZmZmZgXmItvMzMzMrMBcZBfWv6YdwBDknOXPOcuP85U/5yx/zln+nLP8OWf5Sy1nPifbzMzMzKzAPJJtZmZmZlZgLrILQNIXJW2RtE3S36YdTzGSNEHSf0naLOlNSV9P2hdL2impOfn5UtqxFhNJrZJaktysT9rOlfRzSVuT3+ekHWexkHRxj77ULOm3ku5yPzuepEckfSBpY4+2rP1KGf+UHN/ekHRlepGnJ0fOviXpV0lenpRUnbRPknSgR397OL3I05MjZzn3RUn3Jv1si6Tr0ok6PTny9XiPXLVKak7a3cfotbYoiuOZTxcZJEnlwFvA54EdwDrglojYlGpgRUZSHVAXEa9JOht4FfgD4MvAvoj4dqoBFilJrcCMiPhNj7YlwJ6IeCD5p+6ciPhGWjEWq2Tf3AnMBv4M97OjJH0W2Af8MCKmJm1Z+1VSBH0N+BKZXH43ImanFXtacuTsC8CaiDgs6R8BkpxNAlZ3L1eqcuRsMVn2RUmXAY8Bs4B64Hng0xFx5LQGnaJs+Trh798BPoqIb7qPZfRSW9xGERzPPJI9eLOAbRGxPSI6gR8Dc1OOqehERFtEvJY8/hjYDIxPN6ohay6wPHm8nMwBxU72u8DbEZHWzamKVkS8COw5oTlXv5pL5kM/ImItUJ18sJWUbDmLiOciovvGFGuBhtMeWBHL0c9ymQv8OCIORcQ7wDYyn68lo7d8SRKZQanHTmtQRa6X2qIojmcusgdvPPB/PZ7vwMVjr5L/wKcD/5s03Zl8bfOIT304SQDPSXpV0l8kbbUR0QaZAwxQk1p0xW0ex38guZ/1Lle/8jGuf74K/GeP5xdIel3SLyV9Jq2gilS2fdH9rHefAd6PiK092tzHejihtiiK45mL7MHLdk9Rn4OTg6RKYCVwV0T8FvgX4EKgEWgDvpNieMXo6oi4ErgeWJB8nWh9kHQGcCPw70mT+9nA+RjXB0mLgMPAj5KmNmBiREwH7gZWSKpKK74ik2tfdD/r3S0cP2jgPtZDltoi56JZ2k5ZP3ORPXg7gAk9njcA76UUS1GTVEFmJ/hRRPwEICLej4gjEdEF/Bsl9vVgXyLiveT3B8CTZPLzfvfXW8nvD9KLsGhdD7wWEe+D+1k/5epXPsb1QtKtwO8DX4nkIqfklIfdyeNXgbeBT6cXZfHoZV90P8tB0gjgj4DHu9vcx47JVltQJMczF9mDtw64SNIFyejZPODplGMqOsn5ZN8HNkfE0h7tPc+F+kNg44mvLVWSRicXciBpNPAFMvl5Grg1WexWYFU6ERa140Z93M/6JVe/ehr40+Sq/DlkLrxqSyPAYiPpi8A3gBsjoqNH+7jkwlskTQYuAranE2Vx6WVffBqYJ+lMSReQydkrpzu+IvU54FcRsaO7wX0sI1dtQZEcz0acqhWXiuSq8juBnwHlwCMR8WbKYRWjq4E/AVq6pyAC/g64RVIjma9rWoG/TCe8olQLPJk5hjACWBERP5W0DnhC0p8D7wI3pRhj0ZF0FpnZfnr2pSXuZ8dIegy4FhgraQfwD8ADZO9X/0HmSvxtQAeZmVpKTo6c3QucCfw82U/XRsTtwGeBb0o6DBwBbo+I/l4AOGzkyNm12fbFiHhT0hPAJjKn3iwopZlFIHu+IuL7nHx9CbiPdctVWxTF8cxT+JmZmZmZFZhPFzEzMzMzKzAX2WZmZmZmBeYi28zMzMyswFxkm5mZmZkVmItsMzMzM7MCc5FtZmZmZlZgLrLNzIYISedJak5+2iXt7PH8f07B9m6TtEvS9wb4+m8lcf5NoWMzMyt2vhmNmdkQkdxGuRFA0mJgX0R8+xRv9vGIuHMgL4yIeyTtL3RAZmZDgUeyzcyGAUn7kt/XSvqlpCckvSXpAUlfkfSKpBZJFybLjZO0UtK65OfqfmzjNkk/kfRTSVslLUnayyX9QNLGZBt/fWrfrZlZ8fNItpnZ8HMFcCmwB9gOfC8iZkn6OvA14C7gu8CyiPhvSROBnyWv6UsjMB04BGyR9M9ADTA+IqYCSKou9BsyMxtqXGSbmQ0/6yKiDUDS28BzSXsL8DvJ488Bl0nqfk2VpLMj4uM+1v2LiPgoWfcm4HzgTWByUnA/22N7ZmYly0W2mdnwc6jH464ez7s4dtwvA5oi4sAg1n0EGBEReyVdAVwHLAC+DHw176jNzIYRn5NtZlaangOOXtAoqXGgK5I0FiiLiJXA3wNXDj48M7OhzSPZZmal6a+AhyS9Qeaz4EXg9gGuazzwqKTugZt7CxCfmdmQpohIOwYzMytCkm4DZgx0Cr9kHYs5PVMNmpkVFZ8uYmZmuRwArh/MzWiAPwY8V7aZlRyPZJuZmZmZFZhHss3MzMzMCsxFtpmZmZlZgbnINjMzMzMrMBfZZmZmZmYF5iLbzMzMzKzA/h9VM9Z9SMjMogAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Make figure showing the sums depending on k\n", "ref_impulse = impulses[0]\n", "my_impulse = impulses[1]\n", "\n", "# remove 'already determined' offsets\n", "if True:\n", " # $t_\\phi$ offset\n", " my_impulse = time_roll(my_impulse, samplerate, -t_phi)\n", "\n", "if True:\n", " # $\\Delta A$ offset\n", " my_impulse = time_roll(my_impulse, samplerate, +Delta_A)\n", "\n", "best_k, (ks, maxima) = beacon_integer_period(samplerate, f_beacon, ref_impulse, my_impulse)\n", "print(\"Best k: {:0g}\".format(best_k))\n", "print(\"Maximum: {}\".format(maxima[np.where(ks == best_k)][0]))\n", "\n", "\n", "# Make figure\n", "fig, axes = plt.subplots(1, 1, sharex=True,figsize=(12,4))\n", "if not hasattr(axes, 'ndim'):\n", " axes = [axes]\n", "\n", "axes[0].set_title(\"Coherent sum of impulses with $kT$ offsets.\\nBest offset: ${:.0f}*T$\".format(best_k))\n", "axes[-1].set_xlabel(\"Time [ns]\")\n", "\n", "if not True:\n", " i=0\n", " axes[i].set_ylabel(\"Reference\")\n", " axes[i].plot(time/ns, ref_impulse, label=\"reference\")\n", " axes[i].plot(time/ns, my_impulse, label='impulse')\n", " axes[i].legend()\n", "\n", "axes[-1].set_ylabel(\"Coherence Sum\")\n", "\n", "best_maximum = np.max(maxima)\n", "axes[-1].axhline(best_maximum, alpha=0.7)\n", "\n", "for i, k in enumerate(ks, 0):\n", " sample_offset = int(k*1/f_beacon*samplerate)\n", " augmented_impulses = np.roll(my_impulse, sample_offset)\n", " \n", " summed_impulse = ref_impulse + augmented_impulses\n", " if True or k%2 == 1:\n", " axes[-1].plot(time/ns, summed_impulse, label='k={:.0f}'.format(k),\n", " alpha=0.1 + 0.9*1/(1+2*abs(best_maximum-maxima[i]))\n", " )\n", " \n", "axes[-1].legend()\n", "fig.show()\n", "\n", "del ref_impulse\n", "del my_impulse" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Solve it\n", "\n", " 1. Find $t_\\phi$\n", " 2. Find $\\Delta A$\n", " 3. Find $kT$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### 1.1 Beacon Phase Delay ($t_\\phi$)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beacon delays [ns] \\pm k*14.285714285714285ns: [0. 8.57142857]\n" ] } ], "source": [ "abs_beacon_time_delays_tmp = np.array([\n", " beacon_time_delay(samplerate, beacons[0], beacon)\n", " for beacon in beacons\n", "])\n", "\n", "\n", "abs_beacon_time_delays = abs_beacon_time_delays_tmp[:,0]\n", "t_phi = np.array(abs_beacon_time_delays % (1/f_beacon), dtype=np.float64)\n", "beacon_time_delays_err = abs_beacon_time_delays_tmp[:,1]\n", "\n", "print(\"Beacon delays [ns] \\pm k*{}ns: {}\".format(1/f_beacon/ns, t_phi/ns))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEsCAYAAADtt+XCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9eZhU1bmo/35VPY/0CDTN0Mw00M3UTArIoGhUFHA2KvEmmsF4cnOTE5Mccz2eJNf4y4kmeuKQqFHjgEHFGWdlRkDmsZu5gYaeoOepav3+WNVYNNVdQ9cI632e9VTV3muv9e3aVfvba61vEKUUBoPBYDB4iyXUAhgMBoMhMjEKxGAwGAw+YRSIwWAwGHzCKBCDwWAw+IRRIAaDwWDwCaNADAaDweATRoEYDAaDwSeMAjEYDAaDTxgFYvAIEfmHiPzWw7oHRWROoGVy6k+JSL2I/K6b7XwmIk0istJfsnVo/4iIjA1E2wZDKDAKJEA4bqKNIlInItUi8p6I9A21XOcxhUqpX3enAaXULOD7fpLnLEQkDegN7HJTb5GIXNLJvntEZIOINIvIP7poY4hDEf6zk/2xIvKMiBwSkVoR2SQiV3SoM0BE3nf8dstE5HERiXLa/4WjjzpH2eO0r65DsYnIY96ch6tz6K7cXckcyXKHEqNAAsvVSqkk9I3jBPCYm/qGCEJEHhCRBzysPhooUUo1ddLW3SIy/5uPcpfT53aOAb8FnnXT1/8A67vYHwUcAWYAqcD9wGsiMsCpzl+Bk+jf7hhH3R92aOcepVSSowxr3+i0LQnoCTQC//LyPFydgz/kdilzJMsdSowCCQKOm8YSIL99m4jkiMjrIlIuIgdE5F6nffeJyD7H08pO5xuJiPQVkTccx1WKyONO+0Y4nlZOicgOEZnntO+giPxMRLaKyGkRWSwicZ3JLCJjReRrhwyLgTinfZ3K7qKdrs7l5yLyeof6j4nIo473vxCRo45j94jI7C6/aA/P1dd2u0kBsN3Rf4KIvOy4jkmO/c8Cg4CfAL8H7MBbzg0opd5QSi0FKjvrRERuAk4Bn3ZWRylVr5R6QCl1UCllV0q9CxwAxjtVywNeU0o1KaXKgGXASO9OGYDr0DfGFZ6eR2fnYOQOP4wCCQIikgDcCKx1fLYA7wBbgD7AbOAnIjLXccg+YBr6aeU/gX+KSG8RsQLvAoeAAY5jX3W0Ge1o8yMgG/gx8JKIOD+t3ABcjv6xFgCLOpE3BlgKvAiko5/CFnooe0dcnotj3z+By0Wkh6PtKMf39KJD7nuAIqVUMjAXONhJH65wea5+aNdXCoBtIpIHrAT2AAuVUnVOdZTTq83ps0eISArwIPB/vDyuJzAU2OG0+c/ATQ5l1we4An1Tc+b/iUiFiKySTqbdgDuAF5SHUVu9OQcf5fZE5kiWO7gopUwJQEHflOrQTyRt6OHvaMe+ScDhDvV/CTzXSVubgWuAKUA5EOWizjSgDLA4bXsFeMBJnm877XsYeLKT/qY75BWnbavRw3e3sjv6mtPVuTh9/gD4nuP9VcBOx/vB6CfAOUC0m+9aAYM79O/yXN21i1Y0K7vo613HNT0FNDlK++d3uzhuDfAk+snzGhf77wYWOPqf6fh8bSdt/Rb4h4vtfwZ+4Xj/APBPD36n0cAnwFMdto8ANjp+uwr4R4ffwyQgGYhF32xrgUEd2uiHVoR5np6Hp+fgi9yeyBzJcoeimBFIYLlWKdUDfeHvAb4UkV5AfyDHMdV0SkROAb9Cz7siIreLyGanfaOATKAvcEgp1eairxzgiFLK7rTtEHqU0E6Z0/sGIAnX5ABHlePX69QW7mTvSBfn0s7zwLcd77+NHvWglCpBT+c8AJwUkVdFJKcTeV3h8ly7265S6iqlVA/HdX0IeKj9s1LqKlfHiIigz3s+WpG91bGOUuoppdQb33xUTyk9XeIRIjIGrRQf8eIYC/r7bkH/Pp23fwi8ASSir1ca8AcnedcppWqVUs1KqeeBVcC3OnRxO1oZH/DnOfgqt4cyR7LcQccokCCglLI5bg424GL0gtoBpxtPD6VUslLqWyLSH/gb+geW4bhRbQfEcVw/cbKGceIY0NfxY2ynH3DUB5GPA30cNz7ntuhK9o6NuDmXdpYCBSIyCj0Ceal9h1LqZaXUxWilpXC6gXWHQLXbBXmO1znA/xGRCV3I9g+l1Bc+9HEJelrzsIiUAT8DForI164qO67tM2jFv1Ap1eq0Ox39sPK446ZVCTxH1zctxdnXFfSN+Hl/noOf5XYlcyTLHXSMAgkCorkG/VSxC/gKqHEs5saLiFVERolIEfoJRKGnqhCR76CfXnEcdxx4SEQSRSRORC5y7FsH1AP/LiLRjnnSq3GskXjJGvRQ+l4RiRKRBcBEJxk6k70jXZ0LcJaBwcvAV0qpw466w0RklojEoqeJGtEKuFv4s12lF0Yf8KBqAbBVKbUNuAt402kdyGMc1yIOsAJWx/Vvf5h4Gr0IP8ZRngTeQ6/xuOIJ9LTJ1UqpRucdSqkK9FTbDxx99kBPnWxxyNFDROa29y8it6KnPT90knUqevTrbMXk7jw8OQef5PZE5kiWO2SEeg7tfC3oefhG9DpILfrJ+1an/TnoNYoyoBq9wD7Hse93QBVQAfwJ+BL4rmNfP/RTe6Vj/1+c2hzpqHsa2AnM7yDPHKfPD9DFHDkwAdjkkH2xo/zWnewd++rqXJzqX4xWNN9x2laAVla1juPfBXI6kdXVGojLc3XXLu7XQD5wXFNX5YNOjrkfeKLD53VAnJe/qQcc5+pcHuii7j87yP0rx/v2kVdTB/mdf59jgC8c17cCfUPNduzLQpuq1qLXftYCl3bo/yngxe6ch4tz8FluT2SOZLlDVdoXaQyGkCEi/YDdQC+lVI0PxzcBzWhlen835PgYmIweCQXDtNdgiGiMAjGEFMeazZ+AFKXUnaGWx2AweI6rxViDISiISCLaQ/8Q2mfDYDBEEGYEYjAYDAafMFZYBoPBYPAJo0AMBoPB4BNGgRgMBoPBJ4wCMRgMBoNPGAViMBgMBp8wCsRwXiB+SmtrCH8kwKmHDZ5jFIghYIhO2jQmiF2eSWsrIuki8qZDqRwSkVuCKIfPiJtUsi7qBzS1rKPeWWlaJcSpZVUAUw8bvMMoEENAEJFMdCyfLnOAB5D/QYfN7gncCjwhImGf4Q3PUsl2JJCpZeHcNK2hTi1rCBOMAjH4HREZjL7BWIBK0al3gxb1wOHhvhC4XylVp5RaCbwN3BYsGbpBoFKbep2iFVynaVUhTi1rCB+MAjH4HaWTNv0MWOJ4ksxQrpNgnYOIvCtOyao6lHc9FGEoYFNK7XXatoUIyDGNZ6lkO+L31LLgeZpWCaPUsobgYhSIIVAUotPXnoWIfNHVQcop45+L4jLjnwuS0CHtnTmNTgsa7nyJVnQ1QCmwAR2+vzN+AQxE57B4GnhHRAY5V3BEO56Bd0mSAP4LeEYpdaSzCiISjU4C9rxSareH5+FW5m7KbQgSRoEYAsUYHAmI2hGRdHSug0BTB6R02JaCzqkQtogHqWQ7ogKQWtYhi9s0rRJmqWUNwccoEIPfcdxARuE0AhGRu9Hz2BNF5Mkujv3AhRVOe/nAQxH2AlEiMsRpWyFnT7GEI76kku2IP1LLgps0rSJhmVrWEGSMAjEEgnhHsQCIyFhgJvB34MfoHOiprg5USl3hbIXToVzh6hgXbdSjn34fFJ369yLgGvTTctii3KSS7YgELrUsuE/TGrLUsobwwSgQg99x3MCfBHaKSCmwAP0EOgY9KmlDZxAMJD9EK7GT6PS7P1BKnRmBOEY6vwqwDL6wAJ0bpRwoQX9X/7t9Zwe5o9FmuOXoqcEfA9cqpZz9Ku4A3lBKuZq++w+0iex9wLcd7/8DQCnVoJQqay/oacEmpVS5iPQH7kZfzzKnEeKtHpyHJzK7k9sQJph8IIaAIyKPoC1w7kPfMB5QSl3n5z78ktbWEP6IST0cNhgFYgg4IlKInsvuh14H+b5S6nhopTIYDN3FKBBDUBCR0cBdSqkfh1oWg8HgH8waiCFYDAN2u61lMBgiBjMCMRgMBoNPmBGIwWAwGHwiaAHuwoHMzEw1YMCAUItxXrK/vB6AgVmJIZYkAqgo1q+ZQ7quZzCECRs3bqxQSmV13H5BKZABAwawYcOGUItxXnLjU2sAWHz3lBBLEgE8d6V+/c57oZXDYPAQETnkaruZwjIYDAaDT4R0BCIil6PDPluBvyulHuqwfzrwKFAA3KSUWuK0zwZsc3w8rJSaFxypDa748SwzHeMx038WagkMBr8QMgUiIlZ0prNL0eGe14vI20qpnU7VDgOL0IHcOtKolApmulRDF1w8JDPUIkQOg2aGWgKDwS+EcgQyEShRSu0HEJFX0QHvzigQpdRBxz57KAQ0eM6OYzr9xsgclzESO6W1tZXS0lKampoCIVZ4YmvRr9aY0MphMHQgLi6O3NxcoqOjPaofSgXSB532tJ1SYJIXx8eJyAZ0kLaHHKk5DSHiwXe03vd2Eb20tJTk5GQGDBiAjhB+AWCssAxhiFKKyspKSktLycvL8+iYUC6iu7pbeOPV2E8pNQG4BXjUVUYzABG5S0Q2iMiG8vJyX+Q0BJCmpiYyMjIuHOVhMIQpIkJGRoZXswGhVCCl6KQz7eQCxzw9WCl1zPG6H/gCGNtJvaeVUhOUUhOyss4xYzaEAUZ5GAzhgbf/xVAqkPXAEBHJE5EY4CbgbU8OFJE0EYl1vM8ELsJp7cRgMBgMgSdkCkQp1YbOo/whsAt4TSm1Q0QeFJF5ACJS5EhIdD3wlIi0JwQaAWwQkS3A5+g1EKNADH5j0aJFLFmyxG29ZcuWMWzYMAYPHsxDDz3ktr4hPPD0+t55551kZ2czatSoIEgVeYTUD0Qp9T7wfodtv3F6vx49tdXxuNXA6IALaPCYf798WKhFCDo2m40f/ehHfPzxx+Tm5lJUVMS8efPIz8/v+sDk3sER0NBtFi1axD333MPtt98ealHCEuOJbvAL4/unM75/eqjF8IkXXniBgoICCgsLue22285sX758OVOnTmXgwIEun1a/+uorBg8ezMCBA4mJieGmm27irbfect9hbJIuhqDg6/UFmD59Ounpkfm7DgYXVCwsQ+DYeKgKoNtK5F8bjpyzbWjPZAr79qDVZmfppqPn7M/PSWFkTiqNLTbe3Xq2Hcb1E/qeU9+ZHTt28Lvf/Y5Vq1aRmZlJVVXVmX3Hjx9n5cqV7N69m3nz5nHddWdn4T169Ch9+37Tfm5uLuvWrXN/ks11+vVCVCKbXjp3W/Zw6DMebK2w9bVz9/caDb0LoKUBdrx59r6xt55b34nuXF+De8wIxOAXHl62h4eX7Qm1GF7z2Wefcd1115GZqT3pnZ82r732WiwWC/n5+Zw4ceKcY13l0vHIiqX2uC6GgNOd62twjxmBGMKKrkYM0VZLl/vjY6xuRxwdUUp1etOPjY09q15HcnNzOXLkmxFTaWkpOTk5XvV/wdHViMEa3fX+mAS3I46OdOf6GtxjRiCGC5rZs2fz2muvUVlZCXDWFIc7ioqKKC4u5sCBA7S0tPDqq68yb56J6RlOdOf6GtxjFIjhgmbkyJH8+te/ZsaMGRQWFvLTn/7U42OjoqJ4/PHHmTt3LiNGjOCGG25g5MiRAZTW4C3dub4AN998M1OmTGHPnj3k5ubyzDPPBEjSyOSCyok+YcIEZRJKBQZfE0rt2rWLESNGBEKk8MXEwjKEMa7+kyKy0RE66izMGojBL/zmaje+D4ZvSOkTagkMBr9gFIjBL3gbxv2CJiYh1BIYDH7BrIEY/MLK4gpWFleEWozIoKlGF4MhwjEjEINfeOwzPa9vMhN6QJ3D5yAuJbRyGAzdxIxADAaDweATRoEYDAaDwSeMAjEYXHC+hHPfvHkz77//vvuKHbjkkks4n03ez5dw7gcPHuTll1/2+jhPz98dRoEYDD7SHs79gw8+YOfOnbzyyivs3Om/tDQ2m+2sz0op7Ha7V234qkAMmkWLFrFs2bKAtO3qena85u7wVYH4C6NADH7h9wtG8/sFkZmiJdDh3EtKSpgzZw6FhYWMGzeOfRWtqJRcfv7znzNq1ChGjx7N4sWLAfjiiy+YOXMmt9xyC6NHj+bgwYOMGDGCH/7wh4wbN44jR47w0UcfMWXKFMaNG8f1119PXZ2O7rt+/XqmTp1KYWEhEydO5PTp0/zmN79h8eLFjBkzhsWLF1NfX8+dd95JUVERY8eOPSNvY2MjN910EwUFBdx44400NjYG4qsOCYEO537ixAnmz59PYWEhhYWFrF69GoA//elPjBo1ilGjRvHoo48CuLyeSUlJ/OY3v2HSpEmsWbOGjRs3MmPGDMaPH8/cuXM5flwH3jznd7RvH/fddx8rVqxgzJgxPPLII9hsNn7+859TVFREQUEBTz31FKCV1T333EN+fj5XXnklJ0+e7Pb3CsYKy+AnBmX5JzR5u0e7v3DnGR+McO633nor9913H/Pnz6epqQm73c4b77zP5s2b2bJlCxUVFRQVFTF9+nRAK6bt27eTl5fHwYMH2bNnD8899xx//etfqaio4Le//S2ffPIJiYmJ/OEPf+BPf/oT9913HzfeeCOLFy+mqKiImpoaEhISePDBB9mwYQOPP/44AL/61a+YNWsWzz77LKdOnWLixInMmTOHp556ioSEBLZu3crWrVsZN26cz995lzx3pf/aGnNLWIRzv/fee5kxYwZvvvkmNpuNuro6Nm7cyHPPPce6detQSjFp0iRmzJhBWlraWdcToL6+nlGjRvHggw/S2trKjBkzeOutt8jKymLx4sX8+te/5tlnn3X5O3rooYf44x//yLvvvgvA008/TWpqKuvXr6e5uZmLLrqIyy67jE2bNrFnzx62bdvGiRMnyM/P58477/TpfJ0xCsTgFz7ZqU1T5+T3DLEk3hHocO61tbUcPXqU+fPnAxAXFwdNp1n5xafcfPPNWK1WevbsyYwZM1i/fj0pKSlMnDiRvLy8M23079+fyZMnA7B27Vp27tzJRRddBEBLS8uZWE29e/emqKgIgJQU1ybCH330EW+//TZ//OMfAWhqauLw4cMsX76ce++9F4CCggIKCgo8+PbCn2CEc//ss8944YUXALBaraSmprJy5Urmz59PYmIiAAsWLGDFihXMmzfvrOvZfszChQsB2LNnD9u3b+fSSy8F9JRW7969Xf+OXPDRRx+xdevWMyOq06dPU1xczPLly8/83nJycpg1a5bP5+uMUSAGv/C3FfuB7isQb2NpdZdAh3N3GWuu7iSqpaFTmdpvOq4+K6W49NJLeeWVV86qs3XrVo9ykSileP311xk27NwUxB7lMuku33kv8H04Eapw7l211/H6xsXFYbVazxw3cuRI1qw5eyReU+OZ46lSiscee4y5c+eetf39998PyPU1ayCGC5pAh3NPSUkhNzeXpUuXAtDc3ExDQyPTp0xg8eLF2Gw2ysvLWb58ORMnTnTb5+TJk1m1ahUlJSUANDQ0sHfvXoYPH86xY8dYv349oEc+bW1tJCcnU1tbe+b4uXPn8thjj525wW3atAnQc/0vvaSzBW7fvp2tW7d6/D2EM8EI5z579myeeOIJQI8YampqmD59OkuXLqWhoYH6+nrefPNNpk2b5ratYcOGUV5efkaBtLa2smPHjk5+Rw0ur+8TTzxBa2srAHv37qW+vp7p06fz6quvYrPZOH78OJ9//rlfzt0oEMMFTTDCub/44ov85S9/oaCggKlTp1J2spz5V152ZmF31qxZPPzww/Tq1cttn1lZWfzjH//g5ptvpqCggMmTJ7N7925iYmJYvHgxP/7xjyksLOTSSy+lqamJmTNnsnPnzjOL6Pfffz+tra0UFBQwatQo7r//fgB+8IMfUFdXR0FBAQ8//LBHyiwSCEY49z//+c98/vnnjB49mvHjx7Njxw7GjRvHokWLmDhxIpMmTeK73/0uY8eOddtfTEwMS5Ys4Re/+AWFhYWMGTPmzKL8Ob+jsjIKCgqIioqisLCQRx55hO9+97vk5+czbtw4Ro0axd13301bWxvz589nyJAhjB49mh/84AfMmDHDq++hM0w4d4NfMOHcvcCEczeEMd6EczcjEIPBYDD4hFlEN/iFR24cE2oRIoce/UMtgcHgF4wCMfiFnB7xPh/blaXMeUlUTKglMBhc4u2SRkinsETkchHZIyIlInKfi/3TReRrEWkTkes67LtDRIod5Y7gSW1wxTtbjvHOlmNeHxcXF0dlZaXfzSjDmsZqXQyGMEIpRWVlZac+Jq4I2QhERKzA/wCXAqXAehF5WynlHEzoMLAI+FmHY9OB/wtMABSw0XGs+VeGiH+uPQTA1YU5bmqeTW5uLqWlpZSXlwdCrPCkzhFGIik7tHIYDB2Ii4sjNzfX4/qhnMKaCJQopfYDiMirwDXAGQWilDro2Ncxgtxc4GOlVJVj/8fA5cArGCKK6Ojos7yuLwieczwPBdmpzmDwN6GcwuoDHHH6XOrYFuhjDeFMFx7akcgFNTVnoKnVdkFd81AqEFerpp5+8x4fKyJ3icgGEdlwQU2TRCKV+2D1X2Df53Ae/AltdsWSjaVsKz0dalEMQaCmqZVnVh5g6eajtNm8C7sfqYRSgZQCfZ0+5wKersJ6fKxS6mml1ASl1ISsrCyfBDUEAbsNSj4BscDhtXBiR6gl6jZr91dSWt1ITJSF0w2tHD11/oRI9xsNVeBljpNwZWVxBTa74mBFAx9sL8Nuj/yHIHeEcg1kPTBERPKAo8BNwC0eHvsh8HsRSXN8vgz4pf9FNHjKE98e370Gjm7UN5PR10HjKcga7h/BQsShynrWH6xidJ9UhvZM4rUNRzjd2MptkwcQf8MLoRYvPGhrgc0vQ2wSDLsSkiL3AU8pRe/UOHqmxCIifLmnnP0VdQzOTg61aAElZCMQpVQbcA9aGewCXlNK7RCRB0VkHoCIFIlIKXA98JSI7HAcWwX8F1oJrQcebF9QN4SG9MQY0hO74d+Q0gf6ToSMwdC3CKxR0Nr0TdiPCKK+uY0Pd5SRnhjDjGFZiAgzh2fT1Grnk10nUAnpkJgRajFDS/VBsFhh0Cz9wLDxOTi4So9EIxARYWy/NMb3T2dcvzRuLOp73isPMLGwDH7iXxu0TcP1E/q6qekFxZ/A0Q2Qfw1kR068rJ3Havhs9wlumtiPzKRvQoZvOFjFiuIKbohaTp8e8W6TIZ23NFTBV09D/4sgbxq01EPxx3BylzZtLrwJYhLdtxMm7CmrpdVmZ2ROyjkOsSdqmjhQUc+kvPSIdpbtLBaW8UQ3+IUlG0sBHxRIbRkc3wJ5MyC6gwPTwBlQVwY73wZLNGQO9pO0gSU/J4X+GQkkxp799xrXL439FfWw4mXaUmKJulAVyOG1IFbIcUSnjUmEkddCdj6U74boBL1dKQjzm25Tq40v9pwkLSGGkTnnJvHaU1bLxkPVCDBp4Pk36jTBFA2hQyn95Fm+2/V+azSMvl4/le54U097hDFlp5s4UqXNkDsqDwCLRZg7shcJsVYsYX5jDBhNp6FsG/Qu1GsfzmQNhfx5Wmk0nYavX4DTR0Mjp4esO1BFY6uNSxxTlR2ZNiSTEb1TWL2vkq8Pn39+zkaBGELHyV1wutT16KOdqFgouBHie2hlE6YWO+W1Tbz+dSmf7DqBrQvrm9T4aNLiY7CIXFD+Amc4vFYriH6Tuq7XXActdbDpRW2dZ2sNjnxesPnIKZZtK2NkTirZKa5/vyLCZfk9GdIziS/3lLP96Pll0m0UiCE02Fph32eQ3BN6ucm/HZOg58ULbgBL+P1k7XY733thI39fsZ9Zw7OxWtyPLlrtdl5ad5iTtU1BkDBMUEpPWfYaDXGpXddN7QNF34XeY+DIelj/DFQfCo6cHvLLN7byxqZSxvTt+lwsFuGKUb0ZkJnAvvK6cx8cbG1hqSA9Ifz+jYYLg8NrobkWBl/qmVKITdY3HbsdSj6F+srAy+ghf/xoL5uPnOKqgt70z/Bs8dciQkNLGx9uL7tgnM4QgXG3w6DZntWPioVhl8OYmwEFJ7YHVDxv+HTXCXYdr+X2KQPISnYffNBqEa4qyOGqghzEefRZfQgeyddTtBGIscIKF+x2/UQ+ZE6oJfGJxhZtfhkfY/XwgFNQWQK55xh2dE1TDWz8h3Y4HHsrxKe5PSSQrD9Qyc1/W8fg7CTe+/HFWK0eKENHuJYDNYqlm44yOauJKWWvwMxfaUV5PtLaBCiI9jHsf1uLPj4qFmpP6OmtjEH+lNBjWtrszH10OSKw7N+mExPl3XN4Q0sbb28+xtRBmfRLi4O/FEL6ILh9aYAk7j4mI2G4s/VVeGkhrH4s1JL4RHyM1XPlAXpNw1vlARCXoqez7K2w5VU9igkRDS1t/PLN7STHRfH0beM9Ux6gp+RiEsjLTKSwbyo12z9CrX0C/jpFz/efjxxZC2ufgFYfvfGjYrTyADi8Gra+Brvfcyim4PL793dxoKKe+6/M91p5AAhCq83O21uOcqymGQpvhv1f6PXACMMokHCh4EbIvxY++g/Y8GyopfGaF9cc5MU1B91XrD4EWxZ378aflK2/r5Z6rURa6n1vqxv85q0d7Cuv47Gbx9HPw6krAL76my7AtCFZHM9byKrpL+mn838uhKU/PL/yhbQ26kgD6Xm+j0CcGX419J8CZdth/d+C6mx6qLKel786TH5OCjOH+xaOPz7GyoJxuSTGRrF081EqBy0AFGxd7F9hg4BRIN2l5rh/Av9ZrLDgbzBkLrz7U32TjSDe3Xqcd7ce77qS3a6fsBsqIMrzpDUuScnRJr4t9dAQ/PWQJ7/Yx5KNpSyaOoCLh2R6d/COpboA0VYLC8bnMuWSb8HdK+Din2ql+K9F/hc6VBzdqKeg+l/kn/asUTDwEr2eEhUH25YEbYH9129up81m5/fXjupWO4mxUSwYl0uM1cK/DkTTmjtZh3WJsCUFo0C6Q0sD/H02fPDv/mkvKgZueB4GXAxLfwC73vFPu+HC8c06mdKgWdrHo7uk9YfJP4Ae/fTnIP35Dn/5Ap9/8mTYlW8AACAASURBVA79MxK47/Lux+xKiYvGahEaVTRHJ/w7zPh3x5RGePtAeERbM5Suh8wh/k+gldIbxt0BQy6DRC+VuA98seckK0sqmDuyF2P6dX/tLTU+moXjcklPjKFt9M16TbA0TNdoO8EokO6w6s9QcxRGzvdfm9HxcPMr2kt3yZ3a4uh8oLURDiyHHn39GyixfV782GY9BWBr81/bLmisrabH57/ke5Z3eOq28cRGe7Hu44aPd53grc1HqRt6rd4QoZY5Z1G1X69T9J8amPajYiB3fMBDn6g37mLPkgdJiLHy4DUj/dZuWmIM14/PJb5wASoqnvp1kRVo0ygQXzl1GFY9CqMW+v/PEZsM314CmcPg1Vvh0Br/th8KjqyDtiZtthsIL2yLFaoOwM6lAQ3I98FzvyOFOhon/4Thvc4NXdEdpg3OpKK2mR8tq0H1HgPbl/i1/ZCQPQIm3a2nHAOFrU2Hwzl1xH1dX6jaD1tfo6mxnh/NHOyR2a43iAjEpbA6Zir27Us4cjJ8TNTdYRSIr3z8G0Bgzn8Gpv34NLjtTUjNhZdvgGObAtNPsOg3RY/UknsGpv1eo2HoZXpBdfe7AfFY/3zbQaZXLmZb3ASu/tbVfm8/LTGG+OgovtxbzifWi/U1r9zn936CRvtoMCE9sP2I6CRkRzcGpPnWtX/DhoWvs67lBzMCZzpsHXcLyTTw1NOPc7ImMhxMjQLxhYMr9fTCxT/RUzKBIilL24bH9YAX54f1zWTx3VNYfPeUc3copW/mUbGQNSywQvQZrxdXT+yEko/92nTZ6SY2vPEomVLD0Ou6+dDwnfc6zYf+fy4bQn5OCg/ud3xXO97oXl+hwtamI+4eXhv4vixWPdKpLHb4i/iRlnpaN7zAMlsR98ybhsWDKAO+MnnWfOrjejGn+VOue3INTa3hH9reKBBvsdvgg/sgtS9MvTfw/aXmwh1v6QV7h+lnRFFZAhue0Y6DwaD/FG2EEB3vt0X11jY73312Fbfbl9KQM4XYwRf7pV1XWCwW/nrLOKqje7I9Kh/7tgidxjqxTQdETArQiLMj2SO00qos8Wuzx1a+SIK9jnVZCynKC/BIymIlsehWplu30VR1lDe+Dn+/EKNAvOXrF/Sf49IHtUNYMEgfCINnw663wzaY4NPL9/H08g4jJFubNgJQKrge1nnTIG+639ZafrV0G4UV79JTqkmYc1/3G1z1F106YUBmIv99QyGLGydiKd+tR1SRhN2m1+1SciBtQHD6TO2ro/ue9ON3pRTNq55kl70ft99wk//a7YrCW7Bg5/qY1awsqQhOn93AKBBvaKyGz/5L27P70/LKE0bM0xZfx74Obr8e8umuk3y66+TZG49u0N/Z4Nl6miGY2Nr8Ygb73tZjLN1wkH+LfRfVp0hHDu4uez/UpQvmjuwF+ddgU0LJ5893v89gcmKHHn30vyh4+TxE9CiktcFvD1krPn2bPNsBduTexBA/G0x0SuZgyJ3IbXGrWFVcQWuYx0kzCsQbvnxY3xAvfyj4iW6GXa6TKu18K7j9+kpznV4ryhwSmphFh1fDpn+eiTvlC8dONXLfG9u4JX4d2faTyIyfB/W6/+Tai/hKRhO7+00q6yJjURWloPQr7fMR7Os+cJZ2LvRDxOY2m52W1U9SQyJzb77HD8J5wZhb6NVykH7Ne/ls90n39UOIUSCeUr5HLwqOuwN6uwk/Hgji03SGvp1vRYa36tGNoOzaaTAUZA7V/Vf6Hubix69sorG5hV8kvadDzg+5zI8CuicjMZak8TfSlxP8+YXXgtq3z4joCAHDrwz+Q1a74vCDL9DSFRuYYVvL0bzrSE52E3re34ycj7LGckPUcl5eF14h7DtiFIgnKAXL7oPoRJj1H6GTI/8aOHUIyraGTgZPGTANxtwaeBPOzkjqqcO/l+/x6fAjVQ1sPFTNQ8P2kVB7EKYHd/TRzug5t9JGFH2PfcDzqw8GvX+vaH+wiUuF5F6hkeHEDu2f1Y34aBW1TVR98SQWUQy/+n/7UTgPie+BjLiKa6PWsPngSVrbwncayygQT9i7TIdan/nLoIRM6JRhV+pc0mE4jRUXbSUu2qpvIq1N+mkwtU/oBBLRZsPVB32K2PrRzhMIdubVvKI954df5T/ZouM6z8DYkfg0ZMilXBO1lsc/3es/GQJBRTFsfkVPX4aKxGydnKmzNMke8B+vb2SB+pj6frOQ9Dw/CucFhbeQrGqZ0raBD7a7iTEXQowCcUdbM3z4K+0VXvTd0MqSmKFNVMNwGuv5Oyfy/J0T9RPguiehoSrUIukbv90GVd77zyxef5hbUrYTU7Ubpv3Mv5kQv/26Lh5iLbiObKrIa9hKyckQ3py7Qik4tEovnkcHyTrRFUlZ+iHPR8u1dQcqiSt+l0ypIXn6D/0snBcMmok9qRfXRy3nrc3HQieHG4wCcce6J3Uog8t/758AgN0lf562dT+5K9SSnEtbC+z/XOf6CHGiJ0CbkY67HbLzvTqstLqB4hO1fN/yhjahDrbFXUeGXo6Kiudq6xo+2lkWWlk6o2q/Tlfbb3Lo0w5n5+vcGk3e5R+32+3cv3Q7i6I+pq3HQL0oHyosViyFN3KJZTP7DuzHFqbWWEaBdEXtCfjy/4OhV8DgMMkUOPxqQLRPSBjxl0+LeWPpv/T0xeA5IVkvOAcRPY3mpSyvbTjCDMsW+jbt1eHVrVH+levLh3XxlNgkZNgVXB39FW+sP+BfWfxB++gjLkWHlAk12SP060nvprFeXHuY2JNbGSPFRE2+K/SKsPAWrNiZ3baczaVBcsT1EqNAuuLTB3UAwLm/C7Uk35DcU8eV2hleCmTz3gO0HlwLPUdq7/lwoa0Z9n4EFZ57KH+68wQ/iVmKSs3Viav8zf4vdfGGUQvpoWrIqV5PycnQZWF0yalD2uem7+Tg+/u4IiFdW8xlDPb4kOY2G3/5tJi74j5FRSfCmFsCKKCHZA/H1nss10ct54Nt4TnyDKkCEZHLRWSPiJSIyDkuviISKyKLHfvXicgAx/YBItIoIpsd5Um/C9dYDXvehyk/DFnu5U7Jnwcnd3h1Uww0uW2HsItFx6IKJyzRekHVQ8u16voWepxcxxj2Ihf/bx0uPBwYPIe26GSutqxhycYwC3GR3Fs7i/YuDLUk35A7Xq8ZesgLqw+h6iv4lqxCCm/SlmRhgHXsrQyXw+z4eiX2MIxCETIFIiJW4H+AK4B84GYR6ThZ/b+AaqXUYOAR4A9O+/YppcY4yvf9LmB8Gvx4ozbfDDdGOCLB7gofa6w9MaP4KOEqPY0RTlgs2hqrap+2znHDp7tP8CPLGzTFZcGYbwdBQA+JjsOafzVXRG1g5a4wSzQVFQt9J/p/qq+7VO6Dcs8s117/upSfZq7Dam+Bid8LsGBeMGohbRLNpS2fsrw4/EKbhHIEMhEoUUrtV0q1AK8C13Socw3QHsdhCTBbJIiT6wnpwY3h5CmpudBnQtiZ8zZYkkItgmsyh2rnsqr9bquWbvmcqdadRE/7ieemtkFCRi8kiQb6VK4Mn3DfxR/77GsTcA6vgQNfurVY3HH0NMVlp7i65QPtv9S+hhIOJKTTOngu11hXsXRD+K1/dapARKTGTakVke4YpvcBnDPAlDq2uayjlGoDTgPt49I8EdkkIl+KyLRuyBGZ5F+jk+hUHwy1JACkJcSQlhAm0z0d6dFfR+d14xtgsyvmVLxIvbUH1qLvBE6ehDRdvCXvElpi0rjKsubcuGOhoLZMp2ANQU56j8geAfUVUF/eZbV3tx1ntuVrUlvKdPKrMCN+wm1kSC2y75Owm8bqagSyTymV0kVJBnx39wRXI4mOjwqd1TkO9FNKjQV+CrwsIi7nTkTkLhHZICIbysu7/iFFFPnz9GuYLKY/edt4nrxtfKjFcI3FosPPuEl7enLPWkY1fEVL0Q8CmyL1xn/q4i3WKKILFjDHuomv9gYo+543HFqlp6/6hOl1zxoOYnEboXdgZiK/zloBKbna4jLcGDybuuh05rZ+ztr9YeBf5URXCmShB8d7UqczSgHnbEy5QEePmTN1RCQKSAWqlFLNSqlKAKXURmAfMNRVJ0qpp5VSE5RSE7KysrohbpiRNkAvWoaZOW/YMmiWW1Ns68r/pikqmaTp/l9S8xcyaiHxNGMtXkZ9k/s1nYBRV67XF3InfJOXPtyISYS0/tpnqpNprKZWG03HdtL/9AYoujP81nEArNHYR17PLMvXrNjiu4d9IOhUgSil3E4Ye1KnC9YDQ0QkT0RigJuAjnfDt4E7HO+vAz5TSikRyXIswiMiA4EhQHdkiUxGzNN/Yi8dpgLBH5bt5g/LwuvHfQ5KdfpdqRM7yD76MYcH3050Qo/AyvHJA7r4Qr8pNMT15FK1mre2hNBD+fBq7VjbZ0LoZPCE7HwdjaDZtenzwcp6Rh97DWWN1YFSw5SUybcTIzYSi8Nr3dOtuhWRWr6ZWooBooF6pVS3zG2UUm0icg/wIWAFnlVK7RCRB4ENSqm3gWeAF0WkBKhCKxmA6cCDItIG2IDvK6XCa2wXDCbdDVN/HBZPgF8fqg61CO4p+VQnA5t67zn+Co2fPkyUJQEVjDnwI+t9P9ZiQW58kV/+vZSR28u4ZVJ//8nlDemDIKVP8JKq+UrPkdq5sRPbmx6WRjIr3odRC0Ib584dvUbxeeF/88S6Hsw8epqRfcLDzNitAnGsdZxBRK5FW1B1G6XU+8D7Hbb9xul9E3C9i+NeBzwPJnS+Eo4WYuFMj35Qul47vqUP/GZ7fSXxxW/zdc4tjMwNIyfITojPm0Rero2Nh6ppbbMTHRUCY8peo4Lfpy+0PyjY7VqJdFAkvQ4shbYGmHhXCITzjoHTb6Z+3Rc8v+YgD18XHj43Xv/ylFJLgRAGiTEYfCQ9T0+7dDQ7Lf4IUXZ6X/RtHVE4ArgsvycNLTY+2X0i+J2Xbet0SigsqS2DNY/DqcNnbT5V34Rt7VOoPhOgz7gQCec5/TMS6Z+RwIow8gdxq0BEZIFTuU5EHuJcaymDIfyxRuvwFhV7z057uud9SO5NzojJoZPNS64bn4tF4O1gR2qtr4Rd7+rvMFKITwdb8zkBSA9+9R7W6n3YJ4Q4yrYXXDIsm+Onm9gWJrGxPBmBXO1U5gK1nOvwZ7jA6Z0aR+/U8HK8c0nWcJ3m9rTDDFYpGk6dpKLP7OA9FaXk6NINMpJimdA/ne3HTqOCGdq/PcOjF3GmQk5UjHYmLd+tF9QBpRRpO/5Bc2wG1tELQiyg59xUpA1XF68PAzNuPFsDCaBHleF84dGbxoZaBM9IH6gXTNtv4CIsHfM3rNi4MVhBDhb+zS/NXDM2h1+/uZ3ik3UM7Rmk9bCKYh3QM0xiRXlMdr7OEVJ9EDIGUV5ZSdaprdSMvp2sMDBC8ZQRvVPo0yOeL/aGh0+bJ1NYcSLyIxH5q4g8216CIZzB4HeiYnRsLEdul5qmVk7UNDGoZ4TdEIE5w7PJSIxh7f4geYK31EPNUcgYEpz+/ElanrZWdDgVlpyGZ4reIXFWCFLWdpOrC3sTY7XQ2GILTodd5Jj3ZArrRaAXevrqS7TDXwStoBmCwX++s4P/fGdHqMXwjNZGOLgKasvY58jwNygriHG8PrhPl27SMzWen88dSlSw8lbUHNO+NJkRqECsUTpicK8CAA5WNNAzPY2E5PQQC+Y9P587nM9+dgnxMUEy+OjCudITt8vBSqnrReQapdTzIvIy2nfDYDjDzmM1oRbBc8Siw3C0NbLv9HAykmJISwxiHK+ybX5ranB2MiuKK6hpaiUlLsAZMzOHwNR7ICZMg2a6wync/MLxfWhoDtITvJ+xWoRjpxoprW5kYl5oFaAnjy7t8RJOicgodDiRAQGTyGAINFGxkJaH/eRulN3O4OwIvSHyzchpX7Bypccmh0e2SV+pOwll24iNsgb3ocHPHK5qYFVJBXXNnU8v+YXTpfD1i53u9kSBPC0iacB/oEOL7OTsvBwGQ+SRNQxLcy3XD4tiykDPEw+FG2mJMWQkxbCvvDtxTT2gaj9sfQ2aImik6Ypjmzmw+g12HgmDaMbdYIjjoack0A8OFXuh9ninu90qEKXU35VS1Uqp5UqpgUqpbKXUU34V0mAINplDsCFQvodgppgJBIOzkrDbFXZ7AM15y/dqR7zoMA9d4oam9GGcqK6l6XgE+bG4ICMplvTEmCAokBIdwaETusoHcpW7tj2pY7gwGJiVyMCsAIZA9zMtEsunJ5PYXxaCEGoZg/yaJnnKoAxuKOqLxRIgRaiU9v9IHxie0Wq94GBrD5qtieTZD4ValG4zJDuJ0uoGGloCNI1VX6lzvXRhddfVr+H/E5GjuM7J0c7vgXd9FM9wHvH/FhSEWgSvOFxVz460Sxkxoq/7yv5m3l/82lz7CKrNZifKGgCLrNoyaK6LTOurDuwrb4DUIfRoKtXWeNHxoRbJZwb3TGL7sdNUN7SSEBMAxd7uNJrZudNoV72eAP7kpotib2UyGMKBkpN1xMVE0adHvM6Vbg2wBVOA2XzkFGv2VfLdaXlE+1uJVBbrhfN0/42aQoHNrnT49n4FSH0Z1J3QeXUilKykWL43bWDgpmDj0yBnTJdOo50qEKXUJYGQyXB+8ss3tgKRMRKx2RX7K+oZlJWEZd8n2jt54veCJ8Db9+pXP45E0hKiaWq1cbiqwf8+LXGp0HtM+Idud0NDSxu9UuLo268XpP9bxD80tCsOpRR2pc17/UrWMF26IARxoA3nI/vL69kfaEsgP3G0upHmVru+0canO/JmBzHCaeU+XfxIbloCsdGWwCyq9i6EYZf7v90gkxwXzcLxueRlJX2jPMIsx7i31Da18szKA+wu87N1XEOVjhnnBqNADBccaYnRXDwkk/4ZCZA1VE/PlId5NkU3WC3CwMxEDlTU+9caq/EUtLX4r70QoZQ6O/RHaxOs/zsc+zp0QvmBpFg9ieT3B4d9n8HGf3SaCrgdo0AMFxzJcdEUDUjXawWxyTqzXsccIRHIoKwkGltsHD3V6L9G9y6DTZ07kkUK5bXNPLV8H/vLHTfaaEfkaEdsrEhFRBicncShygaa2/zkWW9rheoD2lLQzfqKJ8EUE0TkfhH5m+PzEGO+a4hUqupb2Huiljab09RF1jDtodwQ2VmR+2ckMnVQBqkJfprbb2vWvh/pef5pL4SUOBRHL+eUA9n5cPqoHmVFMEN6JmOzKw5U+GkKufqQDqDogdWdJyOQ54BmYIrjcynwW9+lM5yP5OekkJ+TEmox3LLzWA0fbCujzXmaJ2s4DL0seCadvUbr4mdioixMGpjhv5hYVft1/oxIjL7bgf3l9eSkxp9t7po9Qr9G+PRlTmocSbFR/pvGqtiro1andu5A2I4nxsODlFI3isjNAEqpRol0112D3/m/V48MtQgesa+8jty0+LNT18alQJ/xwRPiiocC1nSbzc7Bynoyk2LpkdDNWE8VxVqppvTxj3Ah4nRjK+W1zUwfmnn2jvg0nRfm5E7oFznZKDsiIlw8JJMEf0TnVQoqSzx2GvVEgbSISDyONLYiMgg9IjEYIorKumaq6lsY07fHuTtbm6B8l/Z1iAv/kVRntNjsvLv1OJPyMpgyqBsxvux2qNqnRx/BChcfINrXPQZmujBv7j9VT9UpFdFBIkf09tNvVgTGfhuUZ9ZpniiQ/wssA/qKyEvARcAinwU0nJf85NVNQHhnJmwPOOgy5EprA+xZpnNG9J0YWEFed/ic+CkzoTMJMVHkpMazr7yuewpEBApvAUuQck4EkEHZSURbLa6j754H3vXtVNQ1U1nXwrBe3cxOmeB5iHhPgil+DCxAK41XgAlKqS98FM1wnnL8dBPHTzeFWowuOVHTRK/UOJJdrREkpENSdnDmw2uO6RIgBmUnUV7bzOmGVveVO0NEp65NzHRfN8xJiYtmVJ8uMk4218KxTW5NVsOdzYdP8cmuE2cbiHhL8SdQdcDj6l0FUxzXXoD+wHHgGNDPsc1giBiOn27kvW3HGdXVQn/WcG2VE+Ehywc5Rlj7KnxcVFVK+wGcPupHqULDF3tO8ubXR7u+qVYU69FnXYSHeO+ZREubnUNV7h0AXdJQBaXrvXKq7WoE8t+O8j/AOuBp4G+O9/6NBmcwBJiPdpxg2fYyEmK7mLXNGq5fKyI7xFuPhBgyk2Mp83VE2FAJh9fpWFERzmOflfDrpdu6HlxkDddZKiPcJyQ3LYG4aCvFJ3x8cKgs0a9dBE/sSKcKRCk1Uyk1EzgEjFNKTVBKjQfGAiW+SXg2InK5iOwRkRIROSdJtIjEishix/51IjLAad8vHdv3iMhcf8hjOH95ad1hcnrEdR0nKjFDT9nUlwdPsACxcFwfrhjVy7eD2xVohuc3knCkscXGtqOnGdsvjeioLp6VYxK0r8vJXRE9jWW1CAOzEtlfUYfNl2gEFcWQlKWt0zzEE/OK4UqpM0mclVLbgTHeS3c2ImJFj26uAPKBm0Ukv0O1/wVUK6UGA4/gyIToqHcTMBK4HPiroz2DKzb+AzY8G9AuxvVPY1x/z394waTsdCPFJ2uZ0N+DxcFxdwQ+7lPfIl0CSEJMFLL3Q1j5qPcHVxZDcq+ItkYDeG/bMVra7Fw+sqf7ylnDoOm0Dl0fwQzJTmLAyc9o/NTLpLEtDTp9rZc+P54okF0i8ncRuUREZjg80nd5J51LJgIlSqn9SqkW4FXgmg51rgGed7xfAsx2+KBcA7yqlGpWSh1Aj4gCbDoTwex+H1Y8EtCnq19cPpxfXD48YO13h39tKEUpuHaMB/4MUQ5LnUA+ic55QJcAc+zr97F99ju9SOwpLfV6gf88sE56f1sZURbhGk+ue+ZQsER1mb41EuifkcjcxBKS1j2ir6WnNNdqQxIvr7snCuQ7wA7g34CfoHOif8erXlzTBzji9LnUsc1lHaVUG3AayPDwWEM7+dfA6cPa0uQC5ONdJ0iOi+KSYR5aFBV/AttfD6xQQaAsdy5Wewttu5d5flBjNcQkRbz3uVKKrw9XM7x3CinxHnjmR8fDRfdCn8i2D7JaBGv+VdDWBCWfeH5gck+d0iC5t1f9eWLG26SUekQpNd9RHlFK+cNe05XXTsfHvs7qeHKsbkDkLhHZICIbyssjf27bJ4ZdoZ+udr4VsC6+/+JGvv/ixoC17ys1ja3sPFZD0YB0LJ46xFmsOtx6qx+DEjqz+Nu6BJisEdOpj86gacsbnh+UmgtTfqRNmiOYHcdqONXQyi0Tvcg4GRWrXyN4HQSgOnMCTdE9qN/i4f/dbtcha8BrZ0pPgikeEJH9HYtXvbimFHC+urloM2GXdUQkCkgFqjw8FgCl1NMOA4AJWVlZfhA7AklIh7zpsOvtgP05qhtaqG4Iv7DfX+4tp82uuHZMjucHZQ3XnriBssZqqNYlwPRJT2J/1mziD33m2XSG3f6NR3YEe2UDfLyzDBG4bKQXhgR2O2xZDAdXBE6wIJCUEMeB9GnE7P9YR9Z1R/UBWPWoT+s/njySTQCKHGUa2oT3n173dC7rgSEikiciMehF8bc71HkbuMPx/jrgM6WUcmy/yWGllQcMAb7yg0znLyPm6eB4J7aHWpKgYl3531wcd5ArRnsxNE/upbPwRXiId4tFaBxyFVZbE7a9H7k/oGo/rH4suMm1AsS/NpYyNDuZzKRYzw+yWPSDQ4RbY0VbLdTlXU50aw32/R4ow8oSfb4J3juNejKFVelUjiqlHgVmed3Tue22AfcAH6IX5V9TSu0QkQdFZJ6j2jNAhoiUAD8F7nMcuwN4Db0eswz4kVLKT8Hwz1OGX6Vt3Xd21NHnL00Vh/hW+d+5PvuId3nCRXSiqeoDOk5SBNNz1ExaYtNhx1L3lStLwNYCcS5ihUUQpWtf54raN5jU34eQHlnDtENdhJtyp466jFZLHA1b3Vx3pfRIOz3Po+CJHXF7RAevcwt6RNLNYCsapdT7wPsdtv3G6X0TcH0nx/4O+J0/5LggSMqC/hfpdZBZvw61NEFh95evMQawDfbBLLfnKLDGeBxULlzpn5XCroyZDN77PtaWhs7zmiulzXc9jMIazjSvfppbrQc5Ne6/vD84cygUf6RD2kTwOlD/Xhl8HTOe4bveBfujnQfErC3TFlgZ033qx5PHsv92Kv8PGAfc4FNvhtCSfw1U7IETO/ze9EWDM7locHjFTYoq/oB9Koc50y7y/uDkXnrdKBA5QgbO0CVIfKAmE21rxN6VVU5tGTTXRb75blMN/Wo2sMpaxLgBngcFPENsEqT2jfjpy9goK2tjppLaVomttAvjlspiPeL20WnUEwXyv9q90pVSlyql7gLCb7XU4J78a0GssG2J35u+d/YQ7p0dPjcfe+MphjVtZkvCFM/MOF02YtPDe39bY834d12CRPSgaVSpJMrXLe68UvuNJH1Q0OQKBKe3LyOaNk72me17I7kTdMIve2SPPodNW0irsnJ83b86r5Q5FAZf2vnI1A2eKBBXdxv/34EMgScpCwZeAtuXRPQioSfsXPEW0diwDemGV3ndSa1sI/xpdOGEAXxkKyL1yKc674kr0vJg4EyfbyThwqlNb1GlkiicdKnvjWQN0wmmIjwPyozCoawnn+i973f+f0/uBbm+J1PrKhrvcBFZCKSKyAKnsgiI6+w4Q5gz+nqd57p0vV+bvePZr7jj2fAxhGvc/g5VKolpM7/leyPJvbQJtL+D7P1zoS5BIqdHPJuSpxNnb9RRdl3Roy/0mxQ0mQKCrZXM41+yyjKBmSO76Vfc1hzxQTXjY6zsSp1Oz9YjNB5zMW196rAO3d6Nh8muVOww4CqgB3C1UxkHfM/nHg2hZfiVEBUH27oY1vpAU6uNptYwMYSztTGsZg1b4ifTK62L4InuEIHsfP1H8yYciDtamzofCQSIlBFzOKUSqVrv4rqfPgo1xyN+VNq8/wB6/QAAIABJREFUfzWJ9lqqcmdjtXTTj6Vsmx591lf6R7gQkTFhPgC7v3j13J0HV0Hxx93y+ekqGu9bSqnvAFcppb7jVO5VSq32uUdDaIlLgaFzYcebYGsLtTQB4ei2z0mhDjX0iu43lp2vb6wn/RH+LXQsKBrAR7YJJBz48FzT5IMrYNc7Ee88eHj1v2hW0UQNmdP9xjKH6tdgJBgLIJdPGccWNZjkAx3C2bQ26QejbhpNdDWF1b7Kd4uI/KVj6VavhtAy6jpt537gy1BLEhAOrVpCs4pi+EUdY3P6QGKGjhN06nD32wohI3qnsCVlBnH2etj/xTc7ztxIIjt0O0rR48jHrFYjubrID8YccSmQ2ifiFUhctJW9aTMY3FbMqeNOmQar9msT9UApEL6JuLsB2OiiGCKVIZdBbMp5ETCwI3abjb7lX7DJOpqcnn4KXTP6BhgVvDWLQNFrzBXUqAQanWNjVR/Q1mYRHjzRfmIHWW1lbE++2Heru45kjdCGFA1V/mkvRGQV6d/uzs9f/mZjxV5tMJHsRYgfF3Q1hfWO4/V5V6VbvRpCS3ScDm2y6x2/zcXPHpHN7BGhd7zasHEdfSmjpl83rHA6Epvk3+mdoXN1CTIzR+bwsX08svs9aHNY4lcUa1+XlMgOZn14jX4Yihnhh2nLdrIc01jVnucID0emTZ7CAXLpcfhjvUEp7feTMaTblmadupyKyDt0EuFWy6DmdbbPEAGMXgib/6m9bvO7fynvmh4e/gOH17zORGDcpTf7t+HSjVC+C8bc2n1lctG9/pHJS/J7p/BszEUstK2AA8th8Gw9fZUxOOJNVi17P2CzfSBXTB3rv0bjUmHS3V5l6AtHrFYLx3vPZuKxFzlVUUaPzF4w8S6wdT9MT1e/mj9ythd6x2KIZAZMh8Rsv1tjhZKG5jbyqlawL2owmX0G+rdxiwVOHYnoPOEWi4W00XOpVfGUf7VYK8JJd2vfoEimtox+jbvYlnQR/dIT/dt2QnrEGxcAZBQtIErsrP7gJb3BYvFLlIWuprC+bC/AGqAaHUp9jWObIZKxRsHI+bD3Q2iq6XZzNz61hhufWuMHwXzny827GMteGvMu83/jmcN0MEp/hIF57kpdQsCi6cP41D6O+H3LdKhva7SeootgqjfrAKGxI6/yf+N2mw5AejSyl32HFE6jjAxSDi6DTS/B8S1+adeTfCBXAvvQYdwfB0pExI8TjYaQMfp6PYzd/W6oJfELx9e/hUUUw2fc6P/GYxJ0oMEID/XdNz2RHT1mkmSvofXT3wUkLlqwqdq4lMP2LArHTfF/4xYrNFRqv5AIxmK1UpI+gwltm6g8vNNvv2FPgynOVEpdopSaAcwEHvFL74bQkjsBevQ/L6axjlY30OfkF9TEZBPVpzAwnfTM1w6Fp4+4rxvG5E26mgYVS/1OFz4hkUZzHX1PfcVK60SG9U4NTB/ZI7SjZeOpwLQfJHImLSROWjl6YJfPwRM74okCOamUKnH6vB846ZfeDaFFBEZfB/u/1OaKEcxzy3czTbbSNPCywM1ZZwyBnLEQHdnxoq6fMpTtliHEn94PaQNCLU63OL3jI2Jo5WROt1MUdU67U2HF3sD1EQQGTphLI7HI6SN+m7b0RIHsEJH3RWSRiNwBvAOsb4+N5RcpDKFj9PWgbJ4lHApjqrZ9QoI0k+0I3RAQomJg2OWQGF5h670l2mrBkjmEWNVEeUlkz+0fWbOE0yqB/MkBNItOSNfOpBEejYDWRmri+5JnP0zJMf/4tniiQOKAE8AM4BKgHEhHx8UKwKqVIahkj4DskTpCbze4qqA3VxV4kTbWj6wsLmd801qaLQkwYFpgO1MKao5BXTcy1o28VpdQ0VxHn945NKloDq54KXRydBN7Wyu55ctZbZ3AnO4GT3RHzlhIzY3o9S/sbSSNvIIkaWLLqvf80qTb1GOOeFiG85nR18Gn/wnVhyCtv09N3DZlgH9l8oI1+8q53fo19kGzIMqLHNi+oOywdbHOm+Gr/8zEEMcitbXQe8g4Vm0vZHj559jbWrFE+cl7O4js2fAJI6ilZdBcLIH2Y8nxo39JqEhIJ/GyX9G88WnY/R52+63d/t48scLKE5E/icgbIvJ2e+lWr4bwoj1MRzdCmzS22GhsCX40XqUUQ+376SnVxI+6OvAdWqyQNVzPh9tafWujpUGXUJGQDqOvo2LgNWRwii1rPgydLN1gYNUKbBLF7KtvCU6HdrteTI9E2lqgvgKi4zmcNpmpbetYvrf7656eqJ+lwEHgMYwj4flJWn/oO6lbmQoXPfcVi54Lfj4QEeHKmE0osegYX8EgO18rD1/zRbx0vS6hwNZ2xu9n6uW30qSiqfwq8qzwmlrasO79AOvA6SSl+JC61heOrIOvn/dvaP9gUbUfvvob1Bwle+J19JYq1q7oIsWxh3iiQJqUUn9RSn3ewbnQcD4x+nr9x4jA/Af/f3t3Hl9VeS18/LdOBgghAUJCEhICgoAQZIxUxLGKWDuoLWpbtbTW2vZWe+t9e69t7W19bX3rW+3toL1eh1bU2sFZ0DpSVBzLKLNAGEMGkpCEBDLnuX88OxIwJznDPmfvA+v7+ZxPcqa9F5uTs/Z+hvUkb3sZKZpjz6zjYcgoO4rF7YWm4qFuF7z7e6jfS072cD4YeBpFB1fR3JpYpf23b1pDcv0ODo+J00kD2Mq1xkB1Ao7GqtlqZ55njGTI1M/QSYAhZcto74hu2d5QEshvReSnIjJHRGZ236Laq/KfmQvhe+ts+fIE0dzWyZI33oOq9TAxjnNbAwE7+KChLPHWVKndZkeTZdgBD80X3snFrbfz2pbEGcZtjKF5wxIABk2NQ7Nlt/Rse0u0Eu9dXXCgFIaPs5/dQVk8U/IYd7VewosbomuSCyWBnIpdgfAOjjRf3RXVXpX/JKcmXM2fLZUHSd/tXIZPjGLp2kiMngtzvmNLwiQKY2yzW9bYj+I+e0YxuUMzeGJVmcfBhW537WEKqpbRkj3FjoyKp5yJdiJpa1N89xuNhr226naPkv0Xnj+PQFIyz6zZF9WmQ0kglwFjjTHnGGPOc24xnLWjVGg2lx9kevVi2ycxPM7VgFPSbB2pRFJbCm2HbF0vRyAgzC/OZfnWarZWJUbb/pbt28lvXE9qLGpf9Sdnkk3EtQm0XnrtNjv4I+tIgdHMtBQunJzH6j31tEXRjBVKAvkAuy66UkEtmFXIglnxOxusaWolbc8/yGr8EM64MW77PUr9HtsxGW4xyulftrd427fSlijPmXjUw1+YWYgB/rDc/+tetHZ0MmDnawiGwClxvuoE24Q14yrIi1G5nFgYcxZMvdK2MvSwYFYhDc3tvLk18jlNoVx/5wJbRGQF8FHhnGjWAxGRLOBvwBjsCK8rjDF1vbxuIfBj5+7PuxeyEpHXgXyg2XnuQmNM4jTiHocuLxkV1/1tKj/I1Mqn6cosIDBlQVz3/ZGUdDs0snoLjJod+vtmXBW7mPoy6XPQUm/PRnsoLhjC2Ox0Xt1cxS+6umI/pyIKA5KTOMeswGQWIHlT4x+ACAwtiv9+o5E8oNf5XWeOz2bwgGQeWL6DCybnRrbpEF7z04i23LcfAEuNMXeIyA+c+zf3fIGTZH4KlGAXtlolIot7JJqrjDErYxCbisCBQ3aFu6z01H5e6Y68IQOpvvC/GTe0/mNnVnHTvV76/k3hJZDukW7xHLBgjK0onNp7Ha/LZhTwq1e38uKGSj49NbplTmOlq8sgHc0EdrwOM672rs+uswN2vgGZI+1gCj+r3ABtTXaY/jHHKyUpQMnoYby1vYa6Q20Mi+Bvt99TjZ5Dd53hux3AFWHv6WiXAN3L4j4M9FbXYT7wqjHmgJM0XgUuinK/Kka+/adVfPtP8aurNCE3g9NPGQV5p8Ztn70aUWwnl4WzbvbjX7G3eGmsglWL7NVSENfMGU3B0DS2Vvm3c3jr/kYeWVHFoa+8DKd/27tAAkl2MIJLa2rE1L6V9go5SLK9/LRC8ocMZG3ZxxqAQhLStaqITBeRX4rILuDnQLRVxXKNMRUAzs/eFtMuAHrWzS5zHuv2kIisFZH/FEmw4UMqKjtrDnky671XIybZP04/zwnZ8y40H4DU4BVYhw5K5bdfnM784rw4BhaedXsb6AIGjZoa/0ETPYnYfqS63d5WFOhPa6M9uekx+upYF0/JZ+EZYzjYHNlw9KAJREQmiMhPRGQzdiGpvYA4o7Du6W/DIvKaiGzo5XZJiLH1lhS6K5ldZYw5FTjLuV3TRxzXi8hKEVlZXR1FATzlCy3tnSz5oJz3dvpkwuPATNs8kOFNIcl+HT5gz0BHzoCUgX2+tGRMFpNHZsYpsPBUN7ayr76ZqYVD8MX5Ys4pti6an0dj1TqrcGQHTyAiwsS8DHbVHI7opKyvPpAtwHLgs93rgYjITaFu2BhzQbDnRKRKRPKNMRUikk/v64uUYav/disEXne2vc/52SgifwZmA48EieN+4H6AkpKSBC6lqQC2VjXS2WUozvfRF92487yOILi9/7RL8RaeFtLLW9o72XvgMONzM2IcWHjW76snOSBMjtWiUeHKyIO0oVD9IeT7dETW/s121F16Tp8vOyUvk44uQ2cElYb7asL6AlAJLBORB0TkfHq/KojEYmCh8/tC4LleXvMycKGIDBORYcCFwMsikiwi2QAikoItKb/BpbiUz20qP0h2xgByMmJcdTdcLQ22ScNPWhuhcp3tJxoQWkJYv6+B59dVUOcMivCD1o5ONlc0MiEvg7TUpP7fEA8i9rimDPJniffOdggkQ8Gsfgcb5GQM4LyJIxg8IPxJsUHfYYx5BnhGRNKxndw3Abkici/wjDHmlbD3dsQdwOMi8nVgD3A5gIiUAN8yxlxnjDkgIj8DVjjvuc15LB2bSFKAJOA14IEoYlEuuPr0yMrAh+PAoTYqGlo4e0K2P5oxetr6CjRV2dnp/cV22rXxiSk5DcbPs8sWh2hSfiZvb69hU8VB5p7sj4WzkgMBLpiUG7cRfiEbc6bXEQSXlAJTrwg5uRljKKtrJis9lfQwEomYMLKnM7T2cuDKRJyNXlJSYlau1JG/iWpdWT3LtlRz3VknhfUhj4uqjbBpsZ3jkWjzBI7x7Jp91DS1cu3ckwgEfJao/ajloO0L84u6XbbpKm1YyG+pP9zGQ2/v4uwJ2cwa/fGipCKyyhhTcuzjYc0YcobU3peIyUPFVnl9M+X1zf2/MApTC4f6M3mAHemSlAxVIYzGaiizt1gqXwNlqyJqXikemUljSwd7Dng/wqiyoYX3d9TS2uGTUXfH2v0OvP8/ttaUH3S0weYlsOXvYb1t6KBUcjMHsqUyvHI2/p1yqhLKTX9by01/Wxuz7XdfKfsyeYCdzDh8vB3x1NXPl93T37S3WOlsh51v2lE4ETT1nZSdTlpqEuUNsT0hCMWaPXWs2lOHuNb96rKhRfb/u3vEk9f2vm8LPY49J+y3TszLYP/B1o8mBYdCE4hKCK9squLljZVeh9G33GLoaIFGj+OsXGfnJ4yeE9Hbk5MCfPWMMZwxzts+kMNtHWzb38Tk/ExSk336VZVZYAco+KHEe2sj7H3PzlGJoErxxLwMRODDMK5CfPq/otQRLe2dbKtqJCXJp2eh3bLGwpwbYEhB/6+Nla4u2PO+jWFI5PXJBqYkOZvzboTRhn0H6ewyTC30cS1XETsn5MBO6Gjt//WxtHO5bbIce25Ebx88IJnCYYPYXXso5PdoAlG+t31/E+2dxj9zAIIJJNmVCr20f5MdUlw0J+paUW9tq+GJVXv7f2EMdHUZ1pXVU5Q1yH+jr46VMxG6OrxtxjLGDtstLIlqZc75xblhFUb1aYOyUkdsKj9IVnoquZk+m/vRm7ZDsOk5GDkTRpwS//0PyIC8KTD85Kg3lT4gifL6FqobW+M+76alo5OcjAEU+3Rm/FGGFMLkS7wvrzLhwqjnpGQMDG+NG00gyhXfOGts/y+KQP3hNvbVN3PmeB/O/ehNcpotH1K1IXgCOeOG2O1/2OheS3dH4pS8TJZvq2FjeQPnTuytXF3sDEpN5pLpHjYFhkMEcid7t/965ypx6ChXKhRvqTzIur0NLJhV2O8wbm3CUq64YHJuxGsK9CU1OcCcccM5Jc9fpTWCCgRs4jiwA9qDjGKa+Cn313A3BvatcnWp1bTUJMbmpLOl0paPiZdDrR00HG6P2/5c0dlu+57qdsV3v11dsPUl2PKC/d0FgrCvvpl9IQzL1wSiXFFa3URptfulwAelJnP62OFhX1p7akSxHdpZ/WHvz9dsszc3Ney1s+GD7TNCk/MzaW7rZGdN/Mq8r95Tx8Pv7qKl3adzP3ojSXYEVPma+O638gNbpn/sufbkxQVjc9JJTQ6ENBpLE4hyxY+eXs+Pnl7v6jb3N7awfX98z35dkZFnOzKDlXhf8j17c9Oe9+xiUfnurtI3Zng6c0/OZkRm35V83dLR2cXG8oOMzUn/aCRYQggE7Frztdvt1Ug8dLTakVdDCj+2THE0UpICjMtJZ9v+pn7/9jSBKN9avbuelzdW0eXHYnV9EYGi0+3EwnjE3lgFtaVQUGJrILkoEBBmn5RFZpyuALdWNdHc1sk0Pw/dDWbEKXa1QrevLoPZ854dtDHuk66vzjgxL5OW9s5+h/RqJ7rypfrDbazcfYDTTxpOSlICnufEs8T3nndt4iiYGbNdbN9vm7BOHhHbYcrvltaQlZ5K4bC0mO4nJoYU2fpTW1+yV6AZMV6cKzXdrvMSg3lHRVmDmDwyk0GpfaeIBPzLVCeCRe/s4sHlO/0/ebAvHa2xPxvtvsIpmAUpsfvSXbX7AO+U1hBO8dVwvbejltv/vpnWjs7EGHF3rEAApn0Rsk6CgXG4giosgYmxWeU7KSDML84jb0jfTZeaQJQvLfmgnKz0VM4a74+S4hEpXwvrnwxvvfRwiUDxpRHPPg5V8cgh1Da1UVl/KGZt/M+u2UdqcoDLZiTI8N3epA2F4svs6o+d7XZJWbc1VkHlhrg0j9YdaqO6MfgMe23CUuEzxpn5euT848ZPBl82M1yl+5sorT7EFSWFBFwaWeKJEZNgxzLbmd5z7Yizv+/O9tsO2Sqw6cNdbwM/1vjcwby+pQrz3A0wsB0WPGQLSLqk4XAbz67dxyXTCsjJiE+HfcyVLrOjpKYssFclbjAGSpdC0347WbSfZYqj25XhqdVlfU4iTeC/TuWJut3w+9mw5fmjHj5zfDZnunS18Py6CkTghvOin03tqYGZth5V1aajzxbHnefOMrh734cVD7o69yOYAclJnJybyfbkk+3//ePXuFrC/Hf/2E5LexdXzg6/CKBvjZlr+0TWP2kHObihttT+DY45M6bJA45eLz0YTSAqPJkFdgGd52+CVQ9/VLp8Y3kDG8sbot58V1cXT67ey5yxwykanh719jyXWwyHa2HDU0fKvFess7dotLfYOQc5E+NWf6t4ZCbbx1xF07w7bUfxX78cfLJkGLq6unhu7T5GDUtjZlHkdZx8JzUdpn3ZXiFueCr6/rCuLij9h+2gHznDnRj7MTEvo89RkJpAVHiSkuHqp+zl85Lvwv3nwK63uW3JJm5bEsJiSv14cUMlew80M2+S+7PaPZE31fZPpAyyxRYBXvoBvPTD6LZbvtouHlQUWcn2SBQOS+Nrc8cweO718Ll77JfZn6+wTWlRWPJBBTVNbWEV8UsYqYNg2pdg8AibdKPpP6pYY09Gxp535LMUYyMyBvLpqflBn9cEosKXNwWufQkW/BGa62HRxdxU93NyOqJYB8M5O//z+3tISRIum5nAHak9BQJ2XY5TLrb3m6rhYDm0NUVeeqKzHcpW2PLxGfFLtCKCiNDR2UXr1C/DZffBrrfgTwvsWhQRWvTOLgamBLh27hj3gvWTlDSY+kWbSKKZpzNgCOSdCtnu9TeGYkJu8DJCmkBUZERgyhfghhVw3i1Mb13Bf1V/A5b+LPw2+fZmOn5XwjtP/oYVu+o4bUwWQwf5vIR3NAJJ9kxy9SKo3xP++xsr7NVHhAtGRaO1o5M/vLWT1bvrYdqV8IUHbV/Mo5+3ZeRD1VgFqxaxo6qetWX1nDdxBIMTqVxNuFIGQrrTR7jzTTuKKlzZJ8Okz8R8wEQ4NIGo6KSkwTn/wU05D/L+wDNh+V1wTwms/UufZ9gV9c386b1d3LZkE/f8+jaS63dw92q7lOa3z/GwLHasDc6Bwbn2y6TtMKx5DDYtDm9I5tAimPOdqBaMitSA5CSyBw9gXVk933/iA35fPY3NZ/4OU74aHrkUmutC29Cy2+GF/8Oy91dhDPzLuQk+YCJUXZ3QUGYHIlR8ENp7Whpg19vxK5ESBh3Gq1xxICmHe4bdzFkX3wIv3QzPfgtWPAAX3QGjZlNe38xLGyp4p7SW9fsOUnXQjuAZlGx4fcDT7EufzJcu+TIPTsol/Xg+EwVAICUdPvFNW44CjpxVdrb33czR3gzJA23bukfmjBvOC+vKeXp1GV0G7mQYFyT9K/9d/lv23nU+94/+FQUFhUwtHMK0wqEMO3ZBqKpNsOZROk+7nvvXGs6ekMOphT5fLMwtgSQ49XLbqb7l7zah9FdBYMcbtkhm3hRI8tdxkljOLPWbkpISs3LlSq/DOC6t2m0ny80anQVdXdS8+yhpb/yM9LZqlqacwy2NC6hkOMkB4aTsdGYWDeOciTmc3/EmA567Hq58zF6enwj2vG9/Fn3i6MdrS+HDv9tO99wpH2+qMMYO280cCad8Oh6R9qmlvZP1ZfXsqDlEZUMryTuWcl35j9nZlcdVbT+iFvtllz04lSkFQxiXM5jBA5K5pvTfyKpbx5Nzn+c//r6X+66ZxfziGJf98JvODtj4jC2+OH6enVXem4PldrTj6DkxnyzaFxFZZYz5WJCaQJQr6g618fjKvbxTWsvG8gZqmtoYRAs3pC7huqQXEAmwe9I3KLj4ZtLSnU45Y+B/zrRn3f/ynmvlqBPWwQrY9rL9mZkPJ887us5RzXZY/wRM+qw9G/Wj0mWYv3yJlvQCFk+7l9UHBlJ7qJV99S2U7m/iE2Ytj6bewc/ar2KR+QzpqUms+vE8UpJPwP/7rk67emXORDvc+1jGwNrHbH/ZJ74Fyd6tyBksgWgTlnLF29ur+cWLW0hNCnDyiMFcVJzHuRNzOHP8paQ2lcGrP+HkjXdD2bMw7/9C8edh26t25b5L7z2xkkewK5DMfJi50B6THa/D6kfsmen4efbLZM87MHCIneHuV+POQ65+krTHruDKDd/iyoVLPkqC7W3tdNx7K40thbRO+TqnHWjjU1PyT8zkAbY5q/iyI1eahw8cvZ55zTa72uCE+Z4mj754cgUiIlnA34AxwC7gCmPMx3rfROQl4HTgLWPMZ3o8fhLwVyALWA1cY4xp62+/egUSO1fe9y4Nze0s/s5cUoOt47DrbTsHonKdnb/Qdsj+0Xx3jatlMXzvIaf56WsvBH9NR5utsps21Fb2rdtlByaMvxAKZ8UlzKjsec8O700fDguX2I7/1Y/A4hvh8kX2i1Md0Vhpj0/RHDvLXMQ+VrYSJl7s+QlWsCsQr6L6AbDUGDMeWOrc782dwDW9PP7/gV87768Dvh6TKFVYhqSlBE8eYEs7XP86fO5u2/ZbuQ7OuPHESh6hSk6FseccKQtfW2o7111eMCpmik6HrzwLh+tswqzaCP/4ORTOhsmXeh2d/6SPgBGT7byanW/YK86MPNsv6OOrc68iuwR42Pn9YaDXT5QxZilw1AwlsXWePwk82d/7lQ8FkmDmV+DG1bYg32ma+0MyYhLMuNr1BaNiqrAEFj4HbY1w39nQVAXzb/fVPAbfCATswIiR02H3u/D6HVFNzowXrxJIrjGmAsD5OSKM9w4H6o0xHc79MuA4mbZ8AhmYCVM+n1hfiF7KHBn7BYpiYeQM24SVNgymXgmjZnsdkX+JwISLbOINJNt5Qj4Xs050EXkN6O0Tf0u0m+7lsaAdOSJyPXA9QFFRUZS7VkqFLe9U+N4GPVkIhYgdNDH23IQ4XjFLIMaYC4I9JyJVIpJvjKkQkXxgfxibrgGGikiycxVSCJT3Ecf9wP1gO9HD2I8Kw08+O9nrEBLHRb/wOoL4i3Hp8eNOAiQP8K4JazGw0Pl9IfBcqG80dtjYMmBBJO9XsVE8cgjFI/01S9a38qcmTme4Un3wKoHcAcwTkW3APOc+IlIiIg92v0hElgNPAOeLSJmIzHeeuhn4NxHZju0T+UNco1cf89a2Gt7aVuN1GImhdJm9KZXgPJlIaIypBc7v5fGVwHU97p8V5P07AO2N85G7/2EXy3FrVcLj2pt32Z9urEqolIf8O8BYKaWUr2kCUUopFRFNIEoppSKiCUQppVREtBqvcsX/+/ypXoeQOD77G68jUMoVmkCUK8blDPY6hMSRPd7rCJRyhTZhKVe8tqmK1zZVeR1GYvjwRXtTKsHpFYhyxQPLdwBwweRcjyNJAO/cY39O/JS3cSgVJb0CUUopFRFNIEoppSKiCUQppVRENIEopZSKiHaiK1f8+srpXoeQOD5/n9cRKOUKTSDKFSOHpnkdQuIYUuh1BEq5QpuwlCuWfFDOkg+CLgypetrwlL0pleD0CkS54k/v7Qbgs9NGehxJAljxR/tzyhe8jUOpKOkViFJKqYhoAlFKKRURTSBKKaUioglEKaVURLQTXbni3qtneR1C4rjiEa8jUMoVmkCUK7LSU70OIXGkD/c6AqVcoU1YyhVPrNzLEyv3eh1GYljzmL0pleA0gShXPLmqjCdXlXkdRmJY+2d7UyrBaQJRSikVEU8SiIhkicirIrLN+TksyOteEpF6EXn+mMcXichOEVnr3LSSn1JKxZlXVyA/AJYaY8YDS537vbkTuCbIc/9ujJnu3NbGIkillFLBeZVALgEedn5/GLi0txeCzV4IAAAGvUlEQVQZY5YCjfEKSimlVOi8Gsaba4ypADDGVIjIiAi2cbuI/ATnCsYY0+pqhCosi7422+sQEsdVT3gdgVKuiFkCEZHXgLxenrrFhc3/EKgEUoH7gZuB24LEcT1wPUBRUZELu1a9SUtN8jqExJE6yOsIlHJFzBKIMeaCYM+JSJWI5DtXH/nA/jC3XeH82ioiDwHf7+O192OTDCUlJSac/ajQPfruLgCumTPGyzASwz8fsD9nf8PbOJSKkld9IIuBhc7vC4Hnwnmzk3QQEcH2n2xwNToVtufXVfD8uor+X6hg47P2plSC8yqB3AHME5FtwDznPiJSIiIPdr9IRJYDTwDni0iZiMx3nnpMRNYD64Fs4OdxjV4ppZQ3nejGmFrg/F4eXwlc1+P+WUHe/8nYRaeUUioUOhNdKaVURDSBKKWUiogYc+IMTBKRRuBDr+MIQzZQ43UQYdB4Y0vjjS2NN7jRxpicYx880dYD+dAYU+J1EKESkZUab+xovLGl8caWH+LVJiyllFIR0QSilFIqIidaArnf6wDCpPHGlsYbWxpvbHke7wnVia6UUso9J9oViFJKKZcc9wlERC4XkY0i0iUiJcc890MR2S4iH/Yok+IrInKriOzrsfrixV7HdCwRucg5httFJNjiYL4iIrtEZL1zTFd6Hc+xROSPIrJfRDb0eCyklTy9ECRe3352RWSUiCwTkc3O98O/Oo/78hj3Ea+nx/i4b8ISkUlAF3Af8H2nXAoiMhn4CzAbGAm8BkwwxnR6FWtvRORWoMkYc5fXsfRGRJKArdiaZmXACuBLxphNngbWDxHZBZQYY3w57l9EzgaagEeMMVOcx34JHDDG3OEk6mHGmJu9jLNbkHhvxaefXacga74xZrWIZACrsIVZv4oPj3Ef8V6Bh8f4uL8CMcZsNsb0NnnwEuCvxphWY8xOYDs2majwzAa2G2N2GGPagL9ij62KgjHmTeDAMQ+HtJKnF4LE61vGmApjzGrn90ZgM1CAT49xH/F66rhPIH0oAPb2uF+GD/5DgrhBRNY5zQS+uKTuIZGOY08GeEVEVjmLjiWCo1byBCJZyTPe/PzZBUBExgAzgPdJgGN8TLzg4TE+LhKIiLwmIht6ufV1Jiy9POZJe14/8d8LjAOmAxXAr7yIsQ++OY5hmmuMmQl8CviO0wSj3OX3zy4iMhh4CvieMeag1/H0p5d4PT3Gx0Upk75WP+xDGTCqx/1CoNydiMITavwi8gDwfIzDCZdvjmM4jDHlzs/9IvIMtinuTW+j6ldUK3nGmzGmqvt3P352RSQF+2X8mDHmaedh3x7j3uL1+hgfF1cgEVoMfFFEBojIScB44J8ex/Qxzoe422X4b/XFFcB4ETlJRFKBL2KPrW+JSLrTEYmIpAMX4r/j2puoVvKMNz9/dkVEgD8Am40x/9XjKV8e42Dxen2MT4RRWJcBdwM5QD2w1hgz33nuFuBaoAN7SfiiZ4EGISKPYi9PDbAL+GaPNeF9wRk6+BsgCfijMeZ2j0Pqk4iMBZ5x7iYDf/ZbzCLyF+BcbMXVKuCnwLPA40ARsAe43Bjji47rIPGei08/uyJyJrAcu6ppl/Pwj7D9Cr47xn3E+yU8PMbHfQJRSikVGydyE5ZSSqkoaAJRSikVEU0gSimlIqIJRCmlVEQ0gSillIqIJhCllFIR0QSiVIhEZHiPstmVx5TRficG+/uqiFSLyIMRvv9OJ87vux2bUnCclDJRKh6MMbXYSVvxLFX+N2PMDZG80Rjz7yJyyO2AlOqmVyBKuUBEmpyf54rIGyLyuIhsFZE7ROQqEfmn2AWsxjmvyxGRp0RkhXObG8I+vioiT4vIS86CR790Hk8SkUVOAc71InJTbP+1Sll6BaKU+6YBk7DrY+wAHjTGzHZWkbsR+B7wW+DXxpi3RKQIeNl5T3+mY0t5twIfisjd2JLjBT0Wchrq9j9Iqd5oAlHKfSu66xGJSCnwivP4euA85/cLgMm2Rh4AmSKS4SwW1JelxpgGZ9ubgNHARmCsk0xe6LE/pWJKE4hS7mvt8XtXj/tdHPmbCwBzjDHNUWy7E0g2xtSJyDRgPvAd7DKn14YdtVJh0j4QpbzxCvBR57iITI90QyKSDQSMMU8B/wnMjD48pfqnVyBKeeO7wO9FZB327/BN4FsRbqsAeEhEuk8If+hCfEr1S8u5K+VTIvJVoCTSYbzONm4lPsON1QlIm7CU8q9m4FPRTCQErgZ0LoiKCb0CUUopFRG9AlFKKRURTSBKKaUioglEKaVURDSBKKWUiogmEKWUUhH5X9hRjO9CnPQYAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Make a figure showing the corrected beacons\n", "fig, ax = plt.subplots(1,1, sharex=True)\n", "ax.set_xlabel(\"Time [ns]\")\n", "ax.set_ylabel(\"Amplitude [au]\")\n", "ax.set_title(\n", " \"Beacon delays [ns] $\\pm$ $k*{}$\\n$t_{{\\phi}}$ = {}\"\n", " .format(1/f_beacon/ns, t_phi/ns)\n", ")\n", "\n", "for i, _ in enumerate(beacons):\n", " l = ax.plot(\n", " time/ns, beacons[i],\n", " label=\"ch {}\".format(i), \n", " ls ='--', \n", " alpha=0.5\n", " )\n", " \n", " # indicate start of uncorrected beacons\n", " ax.axvline(\n", " t_phi[i]/ns,\n", " color=l[0].get_color(),\n", " ls = '--'\n", " )\n", " \n", " ax.plot(\n", " (time-t_phi[i])/ns,\n", " beacons[i],\n", " label='ch {} corrected'.format(i),\n", " color=l[0].get_color(),\n", " ls=(5*i+2, (20, 20))\n", " )\n", " \n", "ax.legend(ncol=2)\n", "ax.margins(y=0.3)\n", "if True:\n", " ax.set_xlim(time[0]/ns - 10, time[2*samplerate//f_beacon]/ns)\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### 1.1.2 Beacon Synced traces" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAEWCAYAAABi/I8SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3wUdf7H8dd3d9MbKSQhARIgJIRepQhKEXvBcmI/PfX0Tqzn/WznnXeinl0563l2PXtDPZXekd4SyhJIIISSsOl9s/v9/TGbkJDChmwqn+fjsQ/I7szue2d3Zj/zne98R2mtEUIIIYQQoisxtXcAIYQQQgghPE2KXCGEEEII0eVIkSuEEEIIIbocKXKFEEIIIUSXI0WuEEIIIYTocqTIFUIIIYQQXY4UuUII0UUopR5TSn3Uhq9XrJTq6+HnfE8pNduTzymEODVJkSuEaHdKqQylVJmraMpTSv2olOrV3rlE07TWgVrrve2dQwghGiJFrhCio7hIax0I9ACOAP9q5zxdmlLK0t4ZhBCiNUmRK4ToULTW5cCXwMDq+5RSPkqp55RS+5VSR5RSbyil/FyPhSqlflBK5bhagX9QSvWsNW+YUupdpdRB1+Pf1nrsVqVUmlIqVyk1VykVU+sxrZS6XSm12zXfq0op5XosQSm1VClVoJQ6qpT6rKH3opTyVUp9pJSyKaXylVLrlFJRSqnfKKU2HDftn6qzuQ7Zv+pq0S5SSq1RSvWrNe0gpdR8V+4jSqmHaz2Vt1LqA9d8qUqp0bXmy1BKPaCU2gqUKKUsSqlkpdQSV75UpdTFtaY/UQ6tlEpw/f98pdR213RZSqn7a013oVJqs+s1VimlhtZ6bIRSaqNrvs8A3wa/GEII0UxS5AohOhSllD8wE/i11t1PA4nAcCABiAX+6nrMBLwLxAG9gTLglVrzfgj4A4OASOBF1+tMBZ4CrsRoPd4HfHpcnAuBMcAw13TnuO5/HJgHhAI9abzV+bdACNALCAdud+WbC/RRSiXXmvY6V9ZqVwN/d71GGvCEK3cQsAD4GYhxLY+Ftea72PU+urlep/ayqH7eC1yPK+B713uJBO4EPlZKJZ0oRwPeBm7TWgcBg4FFrrwjgXeA21zL4E1grmvHxRv41vW+w4AvgMsbeX4hhGgWKXKFEB3Ft0qpfKAQmA48C+BqPb0VuFdrnau1LgKeBK4C0FrbtNZfaa1LXY89AZzpmrcHcB5wu9Y6T2tt11ovdb3etcA7WuuNWusK4CFgvFIqvlamf2qt87XW+4HFGEU2gB2jqI7RWpdrrVc08p7sGIVdgtbaobXeoLUudL3eZxiFLUqpQUA88EOteb/WWq/VWlcBH9d67QuBw1rr512vXaS1XlNrvhVa6/9prR0YxeOw4zLN0Vpnaq3LgHFAoOt9VmqtF7kyXO1Gjobe60ClVLBrWW903X8r8KbWeo1rGbwPVLheexzgBbzk+my+BNY18vxCCNEsUuQKITqKGVrrboAPMAtYqpSKBrpjtMRucB3uzsdoxewORsuvUupNpdQ+pVQhsAzoppQyY7Sg5mqt8xp4vRiM1lsAtNbFgA2jlbja4Vr/L8UoCAH+D6MVdK3rEP/vGnlPHwK/AJ+6uks8o5Tycj32PnCNq4i/HvjcVfye6LV7AXsaeb2G5vM9rv9tZq3/xwCZWmtnrfv24d4yON7lwPnAPldXjvGu++OAP1V/dq7Pr5frtWOALK21Pu71hRCixaTIFUJ0KK7Wvq8BBzAROIpxiH+Q1rqb6xbiOkkN4E9AEjBWax0MnOG6X2EUdGFKqW4NvNRBjALMmFipAIxW1yw3Mh7WWt+qtY7BOAz/WnXf1OOms2ut/661HghMwGiFvcH12K9AJTAJuIa6XRWakgn0O+FUTcSv9f+DQC+lVO3fgt64sQzqPanW67TWl2B0e/gW+Nz1UCbwRK3PrpvW2l9r/QlwCIit7utc6/WFEKLFpMgVQnQoynAJRh/QHa5WxreAF5VSka5pYpVS1f1jgzCK4HylVBjwt+rn0lofAn7CKEJDlVJeSqnqIvi/wE1KqeFKKR+MLhBrtNYZbmT8jTp2clseRuHoaGC6KUqpIa5W5UKMQ/q1p/sAo89sVRNdHo73AxCtlLrH1a81SCk11s15j7cGKAH+z7VsJgMXUb9vcpOUUt5KqWuVUiFaazvGe61+n28Btyulxro+2wCl1AWuvsWrgSrgLtdJcJcBp53kexFCiDqkyBVCdBTfK6WKMQqkJ4Dfaq1TXY89gHHS06+uLgkLMFpvAV4C/DBafH/F6MpQ2/UYxeVOIBu4B0BrvRB4FPgKo0WxH65+vm4YA6xx5Z0L3K21Tm9gumiMkSIKgR3AUqD2xRo+xDhJy91WXFz9jqdjFKOHgd3AFHfnP+65KjFOVDsPY/m9Btygtd55Ek93PZDh+nxux9XfWGu9HqNf7isYOwRpwI21Xv8y1995GCccfn0y70UIIY6n6naFEkII0VaUMQxaNjBSa727vfMIIURXIi25QgjRfv4ArJMCVwghPE+ueCOEEO1AKZWBcXLcjHaOIoQQXZJ0VxBCCCGEEF2OdFcQQgghhBBdTqt0V4iIiNDx8fGt8dSdUnHxDgACA5NPMGX7Ki8vB8DXt2NfOl5yelZTOUtLdwHg759U77G21hWWZ0fTWbJKTs+SnJ4lOdvfhg0bjmqtux9/f6sUufHx8axfv741nrpTWrXKGMJywoQ1J5iyfVmtVgASExPbOUnTJKdnNZVz06bJAIwYsaQNEzWsKyzPjqazZJWcniU5PUtytj+lVINXSpTuCkKIRjm1xlZcQbm93nUOhBBCiA5NilwhBACzZs0iLi6uzn37c0tJyynm6Z9P5toAQgghRPtpldEVRo8eraW7ghCdR3p6OhdddBE2mw2r1UpQUBBLrTnsSJmKt9nEP1Y/yce3jOX0hIj2jiqEEELUoZTaoLUeffz90pIrhOBvf/sbf/nLXxg4cCCpqankl1byf19uwc/LzJCe3egbEcD9X2yhoMze3lGFEEIIt0iRK8QpLjU1lZSUFGbOnElycjKpqan89btUbMWV9IsMxGJSvDBzONlFFfz9+9T2jiuEEEK4Ra541gZkdAXPkpyedffdd3P77bejlCI5OZm5i39lS89ofjvIl+ee2kNxcRULFnTjjikJzFm4m7MHRnHu4B5tnrOzLM/OkhM6T1bJ6VmS07MkZ8clRa4Qp7A1a9awYsUKdu7cyZNPPklpWTllgbFMve9GHr1mPNsGJ/HnPxutt3dOTWDRziM89PU2RsaFEhnU9cZaFEII0XWcVHcFpdS/PR1ECNH2Hn74Yd58800WLVpEeno6Zz74LmXZGbx45TAs5rqbBy+ziRevHE5JpYOHvtqGXBJcCCFER9ZokauUCmvkFg6c34YZhRCtYP78+VRUVDB+/HgAPl6zn3VHnHhrO93MlQ3O0z8qiAfOHcDCndl8vj6zLeMKIYQQzdJUd4UcYB+gat2nXX9HtmaoriYy8vr2juCW8PDw9o7gFsnpGdOnT2f69OnYbDaOFlXw+HfrMS97k++/+5YffviBzZs3s3+/lV27innqqad46KGHALhpQjzztx/mH99v5+yB0YQGeLdJ3o6+PKt1lpzQebJKTs+SnJ4lOTuuRsfJVUrtBqZprfc38Fim1rpXY08q4+QK0bl8vi6TP3+xiTEHvuK7L/5LYGAgTzzxBOPHfw7Uv6zvlsx8Lnl1JS/OHMalI3q2Q2IhhBDCcDLj5L4EhDby2DMeSSVOKW+++SY9evRg+PDhJCQkMGPGDCorGz4s3hreeusthg8fzvDhwzGZTDX/v++++9osQ0f108bdHHhpJj9+8zmDBg0iKiqKO++8k9/8Zl2D0w+JDSEi0IfFO3PaOKkQQgjhnka7K2itX23isX+1TpyuKS3tFQASEma1c5Km2Ww2oPUOaWzdupUnn3ySm266CafTSWJiIlu3bmX06Ho7X0062Zy33nort956K1lZWUyYMIHNmzc3a/7mau3l6SmHs3NYtfso4y65nr0rvic/P5+SkhIGDRrEVVc1fPEHk0kxOak787cfweHUmE2qwek8qbMsz86SEzpPVsnpWZLTsyRnxyUXg2gD2dkfkp39YXvHOCGbzVazErSGbdu2MWLECADS0tLQWp/UeH0N5fzNb37DrFmzmDhxInFxcaxYsYIbbriBxMREbr755jrTpqSkMGTIkJN/Iy3I2REt3bqX4sJ8HnzoYUJCQvD29sbLy4sxY8Zw3nlRjc43JSmSgjI7mzPz2iRnZ1menSUndJ6sktOzJKdnSc6OS8bJFW0mNTWVG264AbvdzoEDB/jxxx8JDg5ucp5JkyZRVFRU576KigoeeOCBOgXytm3bGD9+PK+88gp//etfufnmm1myZAnh4eFERUXx2muv4ePjUzPt4MGDPf8GO6m16blYTIopg3oyd+5c+vfvT1VVFQcOHCA//6ZG55vYPwKzSbF4Zw6j4sLaMLEQQghxYlLkijaRmZlJZGQkW7duBeCDDz7g8ccf58033+SJJ56goKCAL7/8st58y5cvr3df9VVbqpWXl5Ofn88999wDgJ+fHzfffDM9ehhX5fL398fb+9gIACkpKUyfPt1j762z+3WvjaE9Qwj0sdTsOHh5edGnTx82bWp8vhA/L0bFhbJ4Vzb3n5PURmmFEEII97jVXUEpFaqUOk0pdUb1rbWDia5l69atDBw4sObvYcOGkZ2dTd++fXn77bcbnW/SpEk1J4hV3y655BJWrVpVM01qaiojR47EZDK+zlu2bGHsWONSygcOHCAmJgaljvUZlZbcYw7klZJhK2Vs35ProzUlKZLUg4UcKSz3cDIhhBCiZU7YkquUugW4G+gJbAbGAauBqa0breuYMGFNe0dwS2tez3rbtm0kJycDoLXm/fff56yzzjrhfA215Db03MOGDav5e+vWrQwdOhQwCt7q/wM4nU52797NgAEDmvsWmq0zXB98ya4cvMJiueqssSc1/5QB3Xn6550s3ZXDlWMaHVXQIzrD8oTOkxM6T1bJ6VmS07MkZ8flTkvu3cAYYJ/WegowAuNCEUK4bdu2bbz33nuMGDGCUaNGUV5ezuOPP+6x5x4+fDhgdF0oKysjNNQY/a52wQvGCW89e/as6Z97qluyK5teYX706x5wUvMnRQXRI8SXxbuyPZxMCCGEaBl3+uSWa63LlVIopXy01juVUtIBr4Wys7Px9fU94YlXXcXHH3/c4P02m41HHnmETZs21bmqVnM8//zzNf/39fUlPT295u/jny8xMZHt27c3+zW6irKyMnJzc4mNjaXc7mBlmo3fjO5ZpztHcyilmJwUyfdbDlJZ5cTbIgO2CCGE6Bjc+UU6oJTqBnwLzFdKfQccbN1YXcuqVWNZtco4HJyVlcVdd93FgAEDWLt2bTsnq8tqtdY7qau1hYeH88Ybb7Bnzx63C9z2yHkyOmJOq9XK8OHDufHGG/lqyXrK7A4SfIpalHNKUneKK6pYvy/Xg0nr64jLsyGdJSd0nqyS07Mkp2dJzo7rhC25WutLXf99TCm1GAgBfm7VVF3QgQPlXHbZZSxYsIDzzjuP//znP1gsFpYsWdLe0WpkZmYCcPBgx96HkZwt8+677/LVV19x84yzMEcn4jvqIeDkBwc/PSECL7Niya4cJvSL8FxQIYQQogXcGkJMKWUGooDq48DRwP7WCtUV/fzzUb79dhvdu3cnMzOTOXPmtHekesrKygBjCK6OTHK2XFVVFdrLl9K9G/ns008YPmzoiWdqRICPhbF9wlm8M5uHz0/2YEohhBDi5LkzusKdwN+AI4DTdbcGTv5X8RR0yy09mT17HU8//TQfffQRN910E4888kjNCVIdQfVhjI5+BqbkPHllZWU8++yzvDxnDl69RjD7rUe4ZFhMi593clJ3Zv+4g8zcUnqF+XsgqRBCCNEy7o6ukKS1HqS1HuK6SYHbDJGR1xMZeT0xMTG8/PLLbNu2Da01m5oaab8dhIeHd4prWkvOk2e1Wjl06BD3v/IFERfcw8ypp3kk55QBkQAssbbewCsdcXk2pLPkhM6TVXJ6luT0LMnZcSmtddMTGP1wp2utq9x90tGjR+v169e3NJsQopVc//YaDuaXsfBPk5ucbtMm4/ERI5Y0OZ3WmjOfXUL/yEDevnGMZ0IKIYQQblBKbdBajz7+fnf65O4FliilfgQqqu/UWr/gwXxCiDZSWlnFmr253DA+zmPPqZRiSlJ3PlufSbndga+X2WPPLYQQQpwMd7or7AfmA95AUK2bcFNa2iukpb3S3jFOyGazYbPZ2jvGCUnOllmVZqPS4azpYuCpnFMGRFJud7ImvXWGEuuoy/N4nSUndJ6sktOzJKdnSc6Oy50hxP7eFkG6suzsDwFISJjVzkmaVv3l7+h9dk6Us6Siin8v28vOw4VYTCYsZoXFZMLLrLCYFZMTIzlrYFS752wvi3dlE+BtZkx8GOC5nOP6huPrZWLxzmzOTOze4pzH66jL83jf/rqT9Rm5BEfFUeXUVDmdVDk0doeTQTEh3HpGH/y93RrYptV1lmUqOT1LcnqW5Oy43BldIRG4H4ivPb3WemrrxRKi+bTW/LjtEE/8uINDBeX0jwzEqTUOp8buMIqN0koHH/26nxnDY3js4kF08/du79htSmvNkl05TOwf4fGrk/l6mZnQL4LFu7J5jEEefe7OILekkr9+l8I3S1IJ9DETWuCP2aTwMivMJoVSinnbj/DZuv08euFAzh0cfdJXmhNCCHFi7jQnfAG8AfwHcLRuHCFOjvVIEX/7LpXVe20MignmlWtGMCourN50doeT1xbv4V+LdrNyj41/XjaEacmt36rbUViPFJOVX8asqQmt8vxTkrqzaGc2e3OK6ds9sFVeoyP6JfUwj3yzjYIyOzdP7MNVY3oxMHlAvenWpufy1+9S+MPHG5mYEMFjFw8iIfLUWU5CCNGW3GnKqdJav661Xqu13lB9a/VkHdTG/XlsP1hIbkklJxqZotky18Ly541/O7IOlLOo3M7sH7Zz/svL2X6okMdnDGburImMMqU1mNHr4Hru9pnLvN/4Eh7gzc3vr+dPn2+hoMze9uEbW46tuHwX7cwGYEpSpHszVBRBQabbGSe7nrf6ddpMOyxLgPzSSu75dBO3fbiByCBf5s6ayHXj4rCYG960ntYnjB/unMhjFw1ky4F8zn1pGR989jkVi5/tEOtTozrQOt+oFmbUWmMrrmD7wULSsos9v32v1k7f1WaRjJ7RGTI2pbPkbII7Q4g9BmQD31B3dIVGzy7pykOInfHMYvbnlgLgbTYRGexDVLAv0cG+jO0bxoVDYwgLcOMQeOZa2LsUgntAVQXs/gWs8zCus6Eg+UIYcBH0GgPFObBvBcRPgl6nter7q5cxYznETQS/brB3CaR+A/tXG48rEwy6FPpOhu4DjILo0OY2y7nMmsMDX23lcGE5V43pxZ/PTiKsNB3WvA4b3ge0kTFuIkQNAocdNr0PTgeYfbBf9y1zrKG8tmQP3QN9eP7KYZye4NnL0h7ML+Nfi3azeo+NqQOiuGJUTwb2CILNH8P3d4OzysjY8zQIjoHKYkhbCNoJFh/47fceXZZXvrGaksoqfrxr0okn3r+GTRsnApoRW4KhzyTwCYKibMhaZ2Q0ecG1X0K/yTWznf3iUroH+fDxLeM8lrtJ+1bDBxcbn6/JDAnTKCyzU5G9h/CKfSgAkxfquq+h7xkee9ll1hzu/2ILuSWVzJqawB1TEvBqpLgFIGMl7JgLAUZ/5fLDu8hLW0d0RToo0MqM6ay/w5jfgXfAsfWvLdf76teMGWF8L7M2GN/HfSuNx5UJhl0FAy+FnqPBltb2GWvn7DXW+Hvzf2HLJ8Z3EmV8V+NOh+5JUFUJ+fuM7ZQr49HiCn7YcpC1GbkcKazgcEE5OUUVVDqcNS8R6u/F6PgwTosPY0yfMAbFBDf9+TbFYYeMFbD+bdjxAzXbpn7TjG1TVSWs/49r2+QNv53btsuzWlUFrH4VFj1uLEtlgt7jjW1TRRGkzQdn62ybTqSyysn+3FLSj5ZQbl3MeVvuwKyr0Jg4GjEGn4BuBNhtWA5tNLKbveGGuRA3vs0y1pG5Ft6/yFimJjMkXwImk7HOHNwMaDBZ4IIXYOQN0J5dl9IWwo7vwT8ctMPIeGirsd6AkfOil2HYNZC1vtF1Xmvdbl2wGhtCzJ0iN72Bu7XWum9j83TlIndzZj4H88s4UljO4cJysl0byAP5pWTmlmExKSYndWfGiFjOSo6qP5SS0wHLn4Ml/3RtkF28/MFeeuxvszc4KuvOa/aBG39omw1LTeFwXAbfblCef+xvk8Uo1NowZ1G5nSf/t4NP1mZyUeh+Ho1LIdLbbvwg29Lqz+AfBlV2qCyqe//om+HCF9h6IJ97P9vM3qMl3HdWIndMScBkatmKerS4gtcW7+GjNfsYjpXLwtJZmhtKH53FVT6r6O3MrN6dMQRGgU8wFB+BisJjTxQ1BC543liWLdx45JdWMvLx+dwxJYE/nZ3U+ISluUYRvvwFNiVlAjBicwD4hUFQNJTlQtHhY9ObLDD4chh2NVh8WTL/O15Nj+adR+8gyNerRZmbVJYPGz+AZc9BRQFg7CKW4ke6M4oAyok3Ha5ZxlXKgiPxfHyGXGq8l4MbTqo4czg1cxbuZs6i3fSPDOSFK4czODak8RnKC2DBY7D+nbr3B8WA2Rudn4ECtDY+Ym32RkUOhCMprh9rn7YpetIWwn+vrL8++4UZn3kNhbGkq/9P2xY9aQvgv1eBs/bRl9qZcG2nCurcp00W1ox5mX8fSWKpNQeHU9M7zJ/Ybn5Eh/gSFexLVLAP0cG+FFVUsS49l7UZueyzGdtlf2+jz/nlI2OZmhyJj+UEw+TtXQabPoSyPDiwzthumrzq5vYJMbb7x7+XiffAWY+d3PJpjsy1kL7c2EYe3gopX9fdvgMERBo7XSVH625D48+AS9+AkNhWiVZud7Ay7SjzUo/wa7qNzNxS+rOfa8wLmWlejK8yvqdaQ64OIptQulFEtCmvZp13egdjGnurUZyV5bbdDlmOFb653djGVDN5GTsLzioozKo7fXBPSL4IIvob35c+Z7TNupSzC+b9BXbPO3afMkNYX2NjdHQ3ddYrnxCjIaZWI4zuOYZtWQV8vTGL+duP8Mu9ZxDo0/Yn1p50kXsyunKR25Qdhwr5dlMW327O4khhBUE+Fs4bEs35Q3owvk8IPju+MZr+j1przWWCCbNgwIXwwSVGUWn2huu/MVrNljwJO3+smboiqDcbhz/OJtMgMvPKKKlwMDAmmCGxIQyOCSHEv4VFhdNhtNb+9ACUHj12/4AL4ezZUJID719cN2dQFGULnsR3+5co1wqRY4nmnW53sUoPpcKhGRUXypSkSCYkhLfozPIVu48arbcFJbzTdzlnZP275jWJGQHDrzU2JF/efCxjdYGwZwl8cqXRalI9T6+xMP4OyrzDWfDLt7x7IJaQxNN5cebwkzopraDMzlvL9vLOynTK7Q7uG5DHHfvuRTkra4raVMtAlpX35SbzL3gpByaLD6o6Y+baY8tXYRQ49lKIGgwJ08DiZ/x7EhvA7zZncfenm/n6jxMY2fu4y0lrDRveNQqx7J3Gj27kIDbFrANgREr4seVYO6PJAglnGa1UFQXg+jQqtIVNUz5g/OTzm52zSZlrYft3kJ9pFDv2EnT0EBxHdoLTgR0Lf+32JEPHTWdGRBZBn12OdlRShYmFVcMYbdpNhCpwfRaq2cVZbkkld3+6ieW7j3LZyFiemDEEP+/jip3qVsbIgcZRj3Xv1C0OlAnO+D+Y8lDNsjQyWniy8koS/Qq53LIS7/Lq9U/B6XfDdPcHuimpqGLVHhuLd2WzcV8ePhYTQb5eBPtZCPLxIsjXQnSILxcPjyHSVAK/vgqrXgFH9cE6ZaxL58w2fuhqr/NXf2q0TK14AfYsOvaisaPhN+9Ct95uZSwotbMtq4BtWQXsOFRIgI+F3mH+9A7zJy7cn15h/oT41dqeleXB6tdg5ct1cw69EobOhE+vrbvORw+h6pdHMa//DwqN1uDAxA/maRwechtTxo8jKfrEo2FmF5azNiOXtem5/JJ6mCOFFQT7WrhwWAyXjYhlVFxo3dar8gL45RGjwK2WMB1G3WjsyP73yro5Y0dTsWs+Xl9ch3IajQpamTna52Js3cfhV55DxOBpBPaf4NZyddueJfDx5cd2aszekHyxsR1dNLtORt1zDLadKwj98gpM1dsmV0tvVcK5mPpMwlxV2uLirKDUzqJdR5iXeoSl1hxKKx1M9rEyK2gxcc4supem4TT74Oh1Ol6ZK8FZhTZ7k3Xxp2w3D6B0zyrO33Q7Jm3HqU1sc8Yz3LwXM060scaDxbdFO41aa0orHRSVV1FYbqeo3E5hWRW+h9aRfPhbgov3YspabxS12glo13L8vv720+wFE+4ydmh3zz+2s2Pyghu+g/jTm53P7nCSerCQvNJKLCblOvnVhNmkCM7ZSEz+BvxDoiBtHuz8wdVQ5TByKjNMfgjO/HMDOe8G6//g8DZjOQAZYWfwR/td7MipxNtiYnpyFI9ckExMN7+TWrYt0ZKWXH/gPqC31vr3Sqn+GJf5/aGxeU7VIreaw6lZvcfGN5uyyElZxFWDHyNAlXNmqi8FwUl4D70Mv19fql+E1To8aQsdxubMfA6nLuOK1DswaztaK4rwI0wVs9aZxFLzBIJMlcwr7c9GnQhAXLg/g2NDGNc3nMtGxBLgzh5V5lpIX4Z13yHYPY9E034IjYfCgw0fPquVczOJvLsynYPblvKB5Qm8qEIrRRGBhFFAhlcC6/0mciC/jGX2ZFJMAxjbN4wpSZGcmdSdvhEBbh3eyCmq4KUFVv67JoML7Iv5ve8ChnrtOzaBMsPUR2DSn+plrLMxqzkcOwqO7oJfX4O8DKqLM4fJm6srH+Zg4FBev24kQ3t2c+cjp7DcznsrM3h7RToFZXYuHBLNVT6riVz/PIm+1a1gCsbPgnNms+NQIUsW/kjRjsUMnHA+F14wo37G+ElGobTtC1g5B3G/I0UAACAASURBVPL2Go+bLHDN50ax2wz3fLqJZbuPsu6RszBXt1RrjXXhB7DiZRLZc2xZzngNhl3Fpl9HQXk+I/p90vByrF6+9nL47o+Q8pXxtMBe/2H0u+MbCPDMcDXWr56GJU+QGO7KnjAdpj3Kv3cH8vNPc/lD/CESx55P3PDJDeZM80nmxXk7mLDzKa62LMLkyql6jYOZH0Jg0/2UN+3P446PN3K0pJK/XzyIq8b0qv/dzVyL9flzwVFJYrgZUEaXnoSz4Mc/1V/nj8u4zpHAn7/YQljuZj7zfRKLthvfTJMFRv8OJt4LBQfqfbe11uzJKWHJrmyW7MphbXoulQ4ngT4WRsWFojGOgBSVV1FUbqdv2XZOd67HnLePSeZUBoVXoeInGlmcVU1mrHPf+8cd7VEKhl9jHIbP3VNn+uKKKr7eeIA1e3PZllVQ0+0LILabH+V2B7aSukeOzvTby4ygHVjyD9CvaA0DQ8qN52wopytjUfQ45hfFMX/7EQqsK3lbPW5sl0wWCntOJuzgUpTTbjxP9yQY8hu3Cx6HU7Nqz1G+3pjFzymHKbM7iAv3Z3Jid4Z2N9Fj65uE7/6cpKBaR+VqbZucTk1h2koKti9mi2Uwi0v6GH2Ac4oZpncxzrSDdB3NaaadXGVehJ+yozVUYuHBoKcISTydsX3COK1PGOGBPm5lrqeyBOuXT8C6t0gMqV7eJqOwmfIwAEd3LCcnZSHrGcS8wt5sP1iIraSSkcrKONMOfnUmk003rjUv5BrzQkJUKRqowsKXg18jKHESA6KDiA8PaLR/usOpScsuZktmPpsP5LMlM5+dh4twODWRQT6cn9yNqRn/Iir9K5Kq16XTboUzHzS2KU1s43X6cjJDRjHXFsu6lB3cmPMck01bjCMlwN7u0zh6zusM7hXe6G+k1prsogp2Hi5i1+FC179FpGUXU1F17CishSquyn+P6ywLGBBhQmuY53sO6xNmMToon2FV24gcchamuLF1MtbLvvgpWPo0NQ0wPiFw9j+MnU1z441X5XYHWzLzWZuey5r0XDbsy6PMXn+MgJHKyj+K/o4XVSRFmClT/myOvRpL3GmMWnM3ymFHNbLe67iJHAgcQta2JYxaeiMmZ6VRuyuNzRRO+oDbGDBsLIHZJ3d0zBNaUuR+BmwAbtBaD1ZK+QGrtdbDG5vnVC9yAaMf7ZIn0OvfY/WgIjSwYfvtvFh2LmaTmZk9DjFGbyctYDj7/QdjNilMSlFe5SAlq6DmEJnZpLg04gBn+adRETsev94jGZr9HZGbXsbkamnVJi+2TXmX5VXJpGQVsPVAAVn5ZYT4eXHduN78dkI8kUG+DefcuxQ+uhycdqw2BwTFknjtP43+Q430vbE7nPyccph3V6azcX8+gT4Wrhzdi1v75NAjb70xfY/hsPUzWPIUFGahAa0sfJLwPO8cjmdPTgkA4QHejOgdyqg44za0Zwg+FhMH8spYm57LOlcLSjfbJq6zzGey3z6OHtoH3eJJnHodrGxgZ6E5nA7jsNK2z2vuKoyZyJW237O32Ju/XjSQa8f2brQQLyirLm73klCxnWuj9jMhKZoe+/+HNWUDBHQn0b/oWB+xWhm11tz47jrWZeQy794z6Bnq33jOZc/D4tnHuriYfWDCnTDuj24VkQ6nZtTs+UwdEMkL4yuNQ5QWH9j+LdYtv4JXAInBFdTszbt+lN29rC9Qp+hxaI3CifIKQI39PfQ+HY5sbf4GUGujtXDFi1g3GBkSw801GfcNvJ1zXlrGxITuvHXDKLd2mPZsXETP76/C7LSDAhMaZfFFJV8A3eIg8dw6GbXWfLB6H7N/3E5UsC+vXzuKIT2P656gtdFv9Yd7se7a4cppgfF3wDlPHFs+bhwuLat08MwvO9myeh7j1A5KguK5wH87o/N+QimFwonWGqfJm2+Hvs5P+b3YuD+fXFeB2D8ykCkDIpmc1J3RcWH1h4rb9BHMvQutHVhtDjboAbwTdCvdeg/hvuR8xqrtmPu62SJX+z0FxxitrOvfPdYiZfYh94qv+HdGdz5es4+i8ip6hvoxtGcIg2NDGBrbjcGxwTVHTYrK7WTmlrE/txS163vO2vYAJhzstjnY6OjHuyG3UxmezIWhmQyo2Mpuv2Hs9R2EQ2ucTo2tuJIN+/NqCqVpyVFcEXmQoVXb8Ornek9FR4xDtNXrvDLBtL8Z65PJ/Sv1lVRU8XPKYayrv2dS9n8ZqnZzOLeY1c5BHO19DneWv4FZ26lSXjwUOJsV5X3JLamkynnsNzc62JeBMcEM7BFMYnQQQT4WzCaFxaSI2/oSMVtfqTlSlWcK4x9V1zG3cgwOzCRGBXL2wGjOHRzNoJjgpr/7mWuN9agkB1K/xZp5BKKGkKj31OwsHJrxGd/ZevJTymG2ZBpdFrzMiv6RQQyODWZwbAgDewTj62Wm0NV6WVRup8/21xi593VMrpw2HcTj9uv53jkek9lCoI8FPy8zvt5m418vM1prdh4uorTSKMaCfC1c3v0g0/ysRA2aSIIjHdOqOVj3HQTqrvM1DRnNkLN9OaFfXm4UZxjrfLozilccl6K7xTPatJNNpsFs1omU2R2U252UVlbV5AOICvYhKTqYpKhAIgJ9CPWuYuDh70jY/S77M43uZ0nhZhyY+CLotzxZdB6F5VU1n/O5g43Pakx82LFGhuM/o5ojZGYI7WM0xHTrDYOvMLo09j0Tep1GTlEF87Yf5ueUw6xJz6XSVXQPiA5ibJ8wxvYNJzrEF4dT46gsJ3zPN8Rtfo6MgzkAJIRb+MhnJn8vugSHU9fsvGzzGsLBoCFEBPoQEehDsJ+FvTklbD9USJHrvYw27+aCoD349z+Tyf2CiNrwAmT+Srt0XaqlJUXueq31aKXUJq31CNd9W7TWwxqb55Qscqv7Nvl1g32rjEOqrg39qkHFgGJc1NNsjv8dC7YfYWXaUUorHTi06zCa0xjP1WxSJPcIYkTvUEb2DmVIbEj9w6EAS5+BxU9Ss9dn8TVaekbdBOX5ZG2ex0eHe/PG3nC8TCYuHRHLnYm59CzYYBQcugo2f2Js6F0tMVabhnF/IPHapxt8i4Xldj5Zs5/3VmVwqKCc+HB/bpwQzxWjezXeB2fZc7DoCaC6OPOG0b8jJ2wkWXtSWVaZxLdHY9l71Ch6LSZFaIA3OUUVKJyc7pvBnf4LOa10sWsVUlj7/A7G3krigGTPnJxTs3FxHQLVTrSXPz/7nsdXR+MY4nMIW8Rp+PQZx+DYEAbFBBMe4MN7qzJ4Z2U6ReV2HumVws22ZzFVH/oLjMaacAsknU9iYEmjGQ/klXL2i8s4rU8Y7944pvEfquO7CPQcY5yM6BUAA843+s0NvAR6j21w9vUZuVzxxmo+nVrEuDV3Hmt9C4jC2vdGCI0ncdV99XYYmlXkVufMWM7SyiT+seAgXyYvJ3TvXNeDymiRuParE58Atm81rPuPcSKjLQ2CYrAGT4TUr0kMNQ7/6Ru+47p5mi2ZBcy/7wx6hDTjEFnmWg5tmc+7B3oyb5+d2T4fcjqbXTFN7Or/e37wv5T12ZrUg8YGftqASF64cvixLkHVJ486q8D6ExzaAj7BWA8VgdYkRvm16LDojkOFLLXm1OzshVQc4lXLyww1763pwzvfOYrXQu6hf1wcI+NCmZgQQa+wWjtL1etHz9OMFuB1/zF2Xl2sNqgYcxtr+/6B91dlsD+3lNhuftx0ejwzx/Q6uT7VCx6DFS9BTdETzCuOGRQmXs7vB1aRVLal8SMssaONI0hb/gvpy2oe3mXTHEq+iR0D72LT/jx2HC7E6TQaAYwGAjAphb+PhYkJ4UwfGM3Q2JDG+9Yvf97YLulaLV6hfWDcHyAi6cT9tStLjMPL69+B9KUAaGXi+8hZLPeaQI45HEvWekaTyt6A4dhChxMe6F1TPPSPCiS5RzARTbXG1um6ZDL67RceoDwojh0hZ7C7AD6z9WODM5HeYf41RdTwnt2Ove+qCtjwHvzy8LFuCbGjsCb+kYqIQfiWHSQnZSFf2uL5OsfoWzu0ZwjnDo5mUkJ3EqMDT9z3uM62yYQzKAZT/j6K/XuxrdsUKhyQ4j+OnV7JlLsKyCqnkwHRwQzrFcKwnt2IL03B9OHFdbuS9TkDa8BYWPESiaH1GwmardaJ1IW5h1BL/klQ/g6jAQaFAwsvxz7PweBhNQV5r1A/kqKDGRAdRGj1CeVpC2HVvyBro9FFq/d4rH5jYM3rdXLqnmM4kFfGuoxcfk45zFJrDhVVTiICvTl7UDTTB0YxJDak7neg9u9ZzzFGX9lfHgHbbldDkZn3Am/lqaMTsGsL8eH+TEuOqmndr+lil7kWrD8bJwlbfzK6Hob1xbonA5zOmm1TefQorEeK2HGokMMFFRwtrsBWUsHRokqOFldQUGand7g/g2KCGdjD+O1Lig6qe66R1vDdLNj8kfF3C3ZGWqIlRe4qYBqwUms9UinVD/hEa93oN61LF7kbP4D9ayAiAUJ6gb0MsnfA2jePbUS8AmDUb40N9nd3sCrpKCjFhLErPbd3c/xeX9wE4+xtp93YIGrjEGfeyD8yLyeUA3t3Msv0JV6qCoUyWge8gyB+gtE3y1mFNc8El75B4plX1H2p3FLeXZnBZ+v2U1LpYHzfcG6e2IepAyJPfILW8cVZ/ERjlIbqHxeTGUbcQHH4ENJK/Tl4cD+hti308K0ktngbXiWHXe/HVSQrM9b+v4fRvyMxMdEzy7I6Z/XGxTsQVr6M3vo51cW5ExPfOieysmoge3UMkeRxoflX4oOdJKt9Rs4aJpjyMNYelwCcMOe7K9P5+/fbeWnmcGaMaOIkjuML+uwd8PNDsHfxsWliRkK/qRA70vh77xKw+JJiTcM/ZxN91aHGc/rl1yvGm13kuuSWVDJq9nzumtqfe6veMUa8qKZc39e+k43i3JZm/IArIGcnHNgA2anVExuH6Cc/iHXvPji0lUTTPoifxOdHevB/X25l9ozBXDcurln5att2oADrV39nRu47mJWuOQHMrs2keg+hMGQAMcFe9E0ajikg1Djp7uAm4ySd6u9xSC84434YOhPrqh8haz2Jky7z2PrucGp2HS4iY/Nipq+7BbO2o3B1sjF5Qf+zocdQyNsP4f0gpCdkbzfOlHdWUVM4hPc3unlseAcc9jrrvMOpWbjjCG+vSGdNei5BPhauOq0XN53ex+0+dgWldtat+IlJq2/B7LTjRJHn24uoigzjx9/pcI3KYTE+18hkyNtnnHtQu9tDaLxxYtO2z8DR+LbppNXpb+gNk+4zCooD645NU91FJHY0BERAcbYxTXG2cZJrVVndE4ZbY9tUe52PHQ27foSFjxstfBjF2cHuk1hZ2Z+ltmDMzkrGeGcQ5Guhn+kISeWb8XaW15wP4MTE9xG/46kDw8nKK8McamxvRsWFct7gaM4ZFF13J+mkc/4PFvyt1onArhEv+p9tnFdQdNBY5yuKjGWevqzuidejboKLXsJqtdZZ5z3aOqg1fP37Okfx8PKHxHOMbZNPsPG+AsKN723OLmO9z3Odi69McP5zMOZmt3KWVFSxZFcO/0s5xOKd2TWtxN2DfBgQHcTAHsEk9wime5APWfllZOWVcSCvjNH73+HK4vcxc2zbVG4JpqLv2QT3GoQqPgKhccbJlkWH4OAW2Pn9sd/MXmNh6l8gfhLWZV95fNsE1F+f2mF0kJYUuWcDjwADgXnA6cBNWuvFjc3TZYvczLXw9tnUOduwHhNMfgAmP1gzT1rqUxCeQMKYZz2fp3ZRUpwD39wGexY2OZtTw0/OcfzY91HOGdGHs4P243dwFbaQoVRGDcfsF0RuaSWHC8r5csMBfkoxzlC/cGgPbpnUt+kzyd3JeVxLT6PiTjdO1giIgE+uqVmBbBd/CLEjW//ShPP+Cqvm1OTU1TsHx4s/A2JHGYWcw16zktv8+wEnvoSiw6m5/PVV7LOVsOC+M5vX127588ZJItVDJwVGGmdB126hAgoJZJfPEMYMSTYOV9fqa91UzpMtcgEuf30VdoeTuZd4190hG3ix8YPhOoGhDv8I40zu/P0c33Wi9iUps4vKmf7CMpKigvj09+NaPBoGmWtxvncROOw4TV7kTHycqKosTClf1D8TGoxc1ctYmWDKI0aRSxtcOrP20H5efka3oM0fGydmNWXkDXDRHONX0vUctpChDa5LWw/k89bydP63zdgpumBIDy4f1ZOoYB/C/L0JDfCuGU6ruKKKBduP8P2WgyzbnYPdoTm/236ui85k8IQLCE483Wjl/v7eumebN0gZDQQXvuRWzhZp6CjQD/fWHwWjIckXG/1DTV7w4aVtu21a5lrnq4+OeQcaZ7wfJ5tw5jlHsd8Rzr2WL/HCODHzXt+/UxKSSGJUEGOSejOidyhRwY10Z2tpztpdrHxCakZBqSMi0WhF37OoXreuNlmXarVC02eycRJY0aH604bGG5+3LY2mtk3uKLc72Lgvj+2HCtlxyGhJTcsurjOEnVJGN4cp/hk8lv8QFl0FZi9Mkx80dnJ2zDWOKBzP7HPsqORxraqtujzbY8jDWlo0uoJSKhwYh7Ez+KvW+mhT03fZIrd2QaFMMPZ2o09k9k74/Lo6BU67jHEI9c+IvPRN4+SlrA3w/d1oZxXa5MX7/efw5t4IDheW4+tlIirYl9ySypp+N9WCfCxcPbY3N06I99wZk8fv9V37hbEnuvJl40x0nO6fSNaajs953VdGEbnsWdj6Ocdv6FqS0XqkiAvmLOeCIT146aoRJ5/xt3ONkRh+edg4TIlGKzPPVl5OyNkPctuZ/ZqVsyVF7quL03j2l12sfWQakflb67/mwseNdap6zNCJ98G0R91qFbjj443M336En+6ZRD9PXVmtoeVS+4dameC024yd2Bxr3dFQ2nOdB1j6rNEaWp1z3B+N1vIvf9ei7dKBvFLeW5nBp+syKa44btvgayEswJvDBeVUVDmJCfHlwmExXDQ0hsGxDfQRrR431GE3tk0zXj+2bfrh3oZPeGtrx3/3rv4vhPSG1f+CDR/QIbZNDa0f3QfAwn8Y3VFqbZecp9/H0ZIK8natIODgr4QOmkpAPw+P0tCcnNafYfmLGMvRZCzDqX85Nn17jrlc/bpaG9vPX1+nZtt0pqvhqhVbLO0OJ3tzSrCVVBDbzY8eIX7H+tM3tGyWPuvqslhrnZ/yiFGkt3OrantoSUvuQq31tBPdV1uXLXKb+oK3815MvZxNjSzgut/p1Kzfl8f/th0ir7SSUH9vwgKO3UL9vRkcG9w6Y52e6GztjrJytmHOF+ZbmbNwN+/eNMb9K5K5kbFKeXFl2YM8c+8tJESeeMik2lpS5G4/WMj5c5bzzBVDuXJ0r4Zzn8T6NC/1ML//cAP3n53IrKn9m52rWTrTOt9QTg9lLCq3k5JlDEtkK6kkr6SSXNctLMCbC4f2YGTvUPe6L7mxbWpXnWHb1BkyNpSzI2ZsSGdY7ztDxjbU7CJXKeUL+AOLgckcG7c+GPhJa53c2It12SIXTurLk5b2CgAJCbNaM1mLtfqhIXe4sXy7as6KKgcXzFlBWaWDefee4d7wb25kfDI1gp8Ke7Hsz1MaPLGtqZwtKXK11kz45yKG9ezGG9ePajKjO+uTzWajqNzOzPdTCPX3Zu6sifVHDmgNzVzn2+37eRLbpg6xLrmhQ+TsDNsmN78D7Zqzmes8SM5GdZZtUxtorMht6lf0NuAeIAZjCLHqX8dC4FWPJ+wsep3W7D2j7GxjUHApct3gxvLtqjl9LGaevnwIV7yxmmd/2cVjFw9qccby6FF8MG8eM0dHNjpyQ2stT6UUUwZEMnfzQSqrnA0XpM1Yn2w2Gy/O30VOkYk3rx/dNgUuNHudb7fv50lsmzrEuuSGDpGzM2yb3PwOtGvOZq7zIDkb1Vm2Te2o0V8JrfXLWus+wP1a675a6z6u2zCt9SttmFGIU8aouDCuHdubD3/dx56c+ieTNNfqvTbK7U6mDGhG9wcPmpoUSXFFFesyck888QmkHy3m+62HuGF8PMN7uXeRDiGEEKeuEzaFaK3/pZSaoJS6Ril1Q/WtLcIJcSq656xEfCwmXphnPfHEJ7B4ZzZ+XmbG9W2fPfcJCeF4W0ws2pnd4ud6e0U6/l5m7p7Wyv1whRBCdAknLHKVUh8CzwETgTGuW71+D0IIz4gI9OGWiX34cdshth1oYMgdN2mtWbgjm9MTIuoO3t2G/L0tjO8b3uIid+P+PFam2Zg5ptexQdmFEEKIJrgzusIOYKB2Z6wxly594pkQbaCw3M6ZzyxmcGwIH97c8FXMTsR6pIizX1zGk5cO4ZqxvU/qOVpy4lm1D1Zn8NfvUll8/2T6RAQ0e36tNVe/9Stp2cUs/fOUlp+QJ4QQoktp7MQzd87cSAGiPR9JCNGYYF8v/jg5geW7j7JqT5PDUjequvV0yoDunozWbNXDoZ1sa+7y3Uf5dW8us6YkSIErhBDCbe4UuRHAdqXUL0qpudW31g4mxKnu+vFx9Ajx5Zmfd9GMAyk1Fu3MJrlHMD1CPHQRj5PUK8yf/pGBLNp5pNnzOp2aZ37ZSc9QP64+ydZoIYQQpyZ3itzHgBnAk8DztW7CTatWjWXVqpM75NyWrFarcQ3uDu5UyenrZeaes/qzOTOfedubVyCu3mNjbXou5w8+8UGYtlie5w3pwao9NtY3c5SFn1IOk5JVyH3TE9m3d88p8bm3pc6SVXJ6luT0LMnZcbkzusLS2jegCriy9aMJIS4f2ZO+3QN47pddOJzuteaW2x089PVW4sL9uWVS31ZO6J7bzuhLTIgfD3y1lXK7w6157A4nz83bRWJUIJcMj23lhEIIIboat0ZTV0oNV0o9o5TKAGYDO1o1lRACAIvZxP1nJ7E7u5hvNmW5Nc+LC6xk2Ep56rIh+Hm3z6gKxwvwsfDkZUPYk1PCq4vT3Jrnyw0HSD9awp/PGYD5RJeLFUIIIY7TaJGrlEpUSv3VNbrCK0AmxmgMU+RiEEK0nfMGRzMkNoQX51upqGq6FTQlq4D/LE9n5uheTOgX0UYJ3XNmYncuGxHL60v2sONQYZPTltsdvLxgNyN7d+Os5Pa5kIUQQojOralTlXcCy4GLtNZpAEqpe9skVRcTGXl9e0dwS2e51N+pllMpxf+dm8T1b6/lg1X7uPWMhrsgVDmcPPDVVsICvHn4/OQ2z+mORy8cyFJrDg9+tZWv/3h6oy2076xM53BhOS9dNbzmcsSn2ufeFjpLVsnpWZLTsyRnx9VUkXs5cBWwWCn1M/ApIMcMT0JCwqz2juCWzrICnIo5JyZEcEZid5743w4OFpTxwLkD6l3g4a3l6aQeLOSN60YS4u/VLjlPJDTAm79dPIi7PtnEuyvT6/UZLqt08NRPO/hg9T6mDYisc6W2U/Fzb22dJavk9CzJ6VmSs+NqtLuC1vobrfVMYACwBLgXiFJKva6UOruN8gkhMFpz37xuFDdOiOfdlRlcMGc5Ww/k1zyefrSElxZYOWdQFOcO7tGOSU/soqE9mDogkufm7WK/rbTm/s2Z+VwwZzkfrN7HzRP78Oq1I9sxpRBCiM7OndEVSrTWH2utLwR6ApuBB1s9WReSlvYKaWkdvxuzzWbDZrO1d4wTOlVz+nmbeeziQXx482mUVDi47LVVzFm4G7vDyYNfbcXbYuIflwxu95wnopRi9ozBWEwmHv5mG3aHkxfmW7n89VWU2x3895axPHrhwHot1afq596aOktWyelZktOzJGfH1azLB2mtc4E3XTfhpuzsD4GO322h+svf0Q9pnOo5J/Xvzi/3nMGj36Xwwnwrn63LJCu/jH9eNoSoYN8Ok7MpMd38eODcJB79LpXJzy4hK7+My0bE8reLBxHi13BXi1P9c28NnSWr5PQsyelZkrPjcmsIMSFExxLi78Wcq0fwr6tHUFxRxcSECGaO6dXesZrl2rFxjO0TRmllFa9fO5IXZg5vtMAVQgghmksuBC9EJ3bRsBjOSo7CbFI1oxB0FiaT4oObT8PppMOM5yuEEKLrkCJXiE6uMxeIPpbOm10IIUTHprR271KhzXpSpXKAfR5/4o4jAjja3iFElyDfJeFJ8n0SniLfJeEpbfFditNadz/+zlYpcrs6pdR6rfXo9s4hOj/5LglPku+T8BT5LglPac/vkpx4JoQQQgghuhwpcoUQQgghRJcjRe7J+Xd7BxBdhnyXhCfJ90l4inyXhKe023dJ+uQKIYQQQoguR1pyhRBCCCFElyNFrhBCCCGE6HKkyBVCCCGEEF2OFLlCCCGEEKLLkSJXCCGEEEJ0OVLkCiGEEEKILkeKXCGEEEII0eVYWuNJIyIidHx8fGs8dae0I2cHAMndk9s5SdPKy8sB8PX1beckTZOcniU5Pauz5ITOk1VyepbkhF22XQAkhSe1+Llkeba/DRs2HNVadz/+/lYpcuPj41m/fn1rPHWnNPb1sQCs+cOadk7SNKvVCkBiYmI7J2ma5PQsyelZnSUndJ6sktOzJCdMfm8yAEtuXNLi55Ll2f6UUvsaul+6KwghhBCi05o1axZxcXHNmievtJL9uaXIVV+7NilyhRBCCNEppaens2TJEiorKykqKnJrnv22UtKyizmYX8ZHvzbYACi6CNUaezGjR4/W0l1BCCGEEK3phhtu4Pzzz+ett97iiSeeYNy4cU1O73Bqrvr3av53+HYCvC2ElT3BT3efQZ+IgDZKLFqDUmqD1nr08fdLS64QQgghOp3U1FRSUlKYOXMmycnJpKamnnCet5bvZV1GHn0iAkiICsTHYubezzZT5XC2QWLR1qTIFUIIIUSn88gjj/D444+jlCI5OZmUlBQAvv32W2699VYuueQS5s2bVzP9jkOFvDDPynmDo4kI9MHbbGL2jMFszsznjaV72uttiFbUKqMriLpkdAXPkYn00wAAIABJREFUkpyeJTk9q7PkhM6TVXJ6VlfIuWbNGn755Rc2b97MHXfcQXl5OUOHDgVgxowZzJgxg7y8PO6//37OPvtsKqoc3PvZZoL9vJg9YzCXf2k8z0XDYpi3/QgvLdjN5KRIBseGeDRnR9JZcnqStOQKIYQQolN5+OGH+eGHH8jIyCAjI4MtW7bUtORWmz17NnfccQcALy3Yzc7DRTx9+RDCA33qTPf4JYMID/Tm3s82U253tNl7EK2v0SJXKWVWSt2mlHpcKXX6cY/9pfWjCSGEEELUNX/+fCoqKpg2bVrNfVFRUZSUlJCbm4vWmgceeIDzzjuPkSNHsj4jlzeX7uGqMb2YlhxV7/m6+XvzzBXD2J1dzPPzdrXlWxGtrKnuCm8C/sBaYI5SaqnW+j7XY5cBs1s7nBBCCCFEbdOnT2f69On17i8oKABgzpw5LFjw/+zdd3xUVd7H8c+ZSYf0CgkllCT00JsgKKIiCjZc17pr2xV3bbv7+Ky7a3t0LbuWFV137aILrlgAUWkSpEkoBlJIQqgJLY10UmbmPH/cSQESUphkMuH3fr3yIrlM+WZy5szvnnvuuWsoLi4mNT2DzysG0zPAmz/NHtzkY14cE8qtE3rzzsYDXDoonAn9gtstv+g455quME5r/XOt9avAeKC7UuoLpZQnoDomXtdw27DbuG3Ybc6O0azg4GCCgzv/G1tyOpbkdCxXyQmuk1VyOpYr5tRa8+233zJx4kTee++9c97vt7/9LTt27OCtt97CbcjlZGxbT+6HD/Ltsi+x2ZpeReGPswbRJ8iHp5entTlnZ+YqOR2pyXVylVLpWuu4M7b9BbgcCNNaD2zqQWWdXCGEEEKcL6013333HU8++SRlZWU88cQT3HDDDZhMLTul6No3N2GzaX7Vv5Qnn3yS8vJynnjiCRaULkCZ1FmX9X37h/08+80eNj92CT0DvNvhNxLtoS3r5G5XSl3RcIPW+mngfaCvY+MJIUTr/etf/6JHjx7Ex8czYMAA5s6dS3V1dbs+59tvv018fDzx8fGYTKa67x955JHm7yyEaJVnnnmGWbNmkZiYSFpaGjfddBNmsxmlVIu+vpp/Ect+M6XuMVJTU5k3bx4Z7zU+93Z6XCgACRl5HflrinbSZJGrtb5Va/1dI9vf0Vq7t2+srmXBxgUs2LjA2TGaVVBQQEFBgbNjNEtyOpYr59y9ezfPPfccSUlJZGZmkpKSwu7du9s1xz333ENSUhIrVqygV69eJCUlkZSUxMsvv9xkzs7KVbJKTsdypZz3338/K1asYNy4cQwZMoRPP/0Ui8WCzWZr9uuLHdn0/sNyfjpUwDfffMP48eMZPHgwixcvJuYXjS+j1T+0O1GB3qzLyG1VTld5PV0hpyPJEmIdYGHyQhYmL3R2jGa5yhtAcjqWK+dMTk5m5MiRAGRlZaG1dtgakNdeey1/+tOfmDJlChEREaxZs+a0/09JSWHYsGEtytlZuUpWyelYrpSzsLCQWbNm8eOPP/LSSy/x8ssv8+GHH7ZoFHddRh6hvp7k7N7CY489xiOPPEJycjI33XQTJnPj5Y9SiumxYWzKyqfK0rLlxFzp9XSFnI4kF4MQQris1NRUbr/9dmpqasjJyWHFihX4+fmd8z5TpkyhtLT0rO1/+9vfmDFjRt3PKSkpTJ48mQ0bNvDFF1/wySefnPb/ycnJDB061HG/jBCiSUoprrzySq688soW3d5q06zPzGPGoHBmzx7B7NlXtfi5pseFsvDHQyQeKGTKwNC2RhadgBS5QgiXlJ2dTVhYWN30hI8++ohnnnmG+fPns2LFCnJzc5k/fz4zZ8487X4bNmxo9rErKiooLi7m4YcfBsBisRAQEHDabVJSUhpdxkgI4XxJ2ScpPlVTN8e2NSb2C8HDzcS69Dwpcl1ci6YrKKUClVLjlFJTa7/aO5gQQpzL7t27GTy4ft3LESNGkJuby9y5c3n77bf54IMP+PTTT8+635QpU+pOFmv41XA6QmpqKqNHj8ZsNtc915mjtjKSK0TntS49D7NJMWVA64tUbw8zE/sFk9CKebmic2p2JFcpdTfwIBAFJAETgC3AJe0brevY+uutzo7QIq5yPWvJ6ViumjM5OZlBgwYBxjJDH3744WnTCRpe0rOhlozkpqSkEB8fX/fz7t27mTNnTt3PNpuNvXv3EhcXd9Z9XeX1BNfJKjkd60LIuS4jl9G9A/H3adt58tNjQ3lyeRoH88vpG9LtnLe9EF5PV9WSkdwHgbHAIa31dGAkIGtrCCGcKjk5mQ8++ICRI0cyevRoKisreeaZZ866pGdbH7thkZuSknLaqG1WVhZRUVF4enqe9+8hhHCsEyWVpB4tYVobpirUmhYbBiCjuS6uJXNyK7XWlfazFT211ulKqdh2T9aF2Ww2li1bRlxcXKMjQUKI5n3yySeNbm94Sc+srCx+9atftfqxa5cDq7V///7Tfo6JiSEtrXVXRRJCNC0hIQFPT08mTpx43o+13r7G7XR7odoWfUO60S+kG+sy8rhzcvR5ZxLO0ZKR3BylVADwFbBaKbUUONq+sbqW8f8cz/h/jsdms7FkyRJGjBjBc889d87LCzpDZmYmmZmZzo7RLMnpWF0tZ8NLeralwD1frvJ6gutklZyO1RlzVlRUcPPNN3P55ZezZcsWoO0512XkEuHnRVyE73llmhYbxpb9BZyqPvdSYp3x9WyMq+R0pGZHcrXW19q/fVIptQ7wB866SIQ4t4LtBUQ8EYG7uztTp05lwIABLF682NmxTlO7fl5nv7a15HQsyelYrpITXCer5HSszprzlltuYdeuXVx55ZWEhITw+uuv079//1Y9Ro3Vxoa9+Vw9ogdKqfPKMz0ulPc2HWDL/nwuiQs/r8cSztGiJcSUUmYgHDhg3xQBHG6vUF2SGcxmM1prlFK4ubmd9xvQ0WrPJHdz69wry0lOx5KcjuUqOcF1skpOx3KFnLWX7m2t7QdPUlZlqZtTez7GRQfh7W5mXXqeFLkuqiWrK/wGeAI4AdQeX9fA8HbM1eUEjwwm861Mli1bxpNPPkl6ejofffRRp1qCqPYwRmc/A1NyOpbkdCxXyQmuk1VyOlZnzPn1119z//33M2zYMFatWsW4cePadGg9ISMXd7Ni8oCQ887k6WZm8oAQ1mXk1g1QCdfSkt24B4FYrfWFdS04B7pt2G0AmEwm5s6dyzXXXMM333yDh4eHk5OdrrMdumqK5HQsyelYrpITXCer5HSszpjTz8+PJUuWMG7cuLptbcm5LiOXcdFBdPd0zCj19LhQ1uw5wb68MgaENT7HtzO+no1xlZyO1JJWkA0Ut3eQruyBix447WeTycTs2bOdlKZprvIGkJyOJTkdy1VygutklZyO1RlzTp169jWmWpsz52QFmSfKmDeml6Ni1U17WJeeJ0WuC2pJkbsfSFBKrQCqajdqrV9u+i5CCCGEEB1nXe3SYXHnPx+3VmSAN3ERvnyfnss9U/s57HFFx2jJEmKHgdWAB+Db4Eu00IKNC1iwcYGzYzSroKCg7qzbzkxyOpbkdCxXyQmuk1VyOlZXzZmQnkvvIB/6NXOFstaaFhvGtoOFlFbWNPr/XfX17ApasoTYUx0RpCNprfl85xHe2bCfUzVWLFaNxWaz/6vx93bnoRkDuXZkpEMmmi9MXgicPW2hs+msy8qcSXI6luR0LFfJCa6TVXKCzaZZsjOHf6zdS2mlBXezwmxSuJlMuJkVPh5u/Oriflwzomezn1td8fWsrLGyaV8+N43p5fATxKbHhvLW+n1sysrniqE9ziunM7lKTkdqyeoKMcDvgL4Nb6+1vqT9YrWf3JJK/veLZNam5zI00o/4iACjkzAp3MwKN5MiKbuIR/67i0WJh3nymiEM6env7NhCCCEuULtzivjL0lSSsosY2TuAS+PCsNh03cCMxWZj74kyHlycxDfJx3j22mGEdL+wLjm99UAhlTU2pjlwqkKtUX0C8fVy4/v03EaLXNF5tWRO7mfAW8A7wLkv+9GJaa1ZmnSUJ5alUllj5c+zB/OLSX0xmc7e47PZNJ/tyOaF7zK4+vWN3DqhD49eFou/j7sTkgshWi07EQ5ugL5ToNe45m8vRCd0sryaF1dmsHjbYYK7efL3G0dw7cjIRj+3rDbNOxv28/fVmcx85QeemTOUq4ZfOAXZuvRcvNxNTOzn+FFKd7OJqQNDScjIO/+lxKRv6lAtKXItWut/tnuS9lJzipJti9m4dSsf5cbSv9c4XrpxBP0r02DTF402NJNJcdPY3lwxpAcvr85g4Y+H+Hr3Mf7niljmtcOhEAAyvoPsrTBwJvRpcO3uzvSGOLwVDvwA/S4+PUsHZLTaNAVlVRwvqWRHVj55ZVX4HTMzPNKfkb0D8fYwnztLdiIc2ADRneB1rM3TMKfWsG8tHNwIsbM6Z0aAU0WQvgKKDsKAyzpHzjMd2gwfzQVbDZg94Y5lnTNn5krYuxriZkP/afXbO/g9f6rawsa9+aQcLaa7pxvhfl5E+HkR7u9JcOFPmNNXGPn6Xwq1fV9n6pcADm2BQ5sgemqH900t1lSWw1vh0MbTtttsmsXbsnlxZTqllRZ+MSmahy4biJ9X0wMtZpPivov7c0lcGL/7bBfz/7OTb1J68MycoQR1a+FylY1ltFogaw0c2QEDT3/Pl1bWYLVpAnw6cDnMRjJqm42qlOUsCNiD19GA0z9DHWR6XBgrko+RerSEoZFtPLq7bx3856bz7puqLTZOVlQT7ufVthwXEKW1PvcNlHoSyAW+5PTVFQqbus+YMWP09u3bHRSxFbITjSKseziU58H+BKwHN2HWFsC4ggWhg1CBvSHre7BZwa35hpZ6tJgnlqay/dBJpgwM4fnrhxMZ4N32jAc3QJ+LwMsf0pfDrk+hYG/9bbyDIKA3uHlBzjajAGpBznaTlwEbXobdn2J/FcHNBzy7gzJB2Qlju9kT7lgOvcef91NqrdmdU8yXPx1hddoJjpdUYrU13lbdTIqhkf7c1X0LVx18DqWtKBR4+hk3sJwCa7XxvckMV/8D4m+p/8DuSFrDjvdhxe9AWwEFPsFw6qT9Z4xt8TfDhPshfKhzch7eCh/OBmuN8TcOGwSlx6Eiv/42ygQjb4NRt0PPkZTt20px+vdkesWzwzaQA/nlHMgv53hJJT38vegb0o1+Id2Itn/1C+2Ov/d5Hh05vBX2LAMPX6gsgqM7jQ9jm6X+NkH9YNiNEDUOFHBsV8cWPbXv+Z6jjQ+3/QmQ/g2c3F9/G58Q6DEcvAJgz3KjLbRTgV5UUU3igUK2HSwk8eBJUo4UY7VpRqlMJpj2sM0Wg4eycItpDVeat9U1P5vJHeUfifLoDrlp9n7JA+742jn9ktUCBxJg8xuw//v67R7d7O99BaXHjG1u9r7JKTlrYPPr8P0zoO3XU/Kwn7ttOVXfVk3ucNPHZIdO5Q9LdrNlfwHjo4N4es5QYiNad663xWrjXz/s59U1mfh7u/PKTfFMGRh67jsd3Fi/c6hM4N8LqsugosGJSsoEE+dTOupXvL2znHc3HqDKYmNabBg3jI7ikrgwPNxacj57G2UnwodXg6XK6Mv7TIKKk9jyMzDV9vEAfSbDsBuMHbOyE43uXEz7YBoACXcmtOip88uqGPvsGh66NIYHZwxs/g4HN0Lql8bneEUBHNkJ+Rmn3yZ8iNGHRo0DSyVk/3jOvin1aDGfbc9hadIRTlbUcPmQcB6dGUtMuKwFoJTaobUec9b2FhS5BxrZrLXWTa6l4ZQid8/X8N/b6jsRIM9nAAdLTYw278WEBpRRPJbnQ015/X0HXQ3Xv2t0hE2w2TSfbD3EX79Nx6QUf549qPWjutmJ8MHs+oKrtmD0i0SXHEWh0ShUjxHQLRSO77YXkA1yXvcOuLfz3lt2ImR+B9UVcHgLHEvCqA5q24oy3oRhg42C4vju+vt2D4dpj8GwecYHYStHUbILK/jqpyN8mXSE/XnleLiZmB4bysAwX8L9vQj39STC34uosmS8j24h3S2OYwczGJD9GTE1GWht1IQ2oDhwGL4DJuJ2IhkO/9ggPxA2xCgkgwdCbmr7Fz2Wakj7Cn58E47+dPr/9YgHDx9jNKrha4yGwGiIGgveAUah1t4f0laL0TGvevz0tuff2xjNKzkKWWvrctrfVZTjg5euBDTVuHOb5XHyA0YQHdKNCH8vjhVXciC/nOzCCmr3VZSCMX0CuXxIBDMHR9A72Kd1OX94Cda/UJcFswf0HAV+kZC+DKxW40kC+hgjzw36BswecOeK9n89D22Bj642Cp265/YEv55w8iB1r2DEUKOAOJFmFBm1Rt8JV7923jEqa6ysSjvBFztz2LA3H6tN4+FmIj4qgLHRgVzqs5+RCXfU9U0KsCo3TNpifK8V220xlHlGMMa8F7+qo9T1fCExMPsVo7Bo7x2yw1shZYlRNBzcaLRRNy+jQKhNHjUWwuKMouJESv19Q+Pgir9C9DQ4sv28RnitNk1ZlQU3k6LbmRcdqN2pCY4x+sadH0HZ8QY3UBA52njeY0mnve9tKH7QI1nKNGZPGMYl3Q6gzuPoU/rxEn676Cf25pbx8IwYHpg+4OypDmV5sP1d2PSP0z8XQ+OMIrIgyzgKhq57v9tQbLPFUhY0BG/v7rybG8va8r4EdfNgTnxPbhzdi8E9/dqUuUnlBbDkF3Bgff02r0DoNZbjuScILdqNWdkTevpCVYn9Rvbf94wdndYWuQBz39iEBpbOn9z0jSoKjf4z6T8NcgZA7wnG5+OuRfbBA2UMaDUcOECdlbOgrIqlSUf5bEcOe46V4GE2cdmQcPoE+bBwyyHKqi3MjY/koRkD6RPs2FUlXEmbi9y2cEqRu+6vsP55ADQmlvnO48G8a/jdoCLmZz+KslYbH2x3LDNu/+HVRuGBNr58e8LE+cbI2dEdTXZ+hwsq+P2SXWw9UMjFMaE8f/0wevi3YFT32G74/O66PTkNlPaZyec9HiErM40/FTyGOxZqcONu/sIBr8GMc9vHC+WP404NClBoo/gdew/0HAknkh1fnO3+DL68r25UscI3mp/Cr2NXRTC/PPokbliw4s5bfV9GR40jnkymbrkLZatBKRME9ILC/cZIr7WK+hHepkekDhWUszrtBCtTj7Pt4EkAxkcHce3ISK4c1uPs0b7sRGOUse7vB4TEYomejtr5Plgt1GDm51V/ZK/nYH7dr4D7Dj2MyVaDMrvDuHuMD5YjDdqo2RPubHpEqrLGSsbxUtKOlVBUUYPVZsNi01htuu7f6JBujI8OIjqkW/3Oz9418OMbxuhhRYFRVMdeCYn/Njq609rkNUaRYfaAeR9B6VHYubA+pzLBVa/CmDvOyqe15lhxJalHS0g5UkxheTW+Xm74ernj52386+vlRg9/L/qFdD99tCU70TiMVlVijCIWHTKK2tJjRmFYm7HXOGoO/oh54Ry0tYYazNxX9RB+qoLfen/LAOu+ul0h28g7MM/5x1k5qy02DhdWcCC/nOQjxaxOO8GeY8aHUVyELzMHh3PJoHAG9/BrfETIWmMcUdjwd6Od1VImmPZHuPj3VFtsHE1ej/XABo4GjOaQz1Aqy4oZm/ESw/KW23d4weLXG/Pc11HRFzu+OLNaIOVzWPmY8aFnhIT4W9CzXuJIeiIRX92EstVgM7nx2ZA3yPUfQVTpLuYm34/ZVgNo4+O51wSY8ojxQXnGYe1zsdk0Ww8U8uVPOXyTfJyyKgs9/L2YOzKS6bFhDI/yx8uMsVPz7f80+LBVxg7VyNvgP/PAWo02u7N6zNu8fTAE66GtfOLxHB7KglIK7e6DubrU2FmLudIYYTtzSlMTiitq2JtbyuHCCg4VVJBdWMGhwgoOF1bQzcPM0Eh/hkf5M7SnH6OyP8Rr/f9R957vMxnG/wp8guDjG+rfO7V9TXZi/XtKKXDvBlXFRl9fnndW225MYXk1ixIPk5CRS/GpGkorLZRWWiirMkZfzSbF6D6BTI8NY3pcKLFVaaiPrm4wkIF9CtpkSHi+yYzaWk2NNrHcMp7pnukEWRv8Lc5zFLqi2sLjX6bw5U9HmBYbyivz4gksTILkJcbO374Eo6+OshfdNutZGfWH16At1VRj5g/V9zA9tJRZtgQ8Sw8DoE1mki96k38di2F12gmqrTZundCb/5s7rE2Z62QnGgNYRYdg7yqoqTDe62DPaLwuf17wLo/nP4aXsme/fSl4B8KqP8HelfWPFzkWbvoI/Hq2qcj9x9q9vLImk22Pzzj7xL6yXNiyALa9a4yA11JmmP44TH20/ndquINVfARW/8XYeavLORpu/ICEE17c+9EOqq02RkT5c8PoKK4e0bNuesjJ8mre+mEfH24+iMWqmTe2F7+9ZCAR/hfeNIbzGcn1AR4Bemut71VKDcS4zO/XTd3HKUVug86iSpu53fInrp9zLTeN7d34PKOG0waqy2DjK8bPQHMdi82mWfjjIZ7/Nh03s+K3lwxkSkwIMWG+9XvJtY/vG8n4r+dDZRFbvMPBUoXWNmpw4+dVf2SnjmFopB839zhOzKkksnxGkukxiNJKCyWnaggo+ImQ/G3sNA1mxsAAbrYuo9uhtQ1yOuhwYV4GmYv+iN67kphgMwqwaMXLlnm8aZ1DVKA31wTlMLQmmc3WOL4v68uxkkq0pu4wZ7b/aLz6jucyv8NM2fs8XgWp9aM9438NVz5f9/rtyilizZ4TrE47QeYJo0OIi/Dl6hE9mRPfk6jAJkb1CvaR+cZNkJdOTLB9Hu6oO4zRLqXqXndr74vYUt2fL3bm8F3qceJq9nCp916Kwsbj1W8CQ3r6MWnvy/juetvYeQBsIbHkznidYz4x5JdVsz+vjLRjJaQdLWFfXhmNzZYwKXAzmUAZBRxAqK8nV0TVMP3Aq0QWbCI22Gx0zDOeNnakTKZzt8mG2zb8Hb7/v9NHIQfMwDL1MX6simZjVj6pR4tJPVpCYbl9FE6Bv7c7ZZUWLI2EdjMp+od2JzbClxkeu4lJeBCFhdhgMzVBsVRNfRzzoFl4HN9J8Z7vSXYfxrryaJKyi0g7WsJQWzoTzXsojZhA9MjpXDY4nKiylPrDiLVFSPTFMGSuMRXjHIVZdmEFq9JOsCr1ONsOFmLT4OFmYkhPP0ZEBRDfK4DxKo3ita/CiRTifIqoDhtOSb+rCNr2CthqsCo3/hH1MiuLe7E/r7zR33useS8fuT+Lu7agUZTgQ7AqJdNzCNkRlzEgwEzkqJm49ZnQeNtrTnYi7F9P5sFjkLWSGHMOBPZDl+SAzYpVufFqz7+z+HgP8suqGKUymeyWzlY9mO3WAXXtq/b9tNM2gEHmHH7l/g3hOq+25EWbPcm77jP8Yybj5W68B2w2TfbJClKPGu019WgxyUdKyC+ropuHmSuH9eC6UZFMiA7GdGSbMa1L28hc+zGc3E9M/37GTk0jBc6ZbTK7sIIf139Lafo6vi7pT5ruw68Dt/ML6+f4VR83RvtM7nDLktPmGlusNjJOlPLT4SLjK/sk+/PqRw6Vgp7+3vQK8qZXoA+llRaSc4oYUrqBOcWLGGg6wkB736SVGXXJ4zClicKh4d+kdnuPEZC2DNY+BcXZtc8KU38Hl/zptD9l+vES3t94kK+SjlBlsRHfK4BwP8+6nUU/+7+F5dUkZOSRdqyYaaZd3FP6FqGcJCbYbByVm/QbmPlMoxltNk3GiVLSt63h0I5VbNWDuWrWHG4ZG4la/ltI+qQ+UJ/JMG8hdGvbSVVaaz7Zepinl6dyr/f3XH3i3yhsRh8aNxsufQJCY87KWGWx8t/tOWxYu4IBFUkUR4xn7tXXMrZv0Nl9k8kNxt1H8ej7eWHjSf6z9TAf/XIcU2OamSbRlKTFZL57H2A1cg64DGb+n7Ez3iBjSWUNo55ezRMjy7kt4vDZfWrtjk4tkxlG38m0g99BTQUJ1y1q8ednypFiZr++kb/dOIIbRkcZG9NXkLnkOcjbQ0yQhqHXGzs2y3579k5NUxrJqZVio47nmHsU42f9gj7x05q8e25JJQvWZbEo8TBKKW4e24tfTxtQX+za/66Ztj7QYzgxMTEt+n1dyfkUuZ8CO4DbtdZDlVLewBatdXxT93FGkau1ZsU3S0nf8g37uo1k/u0/b/3k8K8fhu3v1f/cIx7mvGEcSmzEwfxy/vD5bhIPGCM1/t7ujO0byOzAbK5Jug9lq0YBYy0V5BOIr2UBA9QRpnpkYOk1md7x05gWE0pYM5PH9xwr4YNNB/ky6QjVFhv/DFnCFWVf1BeQ4UNg7lvGnL7WyE40RnFy96D3J5BaYCbBOoy7Q1NwV1ZsJndSLl1I3/jpBDZy4kJljZUjRac4XFBB6tFi+wdXEYXl1YxSmfzH41k8VO0oNKxlPP9W12OyVjHSmkIig3HvM4HLBodz2eBwegU1UdjW5UyHAwlkFirQNmKCTS3qQMqrLKxMPc4PmXmkHSshK9coWEepTD7xfA53LGitqMKN7qqKldYxrLKOIVydJMsnHlvUWAb39GdwDz8G9/AjzM8Ts0lhVqpup0Zrzf78cvbs3k7orjcZXbKGvfk1KDRxIWasmDg++lF6XPV4o2dGn/NvZO/8tNmdI32vI/DACrpZi9lmjSGT3uwMuBxzn/EMjfRnSE8/4iL86ObphtaaUzXWuh2mksoack6eIuN4KUXZaYw9vpjZljUcKDQ61v5BbvzdciNvWueeFcPHPqoW3yuAEVEBTOoffHabqP2AjBxrHGVY/xJUGiPzmD3g1i+ME//OobC8mk1Z+ezOKWJXdjGFR/Zyv17MteZN7C20YtOKz/xv5V3rVYCqKwh/tA0iN2AEcRG+xEb4EhvhR2SAN/72UWw/L3e83E2onG1UZ61nX7eRbK/qRbe0RUw/9h6BFKM1WJSZD/q+xMCJVzOpf0jL5xdmroTUjUecAAAgAElEQVTFt4CthswCK9qvF+aZf2ZRyXCyk39gQHkSP9oGcdxvOOP7BTM+OohxZ4z622waqzaOCpwoqSTtaAlpx0rIOFLIz7KfYrp1C0oZU2F/sA3jwZoHsHgGEtzdg8KyakobjC4OCO3O4J5+TIsNZebgiPoTMw9sgI+vq/swzawKh8m/IWbW/DYdwq89CrM67QRjst/jEfNn9kPGUIkHH5uuYYn5KkpM/pysqOFUjXGEKLibByN7BzKydwCDe/rRJ8iHyEBvPN3sOQ9vNQ6h52yHwn3sOhXBXv/JXFPzNSZbDTW48e/oV7j8imuIi2jlYfG6aWP2U0zcfWDCr7H1msC+5C18fKwXH+aE4+Vu4tqRUfxict/G5zzWnsxqMlOT/CXuJ5LYcbI7XtYyYoNN1ODGg55P4RU9kVG9AxjdJ4gam82YD22fE11SafzNJvUP5oXrh9f3gWcWPdpqjESPvxd6T4YTu1t3FM9mg70rKV/7It1yd5KRb0UpGBjiAdMfR9WOMtpVWaz8d1s2bybs41hxJaN6B/DQjBimDAypP0rVMKPZDfpONU6eNXtiiZ3FfzNhvRrDy4/ee/aUjnPlzFpjjIgeWE9mgdFeYkI8oOFOTQMrdh9j/n928tmvJhrF95kaFu7dw43i/KePmaaNI0gJ5qAWn0uitWb8c2sZ0yeANyefgvUvwsEf7DnNxNz7Pgy77uznbcnfqeHt/XqS8t58hhQlgMI4SjrjaZh4v1GkN/UQhRW8sS6LJTtyMCnFTWN78XDYDoLWPAI2C5lF7nDtW8RcfEPzeVzM+RS527XWY5RSP2mtR9q37dJaj2jqPs4ocvccK+Gqf2zgkrhw/j5vRNtOaDmzYzG5GR1h9FRjL9JafdbZu/rwVor3rGOnaTBpx8oIzV7J5VWrCTAZIxQ2DQOsHpR7hvPX6csZ3SeQwT39cDe3fnJ+QVkVixIP89PmVSyoebLucKEye6AspyByjDGPatiNTZ+tHTnGOCS18yP0zg/r9sK/sFzEsycvY+rwGB6f4ktoQWKbpkJorTlcWMFPh4vI37OBHkU7OOY9kOhTKUzK/xxvWxk2TMboqdkDdfsyqB05a5gzaqwxF6z20HTtaMGwG8iMvgtKjxJjOtSmjLVTD1KPllCydxORRTvICx6LLSSGCXmfEbfvfdysFfYRKTe46mXjRDWzW+MdV2WxcfLg9nchLx3cvNGjbmdrRRR+PzxFbJCNau3GLdV/5IjvMC4fEsHlQyKIjfAluJtHk/O6y6sspB8vJS9tA5b9P7A4tw8bq/oR7lnD3wOWMLl4uX1HR8HgucY0jN4TjHnSTZ3FnfSxcSJh9lYwe1ITPY19iWtAWxkQ6kXChLfJ6TaMUzU2TtVYiQrwZkSvAAaEdcfcmuIcjMOzCc9Tf7KiJ4y4GYb/zBjZbuzQe+3Jo2ZPOPgDeu9q+39o9hZYsWGmfPxvyIq9Fy93M97uZoK7exIT3h3fc5x5fk7rX0Sve65uRL9am/nCOoWv3C5nYh8/LvbMwDvmYnoNn4aPh1t9zv0JxqHII9vRmd+h7G00vcDGf9RsPvK5FQ+ziSkDQ5g5JJxJ/UOICvRu2+os2YnouilWoLBRY/Jkd9AVJLsNJ1LlQt+LCB8ylZhwX2OEt+FOR2URpC01TtKrGy0ykTnwXhh7l0NGdkoyN+Gz+DqUrRqbMpPjPZjoil1UK0/Suk/klFcYltjZ9Bl5Gb2C7K9Dw/dT+BA4uMkYwUxbSt185am/J7PHtWB2I8a7iKK071lS0JeX0wOoqLYyNSaUe6f0Y/KA4Ja/tg2OtFnSv8GcvhTAvqPjxuphLzPpipuNHbkz3/OWKkhaDN88Wj9/2jcCpj9Optcoao6nEVixlx0M4bvi3uw4dJLjJZWnPX2/0G6M6xvE2L7Gzk6j7aLh83r5GwVVw0PaJne44V0YPOfs29eu2JL+DST/1+jzTx6EgN5UDphN1sp/YdIWooM9uUf9BWvPsQyN9GNIT3+KKqp5a/1+jpdUMqZPIA/OGMhFA0Iaf23PfM78LPj2D0axC9i0YkfodYy9+XEI7t904XdgA2x9y5jWV3wYfHtA7Cwy13wIVgsx4d5NDmY8+t9drNlzgh1/moFbSz9XV/2ZaZv/CkAC3YwpL+Pvh+HzmjxRjexEyFrNDykHiczfRH91xD4fvIrMAgtgJmbeXxotxFtr+8FCvn/nMX7n9hkmGhzF8+8No283plXmpjV55CLPZyBbt2+j35GlDDYdqptLnVkATPw1MT9//rwzdjbnU+RuBi4FNmmtRyml+gOLtNZNVhbOWl1hx6GTjOwV0LqRsjM1fBMGD4CdH8LmBafPV4scDSEDjbNiU79qcCa3BpM71eEjcDu+yyjM3NyZ2D0EPLuz9ddbz/dXBKDGamPL+m85sP07lp7sR4F3NP8IW8bw45/Xj+76BBsnhnn6GXOZbBZQJrS7D6q6tDatMS0BEzv63Y9b/M/x9XJvv0MZp4rgszth/7r6bWZPozDz7QGpnxtzGWvnz9lz1lFmuORxMsOvBmi/nN8/a5zU1PBENU9/Y0Q/O9F4LU0miBhurDhQewY3GDtGP1sEMTPJzMyEY7uJMR2ivOdEVpf04duUY6zPzKOyxui4vNxNRAX6EBngTVSgNwE+7uzLLWfP8RIOFVTUPWygjzszBoVz5bAIJg8IwXPLq0bO2hUZlNn43tPfmH6jbcYef/9LjbyFB04/m3/kbcYhyu6hZK5fAke2EzPlOsfO726402gyG++pw1uMeXW1LdVkNuYoe/oZh5APbqzfofEOhHH3QsQI+PwuMk+cArM7MY9+04453bD0m47avx6z9RQ2jKFTGyYSbCMo94wg0quCUWUbUMb/UoQv623DuVwl4oaVtALFwojHuGj2LVwSF9b24ruxnLV9k0d32PpPSFpUX2gpBb0m2vumGmN+fcOT2HyCjXmX+9bWTUvInLLAsYcvzyxi8jLs8yJX1d/GL9J473j4GNMHbPb3vDLZ31tu9X3qOd7zRRXVfLL1MO9vOkh+WRW9g3yYPbwHV4/oSVyEb7MFb15pFQu3HGThj4eYX/0ev3T79vTr3Pv3hsA+Rpu1WY22GjTAeB81PPyNCaYb88EzMzPPyglwtOgUOw+fxKwUY/oGEerbxgs1fPe/xsmrDQX0Mfr6rDV1/TzBA6AoGyy1fYiCqX+Ai38PZnfS131GfuZmKvpMJ+FUNKlHitlzvLRuytXYvoE8NCOGSf1bseNQq8E0htrPmLqcJUfqX8u+U4w59oUHoPRIfc6L/8coFN08mu2bbDbN2GfXcNHAEF772ciWZ8xOZNp7FwGaBOVvrB5TewK1Mhk7CCYzDLzcOImtOAcOb67rmzJtkaiLHmTgwMHwyY0O7ZuqLFZmvbaB/lVp/Mv2tP18IndjWs2BDaefeKfM0P8S8OthfL5mfHPayjLVYSPYaotjbN4XuCkr+4rMqAtsJLclxxCeBL4DeimlPgEmA79wbDzHGN0n8PwfpNe40xvpRQ8bhde6Z6k7Sa3kSH1xU7fsE8Zo2tWv4eEdcFpnf9uhxPPP1YC72cTUS65iyvRZxOwv5J0N+1m5140hbibclA2N4qRbGKbSMnyzt9lPYgGtrWRZQlhQfRtlqjtveryGu7ZgdvNg/PQ5FPhEODTnWbwDjA+Dwz8aI+TKDANm2IubDfXFjdbGXv/Yu4w95YZzm/pOIdinnS9JOPAyY8mf2s5lyqNGJ5f2VX3RYLNC6QnoN8044WDfOsBmZD+RDDEzjUsnBk+H4GC6AXOBuSMjqai2sHV/IYcKyjlSdIqck8bX7pwiik7V0CfIh8E9/Lh+VBSDevgxqIcvkQFnjPT0nWK8HrWvy82LjakBP7wEJ1LtGS3GmrEhA4xR6NrTwpQZgqKhuzFXLnjodBhq5HSoXuOM0ZeGRU9VGSydb7yWtRmz1hoFWM2pBnOPTTBhvvGhDHDHMoJ3fQe9Jzp+RYQzcrr1GmeMzn9xHyrzW6P+wsYUj0yqbAfwLCtHaRtKgRXFD0E3ktL/HtzVXmIrdxHSZxyP9R3r+Etnntk3XfM6dAszigq00fYKsozlCMvzOW2ljpG3wuxXzzoaEezTv30zhsYaO7FZa+x/W/vSfkWHjAK4tv/UGnqNh4v/YIxQfnJjs+/5AB8P5k8fwN1Tovl61zGW7jrKv37Yz5sJ++gf2o2rR/TkyqE98HAzUVhezcnyagrLqymsqGbviTKW7z5KjdXGjEHhTIq9G7U6oX6HbPSdxslp+76vLxpsFmMHbfyvjB2w9S/Unzza72Kg6cul9gzwpmdbl51saMi1sP39+ikCY+42Rmiz1tT3Tdpq9K/hQ+wnrWqjcHP3NPozIHT4JYQOv4Tg4GBm2h+6xmpjX14ZNRbN0Ei/tq8H33eKMXhh7z//R/+Wvh4nuU+vwtTwtTyaZBSX3v7GSba1Od08jC+a75t25RRRUF7NJa29ylmvcRAxzDjCUTsn9+QhWP5g/SCMzWIcrekWYvzd7X2TViaW6ylU1kzh8ejBDu+b3vg+i3155fz5FzegfMac3n9O/T2sfBy2vIHxnrdCTiK4eRu/S12Bq2D8r/C48nmmAHlpt1GasY6Q/hMhctR5Z3QlLVpdQSkVDEzA+JT8UWudf67bO22d3PZy2tyjBnNAD2+Fj645/Sx5Jy04nrM7gbAv59XNV7ul2jipbZTK5BOPZ+0rN7jz19AXiBs7gyuGRhBUmOSchdIbO2R1YAN8fL3xJj3ztXTGgu5NnRj24dVn/72bah9tYLXplk8LcFLG89ZUls6UsZmc+sNrTl+xpbO9loe2wMK5naJvajrjj7BwTuMZ2/ieLyir4tuU4yzfdZTEg4U09fHWzcPM3JGR3HVRNP1Cuzf9nHXvp9rsy53bLzX1vIe22F/LBv0nOO/91CDj6tI+3PPRdl4aX8mNqfc7tG96eVUGC9ZlsfPPl7X6ghSNrq7Qwr7pqaC/8sOpaNY+Oq1Vz9mc9OMlzP7HRq4e0ZNXbmritCdX6T872PlMV1irtb60uW0NdbkiF1p29q6zG1R2IvrABk5FTqIgcETdqIXKTiQoP5Go+MsIijv3iT9O1Zley6a4SDuQjA7iCjklY6OOF1eyPjMXd7OJwG4eBPl4ENTN+PLxMLd+/m5neB3PpaUrtjjB/P/sZHXqCb6/yZuo4kaW6Gxjztmvb8DLzcySX09qdaYmlxBrQVt971AoT3+dxvrfT3PY2rRWm+b6f27mcGEFax65+NxXqXOF93wHa3WRq5TyAnyAdcA06qfW+AHfaq0HNfVkXbLIPQ8LNi4A4IGLHnByknMrKDCubOPww6wOJjkdS3I6lqvkBNfJKjkdq6Nz5pVWMePl9cSEd+fTeye2+LyZc+U8UVLJ+OfW8ocrYrl/2oBWZ2rLOrm1DhWUc/FLCTxx9WB+MTnaIa/nexsP8PTXabz2s3jmxEe2+XHOxVXaZ1s0VeSe61TE+zCWDouz/1v7tRR4oz1CdlULkxeyMHmhs2M0q6CgoO5N0JlJTseSnI7lKjnBdbJKTsfq6Jyhvp786apBbDt4kkXbDrf4fufKuS49F6D183EdoE9wN/qFduN7e4bzfT2PFp3ib6symBYbyjUjejoq5llcpX06UpNFrtb6Na11NPA7rXU/rXW0/WuE1npBB2YUQgghhAu7YXQU46KDeGX1XiqqLc3foRnfp+fS09+L2MbWMO4Al8SGsXV/IeVV5/+7vLomE4tV88ycoW0/4U80qtlF5bTWryulJimlfq6Uur32qyPCCSGEEML1KaX4nyviyC+r4v1NB8/rsaosVjZm5TM9LsxpReElcWFUW21szDrnefjNysotY8mOHG6d0KfpCyKJNmu2yFVKLQT+BlwEjLV/nTXvQQghhBCiKaP7BDJjUDhvJezjZHl183doQuKBQiqqrVw6qOOnKtQa0zcIX0+3umkTbfX3VRl4u5uZP93By/kJoGWrK+wBBuuWrDVmJyeeCSGEEOJMGcdLueK1H7h3Sj/+d1aT56+f01PLU/nP1sMk/WVm/SWrW+l8Tjyrdf8nO9hx6CQ//u+lbRpR3pVdxJw3NvHgpQN5+LJ2urjRBaItJ57VSgHa+SoBQgghhOjqYiN8uTY+kg82H+R4cWXzdziD1prv03OZ1D+4zQWuo0yPDeNESRWpR0vadP8XV6YT1M2Du6dEOziZqNWSIjcESFNKrVRKLav9au9gQgghhOh6Hr4sBpvWvLZ2b6vvuze3jEMFFU5ZVeFM02KNDKtSj7f6vhv35rMpq4D50wc47tLf4iwtvayvOA/j/zkegK2/3urkJOfW1HXXOxvJ6ViS07FcJSe4TlbJ6VjOztkryIefj+vNx1sPc+/UfkSHNH5BhTNzaq15enka3T3duHyo8w8wh/p6cmlcGG8s3cCYwEqmjh3RovtprXlxZTo9/b24ZXzvdk5Zz9l/d2doyeoK6xt+ARZgXvtHE0IIIURX9MAlA/F0M/H3VRktvs9nO3LYmJXPY1fGEebr1Y7pWu6pOUMAeGXNXlp66tJ3KcfZnVPMQ5fF4OXu3CkXXV1LpiuglIpXSr2olDoI/B+wp11TCSGEEKLLCvX15K6Lovl69zFSjhQ3e/vc0kqeXbGHcX2D+Pm4jhv9bE5UoA93TY4m8UAhS5OONnt7i9XG31ZlMCCsO9eNbJ8rm4l6TRa5SqkYpdRf7KsrLACyMVZjmC4XgxBCCCHE+bhnaj8CfNx5aWXzo7lPLUvjVI2Vv14/rMWXBe4o146KYlCEL08tT6WgrOqct/1i5xH25ZXzu5kxuJlbNM4ozsO55uSmAxuAq7XWWQBKqYc7JFUXc9uw25wdoUVc5XrWktOxJKdjuUpOcJ2sktOxOktOPy937p/Wn+e+Sefr3UeZPfz0S9rW5lyVepwVycf4/eWx9A/t7oyo5xQWGsKzN0/k1o/TePrrNF772chGb3ek6BSvrMlkRJQ/lw/p+DnFneXv3pGaXCdXKXUt8DNgEvAdsBh4x36p33OSdXKFEEII0ZzKGivX/3MzqUdLuHlcb/501SC6edaPv5VU1nDZy+sJ9PFg+W8uwt1Bo5+OWCf3TK+szuS1tXt5/86xTG+w+oPWmi92HuHJZanYtOaju8Yxuk+Qw55XtGGdXK31l1rrm4A4IAF4GAhXSv1TKTWz3ZIKIYQQ4oLg5W7mi/sncd/UfizedphZ/9jAjkOFdf//12/SySut4sUbhjuswG0v90/vz8Cw7jz+ZTJlVRYACsur+fXHO3n0s13E9fDl2wenSoHbgVqyukK51voTrfVsIApIAh5r92RdyIKNC1iwsfNPYy4oKKCgoMDZMZolOR1LcjqWq+QE18kqOR2rs+X0dDPzv7MGsfieCVhtmhvf2sKL36XzdWIGH69P4a6LohkeFeDsmE2qfT093cw8f/1wjpVU8tJ36XyffoKZr/zA2vQTPHZlHIvvnUjvYB+n57yQtGSd3Dpa60LgX/Yv0UILkxcC8MBFDzg5ybnVNv7OPm9HcjqW5HQsV8kJrpNVcjpWZ805vl8w3z44hWe+TuPNhH1YTh4hws+z01/ytuHrObpPIHdM7MsHmw/y4ZZDxEX48tEvxzG4p5+TU3bev3t7alWRK4QQQgjRXny93HnxhhHMGBTOc4uLmT+tPz4erlWq/P7yWDKOlzKiVwAPXzYQTzdZC9dZXKvlCCGEEKLLmzkkgr63nXUekUvo5unGonsnODuGoIUXgxBCCCGEEMKVNLmE2Hk9qFJ5wCGHP3DnEQLkOzuE6BKkLQlHkvYkHEXaknCUjmhLfbTWoWdubJcit6tTSm1vbD02IVpL2pJwJGlPwlGkLQlHcWZbkukKQgghhBCiy5EiVwghhBBCdDlS5LbNv50dQHQZ0paEI0l7Eo4ibUk4itPakszJFUIIIYQQXY6M5AohhBBCiC5HilwhhBBCCNHlSJErhBBCCCG6HClyhRBCCCFElyNFrhBCCCGE6HKkyBVCCCGEEF2OFLlCCCGEEKLLcWuPBw0JCdF9+/Ztj4d2SXtykwAYFBbv5CRCtE5FRQYAPj6xTk4ihBCOk1Fg9G2xwdK3dQU7duzI11qHnrm9XYrcvn37sn379vZ4aJc0ZkEAANsfkNdEuJaffpoGwMiRCU7NIYQQjjTtg2kAJNyZ4NQcwjGUUoca2y7TFYQQQgghRJcjRa4QQgghhOhy2mW6gjjd9geKnB1BCCGEEOKCIiO5QgghhBCiy5EiVwghhBBCdDlS5HaAMQsC6lZYEEIIIYQQ7U+KXCGEEEII0eVIkSuEEEIIIbocKXKFEEIIIUSXI0uIdYBbh97g7AhCCCGEEBcUKXI7wEPT3nF2BCGEEEKIC4pMVxBCCCGEEF2OFLkd4NWEu3k14W5nxxBCCCGEuGBIkdsBPk5ZwscpS5wdQwghhBDigiFFrhBCCCGE6HKkyBVCCCGEEF2OFLlCCCGEEKLLkSXEOsD2B4qcHUEIIYQQ4oIiI7lCCCGEEKLLkSJXCCGEEEJ0OVLkdoAxCwIYsyDA2TGEEEIIIS4YUuQKIYQQQoguR4pcIYQQQgjR5UiRK4QQQgghuhxZQqwd5eTksGnTJm4deoOzowghhBBCXFCkyG1Ha9euJS0tjRdeeMfZUYQQQgghLigyXaGdbNy4kUceeYQlS5YQHx/PgQMHnB1JCCGEEOKCIUVuO7nooosYO3YsS5cu5c5Xx7D00LPOjiSEEJ3Ol19+iVKK9PT0um05OTl8+umnTkwlhOgKpMhtRxkZGcTGxvJxyhI+TlnC008/LSO6QgjRwKJFixgzZgyLFy+u27Z27Vp27tzpxFRCiK5Aitx2UlBQgL+/P+7u7tiqNYc+PcXixYv5zW9+Q0lJibPjCSGE05WVlbF+/XreffddFi1aBMhULyGE40iR204OHDhAz549AcjbUE3wWHfGjx/PjBkz2L17t5PTCSGE83311VfMmDGD4cOH061bN3bu3HnaVK+kpCSio6OdHVMI4aKkyG0ncXFx5OfnM3ToUIpTa3DrrujVqxfJyckMGTLE2fGEEMLpFi1axLx58wCYN29e3Whu7VQvIYQ4H1LktpPu3buTmJhISkoK7z67iMB18WzatInp06cTGBjo7HhCCOFUBQUFJCYmcsUVVwBw00038emnn5421UsIIc6HFLkd4MYbb2TSpEksWrSIW2+91dlxhDgvWmtSU1OdHUO4uCVLljBr1iw8PT0BiI6OJiIigrS0tLqpXkI4QnFxMdnZ2c6OIZxAitwO8sILLxAWFubsGEK0mdaab7/9lgkTJnDLLbdQXV3t7EjChS1atIjly5fTt2/fuq89e/bw3nvv1U312rx5s7Njii4gOTmZkSNHctddd7F//35nxxEdSGmtHf6gY8aM0du3b3f447qqMQsCANj+QJGTkwjROj/9NA2AnTtv46WXXqKyspJbbrmFyZMnYzLJPrIQwjWUlpby1Vdf8fXXXzNhwgQKLiqge6/uJNyZ4OxowgGUUju01mPO3C6X9RVCNOu1115j7969xMXFsW3bNnbs2OHsSEII0SqVlZV0796dNWvWEOURRfde3Z0dSbQzKXKFEM3avXs3mzdv5qmnniIjI4O//OUv/PKXv3R2LCGEaNbJkyd58sknWbhwIXfeeSd/+MMf+Nl3P3N2LNEBpMgVQrTIpEmTWLlyJZs3b+b999/n1ltvxcPDw9mxhBDinPbs2YOXlxdpaWlEREQ4O47oQFLkdoBbh97g7AhCOMykSZOYNGmSs2MIIUSLSJ914ZIitwM8NO0dZ0cQQgghhLigyOnRQgghhBCiy5EitwO8mnA3rybc7ewYQgghhBAXDClyO8DHKUv4OGWJs2MIIYQQQlwwpMgVQgghhBBdjhS5QgghhBCiy5EiVwghhBBCdDmyhFgH2P5AkbMjCCGEEEJcUGQkVwghhBBCdDlS5AohhBBCiC5HitwOMGZBAGMWBDg7hhBCCCHEBUOKXCGEEEII0eVIkSuEEEIIIbocKXKFEEIIIUSXI0uIdYBbh97g7AhCCCGEEBcUKXI7wEPT3nF2BCGEEEKIC4pMVxBCCCGEEF2OFLkd4NWEu3k14W5nxxBCCCGEuGBIkdsBPk5ZwscpS5wdQwghhBDigiFFrhBCCCGE6HKkyBVCCCGEEF2OFLlCCCGEEKLLUVprxz+oUnnAIYc/cOcRAuQ7O4ToEqQtCUeS9iQcRdqScJSOaEt9tNahZ25slyK3q1NKbddaj3F2DuH6pC0JR5L2JBxF2pJwFGe2JZmuIIQQQgghuhwpcoUQQgghRJcjRW7b/NvZAUSXIW1JOJK0J+Eo0paEozitLcmcXCGEEEII0eXISK4QQgghhOhypMgVQgghhBBdjhS5raCUukIplaGUylJKPebsPML1KKUOKqWSlVJJSqnt9m1BSqnVSqm99n8DnZ1TdD5KqfeUUrlKqZQG2xptO8rwD3tftVspNcp5yUVn1ER7elIpdcTePyUppWY1+L//tbenDKXU5c5JLTojpVQvpdQ6pdQepVSqUupB+3an909S5LaQUsoMvAFcCQwGblZKDXZuKuGipmut4xusG/gYsFZrPRBYa/9ZiDN9AFxxxram2s6VwED7173APzsoo3AdH3B2ewJ4xd4/xWutvwGwf9b9DBhiv8+b9s9EIQAswKNa60HABGC+vc04vX+SIrflxgFZWuv9WutqYDEwx8mZRNcwB/jQ/v2HwFwnZhGdlNb6B6DwjM1NtZ05wEfa8CMQoJTq0TFJhStooj01ZQ6wWGtdpbU+AGRhfCYKgdb6mNZ6p/37UmAPEEkn6J+kyG25SCC7wc859m1CtIYGVimldiil7rVvC9daHwOjswDCnJZOuJqm2o70V6KtHrAfQn6vwdQpaU+iRZRSfYGRwFY6Qf8kRW7LqUa2yfprorUma61HYSquOUYAAAPhSURBVByuma+UmursQKJLkv5KtMU/gf5APHAM+Lt9u7Qn0SylVHfgc+AhrXXJuW7ayLZ2aU9S5LZcDtCrwc9RwFEnZREuSmt91P5vLvAlxiG/E7WHauz/5jovoXAxTbUd6a9Eq2mtT2itrVprG/A29VMSpD2Jc1JKuWMUuJ9orb+wb3Z6/yRFbsttAwYqpaKVUh4Yk/CXOTmTcCFKqW5KKd/a74GZQApGO7rDfrM7gKXOSShcUFNtZxlwu/0s5glAce1hQyGacsa8yGsx+icw2tPPlFKeSqlojBOGEjs6n+iclFIKeBfYo7V+ucF/Ob1/cmuPB+2KtNYWpdQDwErADLyntU51cizhWsKBL43+ADfgP1rr75RS24D/KqXuAg4DNzoxo+iklFKLgGlAiFIqB3gCeJ7G2843wCyME4QqgF90eGDRqTXRnqYppeIxDh0fBO4D0FqnKqX+C6RhnEk/X2ttdUZu0SlNBm4DkpVSSfZtf6QT9E9yWV8hhBBCCNHlyHQFIYQQQgjR5UiRK4QQQgghuhwpcoUQQgghRJcjRa4QQgghhOhypMgVQgghhBBdjhS5QgghhBCiy5EiVwghWkgpFayUSrJ/HVdKHWnw8+Z2eL47lVJ5Sql32nj/l+w5f+fobEII0dnJxSCEEKKFtNYFQDyAUupJoExr/bd2ftpPtdYPtOWOWuvfK6XKHR1ICCFcgYzkCiGEAyilyuz/TlNKrVdK/VcplamUel4pdYtSKlEplayU6m+/XahS6nOl1Db71+QWPMedSqkvlFLfKaX2KqVetG83K6U+UEql2J/j4fb9bYUQovOTkVwhhHC8EcAgoBDYD7yjtR6nlHoQ+A3wEPAa8IrWeqNSqjfGJcMHteCx44GRQBWQoZR6HQgDIrXWQwGUUgGO/oWEEMLVSJErhBCOt01rfQxAKbUPWGXfngxMt38/AxislKq9j59SyldrXdrMY6/VWhfbHzsN6AOkAv3sBe+KBs8nhBAXLClyhRDC8aoafG9r8LON+n7XBEzUWp86j8e2Am5a65Pq/9u7e5s6gyAMo8+4BjKKsIXoAdEAkQPkyJIlcgIkmiCmAhogpASaIfwI+IlIuBdx4fM5BYzeaDUa7c7O/KyOqn/VSfXn3akBVsSdXIDduK1eH5TNzK9NC83MXvVjWZab6qI62D4ewPdmkguwG2fV1czc93QW31V/N6y1X13PzMvg4vwD8gF8a7Msy64zAPCGmTmtDjddIfZc47LPWXUG8KW4rgDwdT1Ux9t8BlH9ruzKBf47JrkAAKyOSS4AAKujyQUAYHU0uQAArI4mFwCA1XkE7UH3Fj6ib4kAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axes = beacon_sync_figure(\n", " time, impulses, beacons,\n", " delta_t = t_phi,\n", " beacon_offsets = phase2time(beacon_init_phase, f_beacon) + t_phi,\n", " impulse_offsets = impulses_offsets,\n", " f_beacon = f_beacon,\n", " show_annotations = True\n", ")\n", "axes[0].set_title(\"Beacons synchronised\")\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### 1.2 Impulse delays ($\\Delta A, kT$)\n", "\n", "###### 1.2.1 $\\Delta A$\n", "Find the delay within a single beacon period" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0. 7.]\n" ] } ], "source": [ "impulse_max_time = np.argmax(impulses, axis=1) /samplerate\n", "impulse_time_in_periods = np.array((impulse_max_time - t_phi)*f_beacon)\n", "someB, A = np.divmod(impulse_time_in_periods, 1)\n", "\n", "# subtract the reference beacon's value to obtain time differences\n", "A -= A[0]\n", "someB -= someB[0]\n", "\n", "Delta_A = A[1:] - A[0]\n", "print(someB)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### 1.2.2 $kT$\n", "Find integer number of periods" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Best k: 8\n", "Maximum: 2.0\n" ] } ], "source": [ "ref_impulse = impulses[0]\n", "my_impulse = impulses[1]\n", "\n", "# remove 'already determined' offsets\n", "if True:\n", " # $t_\\phi$ offset\n", " my_impulse = time_roll(my_impulse, samplerate, -t_phi)\n", "\n", "if True:\n", " # $\\Delta A$ offset\n", " my_impulse = time_roll(my_impulse, samplerate, +Delta_A)\n", "\n", "best_k, (ks, maxima) = beacon_integer_period(samplerate, f_beacon, ref_impulse, my_impulse)\n", "print(\"Best k: {:0g}\".format(best_k))\n", "print(\"Maximum: {}\".format(maxima[np.where(ks == best_k)][0]))\n", "B = np.array([ 0, best_k])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.3 Total Time delay" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Δ𝐴 = [0. 5.42857143]\n", "B = kT = [0 8]T\n", "𝑡𝜙 = [0. 8.57142857]\n", "Δt = 0.12828571428571425\n", "Preset Δt = 0.11399999999999999\n" ] } ], "source": [ "print(\"Δ𝐴 = {}\".format(A /f_beacon/ns))\n", "print(\"B = kT = {}T\".format(B))\n", "print(\"𝑡𝜙 = {}\".format(t_phi/ns))\n", "\n", "\n", "delta_t = A/f_beacon + B/f_beacon + t_phi\n", "\n", "print(\"Δt = {}\".format(delta_t[1]))\n", "\n", "print(\"Preset Δt = {}\".format(impulses_offsets[1,0]-impulses_offsets[0,0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### 1.3.2 Beacon Synced and Period Alignment" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAEWCAYAAABi/I8SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVxVZf7A8c9zL/umLKKgCCqi4AZqbmmZZrtle02pLePUTE7bzK+aatrMmpqpad+stMyaabHNJksrS1MxF0RARVQQBUVBRWS99z6/P84BLshyRS4oft+v131x79m+z1m493ue85znKK01QgghhBBCdCSW9i6AEEIIIYQQrU2SXCGEEEII0eFIkiuEEEIIITocSXKFEEIIIUSHI0muEEIIIYTocCTJFUIIIYQQHY4kuUKI04pS6jGl1AdtGK9EKdW7lZc5Tyn1ZGsu08W4Pc31sbZg3vFKqd0tjFuzz06kDEKI04skuUKcIpRS2UqpMvMH/qBS6hulVFR7l0s0TWsdoLXe0V7xzYS40jxuipRSS5RS/VuyLK31LnN97K1dzlOpDC2hlFqmlPp9e5dDiNOJJLlCnFoma60DgAhgH/ByO5enQ1NKebR3GVrJs+Zx0wMoAOYd7wI60LYQQpwmJMkV4hSktS4HPgUSqocppbyVUv9SSu1SSu1TSr2hlPI1xwUrpRYppfabtcCLlFI9nOYNUUrNVUrlmeO/cBo3QymVZdYCfqWUinQap5VStyultpnzvaqUUua4WKXUz0qpw0qpA0qp/za0LkopH6XUB0qpQqXUIaXUb0qprkqpq5VS6+pN+5fqspk1lK+aNdpHlFLJSqk+TtMOMGsti8zt8aDToryUUu+b86UrpYY7zZetlLpfKZUKHFVKeSil4s2auEPm9Jc6Td9cObRSKtZ8f5FSKsOcbo9S6q9O012ilEoxY6xUSg12GpeklFpvzvdfwKfBA6MZWutS4ENgoLlci1LqAaXUdnP7f6yUCjHHxZhlv1UptQv40WmYhzlNpHlMFJnHyAynMvua2+agUioDOKOpsimlXlRK5SqlipVS65RS4xqZrn4ZeimlfjG3zVJzX3xQb9rpyvi/OKCUeshpWY8ppT4xj78jSqlNSqk4pdTflFIFZnnOc5q+k1LqHaVUvrn/nlRmswml1E1KqRXK+B88qJTaqZS60Bw3GxgHvKKMGvVXjnffCSGOnyS5QpyClFJ+wLXAaqfBzwBxQCIQC3QHHjHHWYC5QDTQEygDnH9o5wN+wAAgHPi3GWcC8DRwDUbtcQ7wn3rFuQQjgRliTne+OXwW8D0QjFGD2Fit83SgExAFhAK3m+X7CuillIp3mvZGs6zVrgceN2NkAbPNcgcCS4HFQKS5PX5wmu9Scz06m3HqJx3XAxeb4xXwtbku4cCfgQVKqX7NlaMB7wC3aa0DMRLNH83yDgXeBW4zt8GbwFfKOHHxAr4w1zsE+AS4spHlN0kpFQDcAGwwB90JTAHOxthOB4FX6812NhBP7X519hGw25z3KuAppdREc9yjQB/zdT7Gfm7KbxjHbghGIv6JUsqVZP5DYA3GdnsMmNrANGOBfsBE4JF6x9RkjG0bjLFdvsP4f+kOPIGxL6q9B9gwjqck4DzAuQnCSGArEAY8C7yjlFJa64eA5cBMs6nFTBfWSwhxorTW8pKXvE6BF5ANlACHMH5o84BB5jgFHAX6OE0/GtjZyLISgYPm+wjAAQQ3MN07GJe6qz8HAFVAjPlZA2Odxn8MPGC+fx94C+jRzHrdAqwEBjcw7nVgtvl+AEYS5m1+nge87TTtRcAW8/31wIZG4j0GLHX6nACU1dvOtzh9HgfsBSxOwz4CHmuuHE7bKNZ8vwsjkQ1qYD1n1Ru2FSPBPMvc18pp3ErgSRePm3lAuXnc7MVI6vuY4zYDE52mjTD3rwcQY5a9t9P46mEeGCcldiDQafzTwDzz/Q7gAqdxfwB2H8fxfhAY4rTPPmigDD0x/hf8nOb7oIFpeziNXwNc57TcJU7jJmP8j1nNz4Hm/J2BrkAF4Os0/fXAT+b7m4Asp3F+5rzdzM/LgN+31veBvOQlr+ZfUpMrxKllita6M+ANzAR+Vkp1A7pg/KiuMy93H8KoxewCRs2vUupNpVSOUqoY+AXobF5qjQKKtNYHG4gXiVF7C4DWugQoxKjlqrbX6X0pRiIMcB9G8r3GvMR/SyPrNB+j9uw/ymgu8axSytMc9x7wO6WUwqih+1hrXeFC7ChgeyPxGprPR9Vtc5rr9D4SyNVaO5yG5eDaNqjvSowkOEcZTTlGm8Ojgb9U7ztz/0WZsSOBPVprXS/+8fiX1rqz1rqb1vpSrXX1tokGPneKuRkjce3qNG9u/YWZIjGOmyP1ytXdaXxuvXGNUkZTlM3KaN5yCKN2P6yZ9aouQ2kz5W1q/+xzel8GHNC1N7WVmX8DMLaVJ5DvtL3exKjdPyaOU5kaOxaEEG4mSa4QpyCttV1rvRAjIRkLHMD4QR5gJjOdtdadtHGzEcBfMC7XjtRaB2HUDoKRhOYCIUqpzg2EysP4cTcmVsof47LwHhfKuFdrPUNrHYlRe/maMtum1puuSmv9uNY6ARiD0fxhmjluNVCJUZv6O+o2VWhKLsZl8pZyTijzgCillPP3ZU9c2AbHLFTr37TWl2EkRl9g1HyDUd7ZTvuus9baT2v9EZAPdDcTfef4rSEXuLBeXB+ttfO66UbmzcM4bgLrlat63nyMRL3ZMpvtb+/HaO4SbJ7IHcY4PpuSb5bBz2mYu3ocycWoyQ1z2lZBWusBLs7f2HYUQriJJLlCnIKU4TKMdoSbzVrGOcC/lVLh5jTdlVLV7SgDMZLgQ8q4sejR6mVprfOBbzGS0GCllKdSqjoJ/hC4WSmVqJTyBp4CkrXW2S6U8WpVe3PbQYwf+WO6fVJKnaOUGmTWKhdjXC53nu59jDazNq31iua3DgCLgG5KqbvNdq2BSqmRLs5bXzJGU5D7zG0zHuOydv22yU1SSnkppW5QSnXSWldhrGv1es4BbldKjTT3rb9S6mIzgVyFcUn+TmXcBHcFMKLesrVZruP1BjBbKRVtLqeLeVw1S2udi9Fs4mll3Dw4GLgVWGBO8jHwN/OY6oHRlrkxgRjruB/wUEo9AgS5UIYcYC3wmLl9R2Psm1Zn/p98DzynlApSxk17fZRSZ7u4iH1Aq/aXLIRomiS5QpxavlZKlWAkSLOB6VrrdHPc/Rg3Pa02myQsxai9BXgB8MWo8V2N0ZTB2VSM5HILRhdTdwNorX8A/g58hlFr1ge4zsWyngEkm+X9CrhLa72zgem6YfQUUYxxufxnjHaV1eZj3KTlai0u5iX0SRgJz15gG3COq/PXW1Ylxo1qF2Jsv9eAaVrrLS1Y3FQg29w/t2PcSIfWei0wAyOZP4ixH29yin+F+fkgxg2HC6sXaCaQJcCmFpTnRYx9871S6gjGsXE8JwPXY7R7zQM+Bx7VWi8xxz2O0URhJ0Zy2NT++w7jRCvTnKecxptJ1HcDRvvzQuBJ4L8YNa7uMA3wAjIw9sWnGO2YXfEicJXZ88JLbiqfEMKJqtvMSwghTi7K6AatABiqtd7W3uU52SilbsRopvK39i7LyUAZXaxt0Vo/2uzEQogOTZJcIcRJTSl1L3CJ1npCe5dFnHyUUmcARRg1xudhtHUerbXe0OSMQogOT55gI4Q4aSmlsjFuPprSzkURJ69uGM03QjH67P2jJLhCCJCaXCGEEEII0QHJjWdCCCGEEKLDcUtzhbCwMB0TE+OORQshOrCSks0ABATENzPliSsvLwfAx8eVJ8dKLFdjlZZuBcDPr1+D87R2PHeRWBJLYp061q1bd0Br3aX+cLckuTExMaxdu9YdixZCdGArVxq9V40Zk+z2WJmZmQDExcVJrFaMtWHDeACSkpa1STx3kVgSS2KdOpRSDT5RUW48E0II0WrKquxU2hzNTyiEEG4mbXKFEEK02BNPPEF0tPHkZ6012/eXsHXvEQqOlLdzyYQQpzu39K4wfPhwLc0VhBCiY9u5cyeTJ0+msLCQzMxMthZWsXa98ZTb0oBPufe81m+XK4QQ9Sml1mmth9cfLjW5QgghWuTRRx/l4YcfJiEhgfT0dN5evhOrxUInX08+SN5FeZW9vYsohDiNSZIrhBDiuKWnp5OWlsa1115LfHw8vyRv4PuMvXQN8iaysy9FRyv5fMOe9i6mEOI0JkmuEOKksXLlyJoeFtwtMzOz5m5iiXX8HnroIW6//Xa2bdtGfHw8n/+4CotS2Io1/35mBxWL/8k7K3bSmk3iOuJ2lFgS63SM1VakdwUhhBDHJTk5me+++461a9fyxBNPUGWzcdQ/kt9fH0GvaH8efbQff/o/f7IKSvg5cz/j+4W3d5GFEKehFiW5Sqm3tNZ/aO3CCCGEOPk9+OCDLFq0iKioKAC+zjjE/VMv5NaxvbHtN6aJ6OSDPdCbd1bslCRXCNEuGm2uoJQKaeQVClzUhmUUQghxkliyZAkVFRVMnDgRAJvdwcItJVhsFXT3q73RzKIU08fEsHzbAbbuPdJexRVCnMaaqsndD+QAymmYNj/LabkQotWFh09ts1ihoaESqwUmTZrEpEmTAMjIyOCd/35JTugEFq3NIjg4mHnz9vPSSzuxWiNI+OU/+HgO471V2Tx1+aATjt2RtqPEklinc6y20mg/uUqpbcBErfWuBsblaq2jGluo9JMrhBAdX1FREZNvuZtVixcy5aLzyM/PJy9vI7fdFs2DD24G4JZ5v7HnYBnf3XNWO5dWCNFRtaSf3BeA4EbGPdsqpRJCiJPYm2++SUREBImJicTGxjJlyhQqKyvbLP6cOXNITEwkMTERi8VS8/7ee+9tszI0JSQkhF6X3IFvQCc+//xzkpOTOf/8MC68sGvNNAkRQWzfXyJ95goh2lyjzRW01q82Me5l9xRHCHE6y8p6BYDY2Jluj1VYWAg0fYkuNTWVp556iptvvhmHw0FcXBypqakMH35MhcEJx2rIjBkzmDFjBnv27GHMmDGkpKS4LVZLHDhwgPWp6XSN6kXOwb34+fkRGOiJ3V57hTA+IgibQ5NVUMLA7p1OKF5brpvEklgS69Qn/eQKIU4aBQXzKSiY3yaxCgsLa77UG7Np0yaSkpIAyMrKQmtNXFxcq8S6+uqrmTlzJmPHjiU6OpoVK1Ywbdo04uLiuPXWW+tMm5aWxqBBrrVpdWW9WssHH3/Olrf+TO/evcnOzmbhwoUsXXqA669fh81mAyAhMgiAjLziE47XlusmsSSWxDr1ST+5QgjRiPT0dKZNm0ZVVRW7d+/mm2++ISgoqMl5xo0bx5EjdXsTqKio4P7776+TIG/atInRo0fzyiuv8Mgjj3DrrbeybNkyQkND6dq1K6+99hre3t410w4cOLD1V/AE+XbtRfhVj/H0k7cSFRVCVFQUc+cmsmtXGR4exs9LdIgffl5WMvJPPMkVQojjIUmuEEI0IDc3l/DwcFJTUwF4//33mTVrFm+++SazZ8/m8OHDfPrpp8fMt3z58mOG1X+KUHl5OYcOHeLuu+8GwNfXl1tvvZWIiAgA/Pz88PLyqpk+LS2tpkeDk8meoxqrXyf6dwusGaaUIjrar+azxaLo3y1QklwhRJtzqbmCUipYKTVCKXVW9cvdBRNCiPaUmppKQkJCzechQ4ZQUFBA7969eeeddxqdb9y4cTU3iFW/LrvsMlauXFkzTXp6OkOHDsViMb6CN27cyMiRxuOMd+/eTWRkJErV9t54stbkbi8oIaKTD4E+nk1OlxAZxOb84lZ9xK8QQjSn2ZpcpdTvgbuAHkAKMApYBUxwb9GEEKebMWOS2yxWc21rN23aRHx8PABaa9577z3OPffcZpfbUE1uQ8seMmRIzefU1FQGDx4MGAlv9XsAh8PBtm3b6N+/f7PLhebXqzXlEczwwT2bnS4hohMfrN7F7oNlRIX4NTt9Y9py3SSWxJJYpz5XanLvAs4AcrTW5wBJGA+KEEKIDmvTpk3MmzePpKQkhg0bRnl5ObNmzWq1ZScmJgJG04WysjKCg40eG50TXjBueOvRo0dN+9yTxdEKG9mFR4mPaLqNMkB8hNGcQZosCCHakittcsu11uVKKZRS3lrrLUqpfm4vmRBCACUlJZSUlNCtW7c2jbtgwYIGhxcWFvLQQw+xYcMGnn76af72t78d97Kfe+65mvc+Pj7s3Lmz5nP95cXFxZGRkXHcMdxh+/bt9OnTB4Ate4+gdW3vCU3p3y0IizJ6WDh/QNvuRyHE6cuVmtzdSqnOwBfAEqXUl0Cee4slhDgdrVw5kpUrjbapJSUlPPPMM/Tp04ePPvqo1WNlZmYec0OYK0JDQ3njjTfYvn27ywluS2O1hLtilZWVccEFFzBx4kSWL19ORn4xVUV78Cnd1+y8vl5WeoX5s/kEa3I7wnaUWBJLYrWdZmtytdaXm28fU0r9BHQCFru1VEKI01ZZmY3bb7+djz/+mKSkJJ599lmio6NZtmxZq8bJzc0FIC/P/efsHSXW66+/zpIlS7juuuuwewdh6Tee8MCzXZo3PiKIlNxDrV4mIYRojEtdiCmlrEBXoPqaWjdgl7sKJYQ4faWnH+Xdd9/F19eX4uJi5s6d65Y4ZWVlgNF9l7t1pFgOhwN/f3+2bdtKYGkpSt3j0nwJkUEsSs3ncFkVnXyb7o1BCCFagyu9K/wZeBTYBzjMwRoY3OhMQgjRQsOHd6KoqIhXX32V559/ngkTJvDkk0/WtAVtLdWX5drijuKOEuu9997jiSeeIKZXL8pHz2DK6AEuz5tg3qC2Jb+Ykb07zmNDhRAnL1dqcu8C+mmtO9az3oQQJ53w8KkABAQEcP/993PHHXfw6quv8sMPP7R6ktuWz2fvCLHKyspYunQp8+bNI6JfEuc+/zOJsT1cjled5GacQJLbEbajxJJYEqvtuJLk5gKH3V0QIYSIjZ1Z53N1susOHfXHw12xfH19mT9/PgBfbzTa+45MiCY0tJNL83cJ9CYswIuMvJbffNYRtqPEklgSq+24kuTuAJYppb4BKqoHaq2fd1uphBBCnLQy8ovxtCr6hgc2P7FJKUV8RBCb90pfuUKItuFKF2K7gCWAFxDo9BJCiFaVlfUKWVmvtEmswsJCCgvbphVWR4uVkVdMny4BHDl88LhiJUQEkbm3hCq7o/mJG9DRtqPEklina6y24koXYo+3RUGEEKKgwLgcXr/ZgjtUf5m3xSW6hmJprZm/OoeVWYV4eVjw8rDg42nhqmFRJEZ1btVYrS0jv5hxfcOOO1ZCZBCVdgfb95fQv1vzD5Gor6322YGSCp5auIbisioCwqOotDsID/Thvgv64eflUqdEx6W9j0WJJbHaOlZbcaV3hTjgr0CM8/Ra6wnuK5YQQnRcDodm1jcZzP01m6gQX6xKUWlzcLisioXr9/DB70cytGdwexezQfuPVLD/SIV5I5ntuOatvvlsc35xi5LctnDwaCU3vp1MxubdBPt70ak8EC8PC4vT9pK6+xDv3nQGnf282ruYQggXuHJK+gnwBvA2YHdvcYQQomOrsju4/7NUFq7fw81nxvD3ixOwWBQABcXlXP3mKqa/u4aPZoxiYHfXbupqS9VPLUuICAJH0XHN2yvMH28PC+l7irk8yR2lOzHF5VVMn7uGHQeO8sxVgxkWHVzTFdvitHzu/CiFa99czfu3jqBrkE87l1YI0RxX2uTatNava63XaK3XVb/cXjIhRIfza9YBcotKcTj08c+cuwaWP2f8dSc3ximvsvPHD9axcP0e7p0UxyNDSrD8+nxNrPDDqXw1JJnRntuZ9u4atu070nrBndfrBNYx3ewdISGykZrYiiNwOLd22U6xPKwW+ncLJOMEH+9bo5XWCaC00sYtc38jI6+YN24cyrDoujXpFwyMYO7NZ7D7YCmPvvouBxf/w/3HIpyUx31hSQVpew5TaWtZ2+pjYrlrHdsqTlvGast1ai72KUBp3fSPjVLqMaAA+Jy6vSs0ego/fPhwvXbt2lYqohCiIzhaYWPAo98B4OtppXcXf/p1C+SWM3s1XGOZuwZ2/Axe/pC9HLb+zxhu8YDL34DO0cbwmHEQNeLECpe7BnYuh7IiWP06aDsoCwy5ASKHQGkR9DnnhOKUV9mZ8f5aVmQd4IlLBzDV8j0svh+0w4jVa7yxPtqOw+rF7/UjbLL047Pbx9Az1O+4Ym3de4R7/ptCXNcAHrgwnm7pb8OSvxuxUKAUaA0e3jD96+Narz9/tIH1OQf59YEGWqztSmbD+rGAJmljEITHQ0FGnVh/+82Hb9P2suHvk1BKHdd61Y/Fe5eAvQqNwnhGkUYrDyw3fgZ9xru8qEqbg1vm/cbK7Qd4+fqhXDw44thY6Z+DhxfF2RsI2PMLCsDigbrh09pjtLWOxW1LjPfZK2DXSuO9xRMmPgqOytaLk70ceowwjv3l/6w9Fkfcbhz3h3dDr7M4EDyEOb/sYMOuQ2TtL6HoaCUAwX6eXDokkiuH9WBQ907N709bJSx7Glb8G9CgrND3PNj+AzjsYPWC6V+d+LoBZP8K718GjipjnboNhr2bjHX08GmVOA6HZltBCTnrv2PimtuwYEMrC7aQOLyKMs3jvnViAcY+e28y2CrAYoWuAyF/I6CNbTfta4gedeJxqmWvgE2fGNtvbzrsTjaGW71g2ldGGZyOe5vdgYfVlbrT1qeUWqe1Hn7McBeS3J0NDNZa696NzSNJrhCiviq7g5TcQ2QVlLBtXwlZ+0tI2XWQIxU2rkjqwf+d349uncxLwDmrjATGYbb5VB6g67f/VMbLw/vEfkRyVpuxqpqezuoFN33TojhVdgd//GAdRVtW8K/YVHpXbTN+cOuoTtQAZeHAiPs497dhhAV4s/BPYwjyce1RuIvT9nLvxymM8MhifNUKEi3bSFRZaDPCMQZeCVe+YyS+Lpjw3DL6dAlgzrR6vyeHdsH8K9gQlQJAUoo/eAVAZUntNPGX8m3QlWxa8T9uvmEqXRLGuRTzGEf2wrxLoHAbYG41XbsKlRYfPIZOxRIQBn0mNLnPtNbc92kqn6zbzb+uHsJVw3rUnSDzO/joOvMEAfDwQdvKa7alw+KBBW0kNNYTPBYzl8BH1xonWQCeflBVeux0Ht4wfVHL4zgnSzSeA2jAbvFiuv0Rkqv6kNSzM7HhAcSGBxIW4MX3GftYkrGPSpuD/t0C+b/z+zGhf/ixyW72Clj9GuSuhaP7Gi+XssKEh2DcX1q2XmCckPz2Nmz9FiqdroR4+ICtvPbzyNvhwmdaFCKroITXl21nScZeBlRu5FWPFwmxGMe51nBE+xBoKa/5j1b9L4HuQ0/85OTru2Gd02POPXzBVlb7OaArjPojOBzQ6wRjrX0PFt1FzfHhHQQVTldgvAKM40c70FYvvhz8Gs9t6cyimePo5Nf2j+1ucZLbEpLkCiFcUVxexas/ZTF3RTZWi2LGWb35/RA/gj68GA5lGxMpCyTeaNQo2CvB6gkRiZC7GgCN4teet/Gx73WcERPMuQldiejk61oBSovg7XOhaLs5QBm1E9qsGRl4BTrlQ5T5Rb/NK4H/C5hNWKdAbhrTizNjQ5utvbI7NHf+ZwOHNn3PfO9nsFQ/HX3AlbD1G7BXGbHOnw2L/wZ284JZ3/NI73kD3373P0q7j+HBP0xrspbE4dC8+MM2XvxhGzd0zeHJ4odrkqVFtpFM8tiAt7KjLFZjPR1VxnqiIWoU9BwF/S9u8oextNKojb9zQl/umWQ+NjhnFSx/Hnb+DCg2DDIu8iWlhcIF/4DFD5jrZCSCGoVDAx7eWG86vlpkctcYNe3bvkfbK7HbHaAd2JUFT4sFpe3YsLDD1oV+1jwjwbB6w02NJ4Rv/bKdp/63hTsn9uXe6nWqruX08IUfn4Sqo8ZwZYWh02Djf9D2Siq1hQIVRg+dbyS9ygITHm40Sdu+v4R3V+xk/a5DhPh70iXAm7AAb0b1DuXcgJ3wwVW1iZmywNDpsPE/xnEPtckvwKBr4Mo5DcYpqbDxS+Z+ftpSgL+3B0OiOjGkR2diQv2N9t/f/BV+c5q37/mw8xfz/8sLe/9LsKR9ikKjNawNOJuQmz6kT5eAY2IdLq1i0aY83lm+kx0HjjKubxgPX5xAv25mT6Opn8DCGdSchZxxG6x/rzbWuY+jvn8IZZ5k7u95MZVh8UQMOQ9r9MgG169RGV/CJzfVnpBYPI33Vi8c5z8Nix9AVR+Lyop94DV4hPZy+SrNlr3FvPJjFt9symeiRyqP+X9Gj/Jt2Py7YS0vAocdbfFkZd//44ytz+LhqMSCNi6cAMrDx6UrJ1prjlTYam7yJPtXkrJexTtvNTVXYqzeTv9flWCxgHcnKD1gLMSFWCUVNtbnHEQp8LJa6Fy0ga6Fv9G5ah+snUftSbcVhk2DFPNYtFjBNxhKjBMWOxaeq7qaLX1nMPvyga5//7aiE6nJ9QPuBXpqrf+glOqL8ZjfRY3NI0muEOJ45BaV8t+Fn9Ev6E46qaOMyQjCqkCZP1BM/woAvXM52/0T+TWrkGs334GXrsSiYLujG794jOHrssGs13EM7tGJyYMjmT4mBi+PBhLD3DVkfvsGZP1IXMARQNX8GHLBP6CsEFvPM/liQx4Xb7gNT2xGpTEO8q3d+cExlIXlwyjtOozfj+vN5CEReHtYjwlTZXfwwGebWPnDV7zp9zqDOzklSxMeMmp2nC9z566BHcugaCds/AgAB4oK7cGH/V/m1uuva3D7HS6r4i8fb2Tp5n1cHprHbQeeor9vUU2snYPv5v51nfh91B7Ou+gqY3j2cug5BtIXwpq3jGHN1Fav33WQK15byVtTh3HegG5kLp4D3/yFuFBlJGVXv8+G4seg/BBJfT6qXafs5RA9FpJfR6d/jjLXyzLx767X2m3/kcwXLgfsxIV5sHHEczz+SzH3xhUwasJleFgsNdsyZfkiBm19CavSRnLR93z43X+Pqa1emrGPGfPXctHACF6+PslIAM1azsx9pYAmLro7lB8Eu63OsUj2crb4DOHxrzOYZ3kCL6qMRHfoTTDketj1K8SMQ/c4g+SdRZqVCB8AACAASURBVLy9fAdLNxfg5WFhZK8QSipsHCipILI4lYuLPuAM61bioiOxlh00rmDUi4VvaG1Cox2ANmrhu8RD77MhagRLMvbx0ZpdrMg6QKXNQSdfTyptDsqqjOR4rM8OrilfSN+j6+kfCkpZamufAduOX/ixLI7PN+zh+fJH8FI2I0lDQ+wk6D4MYic2eHxU2hx8sDqHF3/YxpHyKi5L7M74I9/SP/VZ+oU4ao5FJjxEcddR7E5ZwvdHY3l/d1diStOYaFnPRMs6+lv3oDVUKk8+Hfg6Z46/iJgw/2YPj8zv58L//kpc5+qrP1ZsSdPIrgpmSWlf3t0VTlTJJkZZNpPuiOYmj+84x7oRDdiUFxvOmU/CyHMJ8K57P37eoTIWp+3l27R8fss+iL+XlXv8v2fc7rfoF2o1mk9N/cKoXa/3v7wvdSlZWzcx+vD/sJiJ7s7eN9D12pfwrxcn/3AZyzMP8Mu2/fyadYCDpUbSf9bBr3jQ80P6h1mwY+Gn6LsZ0MWDboPPRfUcWfv/FTPOaN7102xqktNhN8PkF+rE0VqTvLOIT9bu5n+b8muOjaEqk8ePGMdxvzAre/z6061iJxaHDVXvWCwMG8G6nIOcs/pmPLTx3bgnbho9omJapylNC5xIkvtfYB0wTWs9UCnlC6zSWic2No8kuUKI47JzOcyfwsr4QwB8nHIf+aob13TJITsgiVz/gVgsinU5B8kpLMXTqrgpaj/n+WcSQz5h2z8zEieLJ18MeYv3d3clJfcQA7sH8cK1ScSGO9VAmc0TMveXA4q4m16F8P51fqCyCkr46ycbSck9xB2xhfyp117848ZDzkpY+qjR+lN5cI/vbL4siiLIx4OLBkVw6ZBIRvYOZcveYj5dt5udG37i8spFxBavwdPTh7jOVa63PXS6NOlA8VzV1URe+jA3jIyuM1l63mH+tGA94Yc28lTPtTi2LkFpTVyIrhPrL6u8WZyWT/JD9X7Ilz9n1FZW1371HGVcCrcee8lx/uoc/v5FGmumBRKe9QmZP34I9griQq01CcyGgK8BSEpaduw6mQlkzeX+fhfB6DsgN7npH8fda+GDK8jcYyTucWFefBw0jefLJrPi/nOOreHOXYN93mS0vRKlNValofcE6DmypvnC5vxirnp9Jb27BPDxbaPx9TJPUr69H5LfILPQDijirnzImKeRNrcrtx/gxbkLGKNSmRSYTULpWrQyymNTntzl9Tj/O9STEH8vbhwVzdRR0XQJ9DZmzvga/ck0th2owq4tvBz+CNPHD2Ckymh4e1QnNFEjIfkN2Gxsa2315uWof/P8ls70CPbl/AHdOC+ha83Nc1n7S9i3/lvGrrmd7YVV2LViUdh04sK8yfZPIstnAHaHg/U5h9hbXM6QHp14cPARziADS/QY2PABpHxglKGZmvGDRyv5/MtPGLL1JQKL0tnh6MaELoexYsOGB39Qj/BzmdHaMdjPk/H9whnXN4zQAG9iMl6nZ8rzRg0ysNA+jr9U/ZEzY0P584S+jOrdQP+tOath2VNkrv0RgqKI8y1E223YlSd/8niU74ujCfD24Oy4LkyMD6dveCAHjlYQuuEVBm55CYtZW/21fTT3OO4k2M+LIB8PAn08sDl0zY2Wl4ft4ZqwbIYGV5Cz9C1A1znuGz1Zy12D473JYKtE4aBSW3nXMZnATp3ZoAawxh7LkXIbh8ykNjzQm7F9w4jvGsgZRV/i8+PjKOz0C7Vix8Lztqt51XYZI3uFcM+kuLrbJHcNvHepceVEa+PEc+Tt4BeKLfpMPiuI5PVl28kuLCXQ24NLhkRy8aAIvD0tRC/7MwfXfYkCYkM9+Lf9Gn61xTPKupks30SKuyTRvbMfm/OLa24cPS8oh7sjNxN/4HtUyV6MmoBWbIN8HE4kyV2rtR6ulNqgtU4yh23UWg9pbB5JcoUQLsldAxvmQ9rnUHmElQNKAEX/wFk8e/Ri1u86iM2hsdk1doemdxd/Jg+O5PwB3WrbfdVP0rr0hwmPkJm+ltnpISTbYvn3mCou8N+G8guBn5+BI/lmEmMl7ppHan6gHA7Ne6uy+ce3W/D1svLEZQOZPDiitklCvVg6uDcZg/5K9uYNLNjXk5WVffD3snK00s41Hsv5h8ebWHCwtdCBuug54gYmun6DUr12k/nWSL4oH8bOsLPpMXg8E+PDSc8r5u9fpHGp93qedTyH0nYyCx1wwT+IG3xGnVgpuYeY8uqvzJoykKmjouvFudSoIVQYiXGXeKPGLuGyOuX828JN7E/9njmWp1AOm7ENLZ7EhaiaZHrDgfuARpJcM97XX3yEx8HtXOgwmjg02rY6ZzX88qxRu+0XRubuA+CwE9vVh6uOPsD4cy/hzol9G41TsvUn/pERSv+Cb7jB40djHysPnun6T97bHUFnP0++vGOs0RY8Z7Wxf7f/ANpOZqHRZCXuL/9rdl9t23eEBcm7+CplD89UPc25lvUoBXatWNhpKvqs+7h0SCQ+nlbzJsdfjKYya94CRxWZhXY0VlZ2n8bjhy7gyqE9eOzSBAKbaoe9/Dn4YRaYCeEqewK5g//MVeF5WHufVVuLvvMXqDwKyW9C1VEyC+04sLI9fgZPH7kIpcDTYsFqUUR29mXGuN7HNsM55kRoNJzzEOxeU/dYdjiMm8p+NMq1pRC+6vV3cm2BDKhMZW/wcKoihxMd6sew6BASozpjtTjFcT4WzdrqbWGTWFoUypKy/nj3Gs09k+IY0SvESOLWvQff3APaQWYhlF78EoWWELJ+W8x3JbHYe4zgz+fEclZcl2Ov6DjF0jhQWpMZMoFdHtFs9B5GqupHld3BmbFhTAnbTfcvr61p05upYuFgNnHB2rUTVvPkxB4+kLLvZhFQtAkNVCkvXuv5bwqDE4kO9WNc3y7EdQ1Abf8Rvn8ICjaT6REPB7bVxDpy7Wd8VhDJa8u2U3CkgtG9Q7njnFhG9Q4xTvaqT4QiEuHnZyF3tRELT66reAh79zO46cwYLhgQge++dcZNjrvXwo4fje8OLMR19aXs+s9ZUdGbjLxicoqOklNYSm5RKTGh/pzTP9w8YQgwjpNl/zBuKIRmm+y4y4kkuSuBicCvWuuhSqk+wEda60b3qCS5Qohj2G1GW7zcNRAcY9yQVN2TAYDF06jJVYoxI391vSagTpJm/mA6bIBCWzz4yWciY48uxVPZjNpD7yCwlZFZUAVWz5okZu/hcv7v040s33aACf3D+ceVgwgP9GkilgWjbWtlTazNCXex+YCdCSVfEVyyvWa2zEJg9B+J+90/jm+bVf9gFW5HpywwVg0LC2wT2OzoyWDLTgb7HSChMq2m3XBjsbTWXPrKr1TaHCy+e1zdJKbOJc+f4KenzBEKht8C0aMh83tSNmcywLYJT7PL9MxCYOAU4hIG1yQ7GzaMB5pIcoHXl23nmcVbyBz6OV4Zn9SO6DESegwDr0DYmwKZ32O0n7TADZ+Suecg7FnLSmsST24MZOUDEwhvpr9am93BirkPMi73DaNGFzhMABu7Xk5iGASFhMOhXEj7pLb269wnyMzZA92HE3f2VU0u31mlzcH6ld8x7KdpeOhK43jzC4GYsyAy0Ug2V7xQe5NjWH84lE3mvnKwetLr7kW8lBnMqz9lEdnZl+evSTQSugYczlyB30dXoBxVRhNNzJ4zwLiEnnQDpCww2nyD8T9XnE9mQUWd494lzsc9mP+zTrFGzICj+2HPOijaUTNbi457514f1syBzV+a/WZYeF9NZkNFdy73TaGfdTcRlbtqbqjcXKiZZ7uA/3aazqDunbhnUl/O6dfATXANxeo52rhZLe0zY7iywODrjH2nFGR8BYdyzJkUmX1vhx7DibPkHP/l+V/+ZZwwVDcpCO4FSVON9q3KCns3Qs6vxjiLB5njXgeL5ZhY5VV2FiTv4vVl2zlQUkGgjwdjY8MY368LQT6epOcVE5PxOlccnmfcGAmU+Ufhc+YfUQUZUFUGGV/Ufv8mTSUzaCzkpxA37orjbytfXYN8ojdfttCJJLnnAQ8BCcD3wJnAzVrrnxqbR5JcIcQxdi43ejFoiHljQ5ZHDoTGEnvGP49v2c5JWsZXsOrlBidzaPiuy3SSxl+FZ/YyKruPoDxqHGuzi3jym81U2hw8fEk8vxvRs/EfxzqxvoRVrzS+ThYrOOwUVnjAdQsIHTzp+NarWv2aNCcaUH0mGj+M9qomY/33t13c/9kmPr5tdKPJU5OxNOQEJhJTltHoermS5P6cuZ/p767hqymeDF461ehaykxlali9apMq85JwYcJNlFfZuejNFMbGhvHqDUMbjVGH2XxB2avAYkUFdkUdzq0dryy16+sUC1r4iNPqY6SkwKhBbbAHA7PGq9c4Cjcuhp6ja7bjupyD3PtxCruKSrntrD5MSYqke2dfAn08Kamw8fbyHcz5ZQf9bZuZ0TOfcZOm4L9pQW2TguOIddzrFDMO1s6FjR82MJGCxN9B2kKwV7bOcf/Dk8Cxx6IDxZe2MVxgXYMndvaVWfiy/z8Zfs4UzogJPv7u6Zo47vHvCmWFNTekFl46H7oPbfmx4XxS7hkAFYdqxzv3SKKsFA67G0bf0Wissko7y7YW8HPmfpZt3c/eYqO22WpRTA7ezbOlD+OhbSiLxbjxzbnHiWpm7WurHPMnWZvcZp94prX+Xim1DhiFccJ0l9b6gBvKKIToyHLXYDx/xmEkEoOuNmoSqnsXGPI7Ylv65Rg1ou4X629v1/bEMPYeWP482mHDbvHgvX19uPOjEkL8x1DwawVaLwNgSFRn/n3NEHo3cAd507HeqY0Vey5s+R81P8pJN0CnKEJP9Is/ZpxRQ2Lekc6Ay4277nGglBVizoTxD0D28iZjXTqkO09+s5n5q3MaT3Lrx4q/BDZ9CmjsWCiJGg9j/tlsrKZUP953TVUsg6d/bfw4Ht4N6+bV9tWaeENtzwJWL4gZR2hoKJ+szeVwWRU3Oje5aE7UCKw3fV37I7xzuVmbZh6LSVMh9b/HxGqx6mNk+XNmAm32uzzgctji1KOG2c1TaL1tOCw6mP/dOY5ZizJ44+ftvPGzcVWgk68nDq05Um7jwoHd+Mt5Y2vbm3t5GDWR9kqwesCYu+HXF2pvYmsk1nGvU7X0z2sTNYedmhr30D5GTd4JHB81YsYZzViq90v/i4wEGo1FWbjgnPHsCLiH6CPr6d7vHP7UWv9j9ddp5G3G9jOPnxZvQzC2h7l9jGPxF/hxNjXH4uCra3sxsHoROuQCaOJY9PWycuGgCC4cFIHWmsx9JZRX2enXLdBsHuPURGr7T0bTAoxmCVgstT3JtNYxf5JxpSb3B631xOaGOZOaXCHEMZxrMOrfOd7aZ//1axWcPu/rNJi3ftlBcVkVPYL96BHsS1SIH0N7dm5ZR+bOseDYdWyt9WqlOE98ncH81dmsfGBi7Q1QLsRy2Cqp0FYKLv+E6MTxjS7flZpcgBGzlzK2bxjPX5NYG9OF4+OyV1ZwtNLOknvOavnDJNrqWGyFOFv2FpNVUMKeg2XsPlhGaaWdqaOjSYzq3HC8Ro77Vk9Aqpft3OtDax/zznHc/f/lHMvd61Q/Zlt+LzrHMnuSaa/a19Z03M0VlFI+gB/wEzCe2n7Eg4BvtdbxjQWTJFcI0aBmfnSzsoxL/7GxM91elMLCQqCFl+aa0sA6uiVWI9uyuVjb95cw8bmf+b/z+3HHObEux/rpu4W8nh3Bgsf/jKd5MtBQLFeT3JvnriH/cDmL7z6r2XWq9nPqDm58J5knrx3N9DExrpW9Mc3EarV95kKi6bZjsa1itfBYPKljNbHfJNbJpyXNFW4D7gYiMboQq05yi4FXW72EQoiOr5lLWgUF84FTPMltYB3dEquRbdlcrD5dAhgbG8aC1Tncfnafune3NxHrbRyUd7PVJLiuxGpKQmQQy7cdoLzKblxWNeM0dXy8/1MaXrajXD60+3HHO0YzsVptn7lwGfeUT3JbeCye1LGa2G8S69TR6LU5rfWLWutewF+11r211r3M1xCtdSN3WgghhDjZ/W5kT/IOl7Nqe6FL02utycgrrmlL2xoSIjphc2i27StpfmLMG2wyC5jYP9zlRxwLIU5vrtx49rJSagwQ4zy91vp9N5ZLCCGEm0zoH46/l5VFqXmM7RvW7PR7i8s5WFpFQmTrJbkDzGVl5B9mUI9OzU7/45YCyqscTOjftdXKIITo2Jq9y0IpNR/4FzAWOMN8HdPuQQghxKnBx9PKpISuLE7fS6WtgS6T6knfYzzhaEArJrk9Q/wI8PaoeaJUcxal5hHs58WQhm64EkKIBjRbk4uR0Cbo5rphEEKIEzRmTHKbxYqLizutY00eEskXKXn8mnWAc/qHNzltRn4xSkH/bnWT3BNZL4tFER8RSIYLSW5JhY0ftxRw3TnDie/fr8Uxj8fJuM8klsTqKLHaiiv95aQB3dxdECGEEG1nXN8uBPl48HVqXrPTpucdpleoP/7ertSLuC4hIojN+cU4HE3XoSzN2EeFzcElQyJbNb4QomNz5RsrDMhQSq0BKqoHaq0vdVuphBBCuJWXh4XzB3Tj27S9dXs4aEBGfjGDe7R+M4GEyCCOrrKTU1RKrzD/RqdblJpHRCcfhvUMbvUyCCE6Lldqch8DpgBPAc85vYQQolWtXDmSlStHtkmszMxMMjMzT+tYk4dEUlJh4+fM/Y1Os23fEXKLyhjaQIJ5ous1LNpY5g+b9zU6zeHSKn7O3M/FgyLIytp2Um5HiSWxJNbJqdkkV2v9s/MLsAHXuL9oQggh3GlMn1BC/L34emPjTRY+WJ2Dl4eFy5NaoW/aemLDAxkWHcyC5F2NNln4LmMvVXbNZGmqIIQ4Ti49w1IplaiUelYplQ08CWx2a6mEEEK4nYfVwgUDu/HD5gJKK23HjC+psPHZ+j1cMiiCEH8vt5Rh6qhodh44yspG+uxdlJpPzxA/BrvQzZgQQjhrNMlVSsUppR5RSm0GXgFyMR4DfI48DEIIITqGSwZHUFZl58ctBceM+2LDHkoqbNw4Otpt8S8c1I0Qfy/mr84+ZlxhSQW/Zh3g4sERKOXCk9mEEMJJUzeebQGWA5O11lkASql72qRUQojTUnj41DaL1ZaPrjyZY43sFUqXQG++SsnjksG1TQK01nywOocBkUEkNdI3bWusl7eHlWvPiOLNn7eTf7iMiE6+NeMWp+/F7tBMNst1Mm9HiSWxJNbJp6kk90rgOuAnpdRi4D+AnEoLIdwmNnZmm8XqqD8exxvLalFcntSdt37ZwecbdnN5Ug8A1uYcZMveI/zjikGN1qK21nr9bkRP3vh5Ox8l7+Le84x+cLMKjvCv77bSv1sg8RGBrRrPFRJLYkmsU1+jzRW01p9rra8F+gPLgHuArkqp15VS57VR+YQQQrjZvZPiGN07lL9+ksrSDKOng/mrcgj08eDSRPff8BUV4seEfuF89FsulTYHuw+WcuPba7BaLLxx4zBpqiCEaBFXelc4qrVeoLW+BOgBpAAPuL1kQojTTlbWK2RltU2T/8LCQgoLG77Z6XSL5eNpZc704QyMDOJPH65nUWoe36blc9WwHvh5NX7BrzXX68bR0ew/UsGHyTlMfWcNpZU25t86ghin/nNP9u0osSSWxDq5uNS7QjWtdZHW+k2t9QR3FUgIcfoqKJhPQcH8NonVUX88WhorwNuDuTePIDrEj5kfbqDKrrlxVNM3nLXmep3dtwtRIb489nUG+YfLmHvzGcRH1H2M8KmwHSWWxJJYJ4/jSnKFEEJ0XCH+Xsy/dSRRIb6cGx9Ony4BbRbbYlHMGNcbL6vRRGFYdEibxRZCdEyt+yByIYQQp7RunXz48S/jceiGH87gTtNGx3Dl0B74e8tPkxDixMk3iRBCiDo8re13kU8SXCFEa1HaDWfrSqn9QE6rL7jjCQMOtHchTlOy7duPbPv2I9u+fch2bz+y7dtPW277aK11l/oD3ZLkCtcopdZqrYe3dzlOR7Lt249s+/Yj2759yHZvP7Lt28/JsO3lxjMhhBBCCNHhSJIrhBBCCCE6HEly29db7V2A05hs+/Yj2779yLZvH7Ld249s+/bT7tte2uQKIYQQQogOR2pyhRBCCCFEhyNJrhBCCCGE6HAkyRVCCCGEEB2OJLlCCCGEEKLDkSRXCCGEEEJ0OJLkCiGEEEKIDkeSXCGEEEII0eF4uGOhYWFhOiYmxh2Lbleb928GIL5LvNtjlZeXA+Dj49OhYrV1PIklsSSW67YWbgWgX2g/t8dqibaOJ4Q4Naxbt+6A1rpL/eFuSXJjYmJYu3atOxbdrka+PhKA5D8muz1WZmYmAHFxcR0qVlvHk1gSS2K5bvy88QAsu2mZ22O1RFvHE0KcGpRSOQ0Nl+YKQghxGpg5cybR0dFNTlNaaWfH/hIqbPY2KpUQQriPJLlCCNHB7dy5k2XLllFZWcmRI0canS63qJSCIxV8lZLXhqUTQgj3UFrrVl/o8OHDdUdsriCEEKeiadOmcdFFFzFnzhxmz57NqFGjjplm+/4SBrw8GhSMD36Vb+8ah1KqHUorhBDHRym1Tms9vP5wqckVQogOLD09nbS0NK699lri4+NJT09vcLp3V+zEohQ9g/3YsvcIK7cXtnFJhRCidbnlxjMhhBAnh4ceeohZs2ahlCI+Pp60tDQAvvjiC7755hsKCgqYdusf+Gy9hbAgb7p18qG0xIt3VuzkzNiwdi69EEK0nCS5x0F6Vzj14kksiXU6x0pOTua7774jJSWFO+64g/LycgYPHgzAlClTmDJlCgcPHuTiG/5A+eCbiOjkg0UpbhwVzQtLt5FVUEJseMBJsV7tEU8IcWqT5gpCCNFBPfjggyxatIjs7Gyys7PZuHFjTU1utcefeIJDvSZwVlwXfL2sANw4KhovDwtzf93ZHsUWQohW0WiSq5SyKqVuU0rNUkqdWW/cw+4vmhBCiJZasmQJFRUVTJw4sWZY165dOXr0KEVFRWituf/+++nUdwSlgT25dWyvmunCAry5PLE7n63fzcGjle1RfCGEOGFN1eS+CZwNFAIvKaWedxp3hVtLJYQQ4oRMmjSJFStWHDP88OHDhISE8PLLL7N06VLmLvgPvlk/cFbfuu1vbx3Xi/IqBx+u2dVWRRZCiFbVVJvcEVrrwQBKqVeA15RSC4HrgdOyX5mpg6a2WazQ0NAOGaut40ksiXW6x8rPz+eZZ55h1apVJCfX3k9w8cUX88/n/01p3Ahm3XX7Md2FxXUNZFzfMP7z2y7uOCfWpVju1tbxhBCntqaSXK/qN1prG/AHpdQjwI9A43cidGAzx85ss1gd9Qe4reNJLIl1usaqTm7ff/99pk+fzhdffFFnuj59+vCHR1/i6dmzeODacyh56EEcXg4snrUX+M6MDWP5tgMcKq2ks58X9XXk7w4hxKmvqeYKa5VSFzgP0Fo/AcwFYtxZKCFOFW+++SYREREkJiYSGxvLlClTqKx0bxvGOXPmkJiYSGJiIhaLpeb9vffe69a44tShtSYmJoYXX3yRgwcP8sILLxAZGYlSqs7rkVsupWz7b+zNz2PmzJlsmL2hznISIoIAyMgvbo/VEEKIE9Jokqu1vlFrvbiB4W9rrT3dW6yT0ysrXuGVFa+0SazCwkIKC9umM/a2jNXW8dwdKzU1laeeeoqUlBRWrVpFamoqqampbosHMGPGDH744Qc++OADoqKiSElJISUlheeff775mVugI+2v0yVWUVERO3bs4M477yQ4OJi7776bvLw8HA5Hndf4+94mYtCZdO/enZdffpnEBxPrLCveTHI35zf8KOCO/N0hhDj1SRdix2H+pvnM3zS/TWJ11B/gto7n7libNm0iKSkJgPXr12Oz2VqtD8/LL7+chx9+mHHjxtGtWzeWLl1aM66wsJDk5GQGDRrUKrGa0pH21+kUq3v37rz44oukpaWhtWbKlCl1anGzsrbz65yHSRw9nqysLGbOnInV7EKsWpdAb7oEepOR13BNbkf+7hBCnPrkYRBCnID09HSmTZtGVVUVu3bt4q233iIoKKjJecaNG8eRI8fWjP3rX//i3HPPrfmclpbGmWeeyfLly1m4cCELFiyoMz4zM5OBAwe23sqIDikyMpIXXnjhmOEewRFE/uFtbrpyMD4+Po3OnxARJM0VhBCnJElyhWih3NxcwsPDa5onPPvss7z22mv4+/vXPC71jjvu4Lzzzqsz3/Lly5tddmlpKYcPH+aee+4BwGaz0blz5zrTbNu2jSuvvLKV1kacbjabiWtCZNMnZQmRQaxcvoNKmwMvD7n4J4Q4dbiU5CqlgoG+QM3pvtb6F3cVSohTQWpqKgkJCTWf+/fvz7vvvlvncal//etfj0lyXanJTU9PZ9iwYVit1ppY9WttpSZXnIiMvGKsFtXkY3vBaJdbZddkFZQ0mxALIcTJpNkkVyn1e+AuoAeQAowCVgET3Fu0k0/yH5Obn6iVtOWz2dv6OfAdZd02bdpEfHw8YNzNvmzZMi6++OKa8U8++SR33HHHMfO5UpOblpZGYmLtTUCpqalcdtllNZ9jY2PZtWsX/fv3P5FVcElH2V8Sq66M/GJiuwTg42ltcjrnHhbqJ7kd+btDCHHqc+Xa013AGUCO1vocIAnY79ZSCXEK2LRpE/PmzSMpKYlhw4ZRXl7OrFmzah6XeuGFFzJ06NAWL9s5yU1LS6tTa5uVlUWPHj3w9vY+4fUQp6fNDSStDekV5o+Pp6XRm8+EEOJk5UpzhXKtdbl5R6631nqLUqqf20t2isjMzGTTpk3SNvI0tGDBggaHv/TSSyxdupTDhw+TlZXF7bffftzLrt8d2I4dO+p8jouLIyMj47iXKzqW4uJiPv30U6677jr8/Pxcnq/oaCX5h8uJjwhsdlqrRdGvW1BNG14hhDhVuFKTu1sp1Rn4VOzojAAAIABJREFUAliilPoSyHNvsU5OI18fycjXRwJGcjtt2jTOPPNMCgoKWj1WZmYmmZmZrb7c9o7V1vHaI9add97JunXreOONN1qU4B5PrLYgsU7eWEopvvnmG/r06cPzzz9PaWmpS7FqbjqL6ORSnOoeFrTWdYZ35O8OIcSpr9maXK315ebbx5RSPwGdgGMeEnG6sFXYGDZsGFu2bGHEiBHccsst5Ofn88gjj7RqnOq+INviMZZtGaut40ksidXRYw0YMICwsDDmzJnDo48+yrXXXst9993X5DzVSa4rNblg9LDw0Zpd5B0up3tn3xMusxBCtAVXe1ewAl2BneagbsAudxXqZKaUwmKtrQC3WCx4eLR+T2zVd9W7Y9ntGaut40ksiXU6xLJYjO8kpVRNrKZk5BXTNcib0ADX2nQnmMnw5rxiSXKFEKcMV3pX+DPwKLAPcJiDNTDYjeU6aVm9rCSvSSYrK4vZs2czZ84cHnvsMWbOnNmqcaovybXF3cRtGaut40ksidWRYxUXFzNt2jR+++037r//fmbMmEFubm6z82XkF9f0muCKft2CUMqY79yEridSZCGEaDOuVCvcBfTTWp/2z1KcOmhqzfvY2Fjmzp1LVlYWaWlprR6rrZoO/H97dx4fVXX+cfxzZiYJO0IIkLCFLayyiYDIEsAFFaq1inVBaW1trbZ1a2v92Wpta61Vu9Fq3RqxCiruoLiwbxJW2ULCFhJIQkwIgbBkmTm/P+5kgyQkkMzA8H2/XnklubM8zz1z584z5557bqBjBTqeYilWKMcyxnD99dczc+ZMGjduXKtYhSVedmQXMKFP21rHaRbhITay6UkzLITyvkNEzn21KXLTgfyGTuRccO+ok3tre/ToQY8ePeo9Vih8AJ8N8RRLsUI5VvPmzbn99tvrFGv7/gJKfJY+dejJBWf87uZ9KnJF5NxRmyJ3F7DIGDMXKCxdaK19rvqHiIjI2Whr2cwKdSty+0a34JNNWRw+XkzzRmENkZqISL2qzRRiacAXQDjQvMLPeWf6sulMXzY9ILFyc3PLzsgOpViBjqdYiqVYlSVlHqJJuJsukU3r9LylF47YllV+SepQ3neIyLmvNlOI/S4QiTS0WYlpvLR0F8eLfRR5fRSV+Lg4tjV/++4gmkXU7ozn1ze9DlQ9bKG+hcr0RsGOp1iK1RCxfD7L058lM2t1Gh6XIdztItzjIr5XW34zqS9ul6m3WHV1qlhbMw7Rq33zk3I8ldLhDVszDnFxbOtaxapvgY4nIue22syuEAc8BMRWvL+1dnzDpVW/3l6dzsPvbWJgx5YM7NSMCI8Lnw9mr9vLLS99xX+nXVzrqXRE5PxW7PXxq3c38t66fVzetx1RzSMoKvFx4EgRCStSOV7s5U/XX4gxdSsiA8FaS1LmISYPjKnzY9u3aESrJmG6vK+InDNq04X5DvAC8DLgbdh06t+HG/bxq/c2MiYuipduv4gIT/kcklf2b8fd/1vHjf9Zyet3Dtf8j9Jw0hMhdSnEjoZOw4KdjZym48Ve7n1zHV8mZfPA5XH8dHyPSsXsM58lM33hDhqFuXlsct+zrtDdm3eMQ8dL6nzSGTgzOfSNaVE2pveUtM2LSJDVpsgtsdY+3+CZ1LfU5exZ9iazkrpyceylvBTvJWLl3yrtcMf3bsfrdw7nzoTV3PD8Cl6/czg92jare6ydi2D3YoibCJ2HN+zOfc9K2LMCuo52/j/DOIeOF7MlI589uUdZ/k0YV/Rr7xT7J65D2irYs6xh1qlirJJC2LXQacuGjNPxYkj6CDI2QK+rGvZDeM8KmHEd+ErAHQ53fNRw8bZ/CTu+hL7XQZcR9bYtFhQW8/aadI4Xe+nRthk92jYjKmMRJmMt9Ljcee6G2u7TE2HXYug2tmHjlMaqZrs/HDWYO19bw+rUA/z+2n5MvST2pIc/eEUcR4u8vLp8N03C3fxyYu/axdm5wHlv93TaMv9YMcZAi/o4watCrKSDMXzLtZwJWYmQfk2d269vdAteW7mHYq+PMHcNp3SkJ8Jrk8FbBO6IWm3zmfnHaNu8UZ2HUYiIVMeceC3yk+5gzONANvA+lWdXOFDdY4YOHWrXrFlTTynWQXoibJsL2Vuw27/A4Fy1wtuqO578PWB9Ve5wt2Tkc8eribiM4e0fXUJsm1OckFH6odFuAGx5F76eWX5by85waB9YC57a7dxr5VgezHnQiXcidwRMm1PrOMVeH2+uSuPFJbvYd/BYpduMgR9G7+LhvMcw1osBpzDzFp1WrFNK+QJmfdcpACsl4oLJf4cht1f9uLoq/dAtKXRWMqwpFB0uj3X1MxS27kvWpi9JtH2Zk9eJrZmH6Ny6CUO7tOKiLq0YGtua1k3Daxdv91JY/z84mgupS5y4pbpPgM4joFv8mbdjeqITq2kbSPoYdnxRflv7CyF7G1hvrQuNikq8PpbuyOHdtXv5Yut++nm3McKVRIZtzQ3uJVzq3lL2HjORPSFvl7Pdn0asam18B96/y3nvAoQ3h6ICJ6qnEdzxcf1ti1/Pgg/uLo/l8pRtl9bTiEdbPMlbWdE8O2Ug1w7qUO3TWGv5vw828+aqNH59VW9+NLZ75TukJ0LCJPD6t0V3Yyg56o/pJjn+P9yy+AKKvT4euDyO20Z0wVNTQVmTslhFYAwl1o2HYuc1c3nghleheXRZERw/37kc8KJpi6p8ug/W7+O+tzYw777R9G5fRW9wyuew7jXIWO/sB0t1Gg6DboUjOc4X9AqvWfbh4zw9L5nZa/dySbdI/nXrkNq/z0REAGPMWmvt0JOW16LI3V3FYmut7VbdY4JS5G79CN65A6yP0jVyPoANJryp/4PRv3Tc/8HYX1R6eHLWYb774kqahHt4+8eXVD90oWKx5I9kK8ZqdAEczyuPFf9riP/V6a/XnhWw/O+Qury8KKtKx2HOemWsrbaHy1rLgm3Z/PGTJHZ9c4ThXVsztlcUPaKa0d+XTON9K0jed4AB6a/R2BZijLNutmUnXPl7y9aX6IHOemVvPbPetORPYfadUHyk+vt0Gu7Eu/DGMytmPvgJbHij/P9m7aAgG7Blr5/PGixQRBgPN/sDrs7DSc09wuZ9+RR7LW6X4dqBMfxkXI+ae/xXvQifVti+OlwMWRvAW0JZG4Lz5WHa3NNfr4rFEviLMi9lW6Q7vPw2XDDhURj9YK2eemFyNn+cm8SO7AIuaBLGPT0OcOfOn2G8hRjAa9wY68WFcxnEYnczwr0FzpciXDD+URhTu1hVrlfKZ5CTDElzoOI7unk0HM4ov2/vSTDyZ7U+ynCsyIvF0iTcUx5r50I4sBM2vVNe4GKgZSfId65eboH13u407X8NvUZOPmUcn8/ys1nrmbspkxduu4gr+7V3bvAWw/9ugN2Lyu/cPAYOZ1K6LZZYF0s8Iylo0pHXcnpT0HYIj0/ux8gebU7ddpWTgDe+4/QS++W6o2jlzcFVcTs0/gLaHUF8VAeIaF5tkZuy/zBX/HUJz00ZyPVDOpbfYC188gtY/VKF53U7yw2Acb5sgf/L/xyKoofy2opU/j5/O4UlXiYPiGHOpkzaNo/gxalDy2ZzEBE5ldMuck9HUIrchU/C4j8D4MXgw4XHgHGHw8SnYN6vygvTNr1h/COQu6PSB+Pmffnc/NJXtG4azts/uoR2LRqdHGfug7D6ZXCeieTIy4jNXYLHllCMh7+HfZ/7S14lnCJn394qFsb8Cgoy614QbnoH3v0hzoefi09b3cr4vLfwUAK4MS6Dy3oxBn9xY5yfE3qQrbV8tesA/5i/nZW7cukW1ZRHrurDhD5tnTGDZYX7cef+LTthD+/H+koosh6eb/RDfl7yCm5fsdPz5PPhlDbG35tWHquoxMea1ANs2pdPUYl/Jguvj3bNG/GtQTG0aRbhfOh++Thkfg2tujk9Pr4ScLmd5/SVgDsMuo+H5E+ctnB5YNonznAQwOuzrEvLY1FyNoXFPtq2iCCqeQRtmzfiwo4tncO86YmwaxHkpDhtifH3nEXAxKfwzfsVtqSIYuthg68bw93byr+sjH8UxjwEOOMwN+3LZ97mLN5clcbxEi9XXxjN3WO70y+mRfm4S58Plj4LC/9IWWFm3JTEP8KOJoOwqcsgbw+9Mt4vKzK8HUfg/t4cZ33rwlp4cwps/9y/wFAy4BbY/C7GV4zP5WFx1weJ3/UMbuvfFntdAyPuhr2J1W6LKfsP84e5SSxJ+YbYyCY8eEUvrujXjojZt8O2OWWxGHQzbH4f6y2iCA+PFd7G78JnEE6xEyt6kHPovecVVcbJLShk7Z48Nu7N5+u9B9mWdZi4ds24NWY/V625E+Mrdu7YZTTsW+0Uh2Xv5Yf9RxasU5RWKNJO7EFekvINzy/aSdah43xzuJCCwhLC3S6uGxzDvT3z6PzRjeVHKToOh6yvK8Wy8x7GV1II1oe79Ch6LY9mHC/2ctOLX7F9/2He+fEl9Mv5HL74jVPQGv+5ASfEKbZu0iJ60LMoCQCfK5x7wn7HvPwu1Q6ROEl6ovO+2bkQMjdUivWUvYMHfP8lHP97rE0vZ50BjIv4C1pDy07VFrklXh/9HvuMqSO68Oikvs7CowecL5Epn5bf0bjhotudLwqxo2H7F7DkL5R1DPS/gVsO/JCVu3KZ0Lstj07qS9c2Tfk6/SA/en0t+ceKeebGgVwzIPrU6ysi570z6cltAjwAdLbW3mWM6Ylzmd851T0mKEVueiL2tW/hKymkyHrIuuRxujY9Xv5hXjrEwPpg6XNQfJSqirS1e/KY+soqYi5ozLM3DmRAx5aYvashdSnDlz+HLdjPKk8zLIZC6+HW4kcY2qU1lzVOYVvEQDYQhztjNVE5q2nfuiW3Fr2DuzCvylg1SZkzHd/nv6FXax8Gp3fnBffNFHUcSbsDq/k4vxtFJT5GuJLIbD2U7zdbRf/M2f6eNKe32o55iIXJ2fxr4U7W7smjTbMI7h3XnVtHdKk0ni7lXzfDto+Ji/QXmeMfha5jsLuXsoq+/GpVIyIPbODaVruI6D6W8fYroja/VFYQZg6+j6Ux32dR8jcs3Z5DQWHloQfhHhdFJT48LsNvYxIZnvwsYOkVFQG3f+R82JaOT4Tyv1OXwoI/lvUA2bZ9+Sp+Ju9sOsjC5GzyjhbjcRk8bsPxYl9ZPLfLMKVdJr8/+DA7c45hgM7DJ2OG/4jju1exuCiO19LbYdNWcYk7ibDuY/jOkI50+vim8i9CHS6G+IedAqBCQZhbUMgry3YzY+UeCgpL6BbVlKv7R3NDy60cn/N/uPLT6DRoHBEZieAtpth4mOZ9lJVFziHrISaFN8KfJAynjTzGR3pYVwo6T6DnmBvxdBlx6m195yJSZtwHB3bQs00YYCjGw/d9v+FoUQmXeraxwtubtb44hpgURrq20NOVwbXu5Vj/FyHrCYepH+HqMpw9uUdYsC2bBduyWbEzlybhbn4+oSd3dMomLHUxKWsXQ+oS4vyxysYV+18r22UUC4/G8tHHH9Lh4GqGRexhjG+VsyVW6K3OO1LEvC1ZzNmYwcqdufis81rFtWtO7/bN2ZKew1277meAezdxkW4sLsyER8u3hRPfy11Gwcp/OsM0gIq91QWFJTz5SRJvrkqjU+vGDOx4AVHNnS9C+/KO8d66NH6T+xsucqfQK9KNNS7ni02FWOlN+/PG7Hdw7VnOdV19xO19F+fLHU4P8nff4FSyDx3n2unL+M7+6Uz2fUmvSLfTflf9BY7lQuxoMltcyN8T3qB1diIxgy7nlnZpuBb+oaxX2dv9Mr5b8AAZ+YUs+eW4msespieS8sxE8BU57+dRDzjj2/cs41C7EQx49SB/G1nIda12l7/fXptUNpwmvnEENGrOoutnVrufunb6MpqEe5h51whS3nsalv+VuBaFMPzHsOZV/zjcE8aepyfCa9/yf6HwgbXMKRlOVI8hDJ9w/UnDF+7+3zrW7snjrjHd+OWVvfBkrIHdS0mxXSB6AHFxcadsexE5f5xJkfsWsBa43Vrb3xjTGFhprR1U3WOCNSb3xTdmcXDrAi6Kn8yEyydXf8fPfwMr/lH+/5hfOIWd38qdufzgtdUcKfLyrdZ7ee74b3D7ChlRUsAxGjHY+wgDPGk07RXPFVdOpltU5UPX1lreXpPO7+ckcY+dxY9d71H2sTTqAbjssepz27MCvvwdKRuWs4sY4lsfIMz4MO4wuN0pSsDpUdmeXcCKnbnM2ZiBSU/kjfAniTBFuIAUOvNPexOdStLY0XQQo8ZdzZShnWgU5q4QayUs/CMpaxcBxiliqjgxqrDEy5ur0pizMZN1aXkMJoU3I54kHCfWXl9r5vguYXWjS4nqM5pxvdsyomskTSLceFwGYwwpWfnsm/Mnxux9gR05JRgDPSLDseMewT32oarbwv/BaL1FWAzWesnwRbLINZzcLlfT46LxjImLonmEhyNFXr45XEjGwWN8tTOHUWt/xrDCVWw/4MVrDR+3vJl/e68te+q+0S24+sL2fGtgBzpHNimPt3spFObDiun+IuPknnGA/KPFfLwxg083ZTBkzys84H6HlFwvxbj5bfPHARjhSiKtxRAie49iZI82dG3TlKhmEbTMWY8vdSlbwgaQu3Ee47JeAQslxsOSkf9l7IRJ1Y/BXP0KzH2Q5NwSLB4Wxt7L4QPZrHP1I6b/WG4c2onhXVvjchm8PkthiZdNe/NZkJzN4HX/x5VF8zEGvNbwd98U3m58E1mHnB787lFNuaJfe344uhutD2woK35Scr3QezJxk34GaSuq7QX2+Szzt2WTOfeP3FowA7dxDr+vNf24P+wxMgu8lPgssZFNmDQghvheUfSLaUnjcDckz4NPfkHKrt34cNMj0kWx9fD+gH9z43Xfqf4kpxOOQtDnWrZ0uomlCz7h86M9GDpqIg9cHle+3fuHQhRvX8DuLavx4qJnazclxsOMnv9k4CWXk553jNlr0/lq1wGMgUev6cudXb6pUKT5e5DjroSYi6D7uOq/uB7LI/+tH7N/7VwsOEWuccP4/4PRD7Jsew4/m7WewmIvT9/g77msVBA6sXKiRvC/jBguvfImLh4zsepYhYchYRIpm9cCENcmvCwOwPIdOdz68ipev3MYo3tGVW7DnQtg+5fE71sEwCJPa7ij6t7qX7+3iS837iFx4Fy2L3DmDo9r28Tp3YbqTwos/XLSaQTr332GwYcXOANrqugZLyzx8sTHW3ljVRq3xWTw+4O/xviKSTkYBt9+gbixN1TdBiJyXjqTIneNtXaoMWa9tXawf9nX1tqB1T0mGEXu1oxDTPrnUn44uhu/vrpPzXcu/RApOQ5YaNwKRj0IvqKynXPBjhXs+upjwlMX0Kt4G8bAsOICDrjb8IdJq7mqfzQtm9R8iHlv3lFeenMWD2f/ighTjMFiwps5vUAXTYMul5Tv+DsOg92LsUuewWDZmmP5R4sHeeyWeKLz1pxyqMPevKOsWTaPsPSVhNkS4nP+R5gtorRIM3f4e7tSl0Lnkc5hzM8eAesjJRcY8xBx7ZucMs6BI0UsTskm/evF9Cn8mhhXHn33ve3c6PJgbpwBzaIqz2Kw5X2Y/wTk7cYXO4bkdcuxtoSurSN4sPETjLtsElf2b3/SmeQ5BYVsWfUF+9Z/wezcWC5tks4D3lcAMMYN33kZWnas/KG67RP4/FE4sBNrXCTnePGZMPZc9Sq7GvUjwuPisj7tTn1y4ZwHYc3L5f/3+w6071e5N3HbXEj7CtK/wgLbc734cFNy6X1kXHg3faJb0Kl1k5rjLH0Wu+APGH+v3R5fW15tNJXJnYqIGXQ5MReOdWIlzXFes92Ly2KVWBeL291G08t+ybcHdzj1pVbTE7EJk8F7HAPsb9yNua2mMqDJAToMupzolo2dtmzTC5Y9B/ucYikl18IlPyHulqdqfn4/m7YKX1mRBm58ZIbHsrf1CFoPu4lug8eVHR2hXX9n3dbPcGLluWDMr+jS2s1/9sTw3LYLGNjpAv520yC6Vvea+YellGRtxZP0vjO22jjFk+uqP5f1mFJ0BN64EfxDIVK63EZR5zFE5G3jw/xuvJzapuyIQGxkE74zpCPfHtKBjq0qfAkqff+snwEb3nSWu8LgtnchrHH5ttjhIkh8ERb+CYoKWNB4Im3S5tE30uI1Ht6/8Hn2Nb+Q6Qt30COqGc/fdlHlcd4Ve6s3voVd42z3Xtx4pr4L4U0rH/3Y8IbzRaFgPykHAGuJa9e40pezl5bs4o+fJLH20cuqnhd8ybPEL3DOH1hEU+gy0ukAyFhfabtP+ewFmqQtoqMr1/kCxMkFdU0OHCniv0/9lPvdb5WPDT7xnAKA1KWsz7bEbPwn7cxB5zXLBS65u9bbooicH86kyF0BTACWW2uHGGO6AzOttdVWQsHqyV2flseAjhfUbgqa0g+RZu1hydOQl+osNy6IHeOcyFJ6ZrVTnjKipADTJo5V922pdU4+n2XevI9IWvkJTdw+fsw7mNIde5vecGAH+JyTYcrOVAe25YId/mP63PbnujRBuXmPwFf/Kv+/eQc4ku1fp8qv+Rl9cCx9FhaUH1oFnDa01vkd0aL8RDxXGEybS8rudOzeNRzqFM/vvm7K5n3OvJtdIpvQL6YFMS0bk+gf12utMwn9T8Z155ai2XgW/fGEWO7ycZnNo+HQ3vJYV/+FlJRk6DC07j0/VZxg6DyvG6KHOB/GpXn0uRa2f07K/mPgDiPuwU9qP/a6Qq+dNS68uHD7CrEWfLjY5O7DAF8SLv9h8gXewYx0bWH3gUIwHno8MJfw2Evqtl67lzrrtXJ6hZP+XM54Zevzr6//f/yFZ117zypOkbVrkX+cMoCBmMGQtams2KzoxG1x7sZMHnl/E8eLvUwbGcvd8d25oMnJZ94nZR7i/rc28KOcp7jOs7z8yEnpX6XjpktfM+MipeePYOj3yw59FxSWsCTlG9o2j+CiLq1qnuN26bMw/w+UDV9whTl/+3xOLFc4eP29y+4IUsb8m6xDxwg/kMSHB7szK6s91sK3Bsbwp+svpGlNV1084T3mc4U5xaGv4rTl/j3HpOdIOdIC9q0hbnTlYQD3v7WBlTtz+eqRCVXHSU8k/tVRgGURzctPFMM476/oQZC5HqwPn4W0uNspWj0TvMUnFdQ1+c/inXw27yNmN30Kl9e/DdiK6+Lyn8nrrG9JeEts0RGM9bEj34Xr2/9RT66IVFJdkVubeXIfB+YBnYwxbwCXAt+r3/Tqx+DOrWp/507DynfIh/Y5J66VHoZMXVLpw9BcdAemZSduP5gFrbrUKSeXy3D11dcSN3Q8yxMewXsEPP5ZC7x5aXjKCmn4smQwYzxbCDdeopp7YMBldYpVSb/r/OPjCp0PqML8ykVFt/HOoWdvMZHNPdC/mg++U4kd7ZyI4y0Ctwci42D/Juc263WWlZbv1gd7lhHZfxr0H0evyEg+Hm1ZuSuX9WkH2ZKRz5aMQ3y2ZT8DO7bk/sviiO8VRf+YlrhcBtLHwNJn/LHCILI77N9SHqv4SOVYxw4QeeUvqkz7lDoNc6anSl0KOdud6aVKC4usjRW2DzfEDISR9xL59TzofEndTi7sNMwpDlKXYmJH40n+FJY9hzFg8NHfl4zL+pwhBrgI6zqCr7v/ktiDqwnrOrJuBW5pvNL8vIXOzB1YnHGSpXcyMPKn0GcSpC4lsuUA6DDk9OOkLvV/8fEX0Ps3V9gWDfS73jlRylt00rZ4zYBoLurSiqfnbePFpbuYmZjGj+O7c1X/aDLzj7Ev7xjJWYeZsXIPLRqH0XnizzGL1jrbiLWUrZS1ENUHDuwqm684sv8EqHB52GYRHq6+sJYnOsWOdoaxeIuckyJbdHCmUCuN1aR12YwJ+EqIPLyVyJH3EBk5lRHAQwWFZBw8Tv8OLWoupktjuSOck/x8Lo55IrmgKOvk+xkXHMsjsv+10H9cpXUDZ6rEfjXNWNBpmDPt3PGDcP1M2Pi2f7YE67y/sreUF9q42FfUjN7fnwlpK2Fg7ea19vks/1u1h5jYEbiu/rj8i9DXs8DfW33itugZ+ROOdBrD3nWfE9Xr0rpviyJy3qrV7ArGmEhgBE4F8ZW1Nqem+wdtntzTVXEMnDscJv7JfwZ3cb1O3l+c+hXM+BbGW0wxHn5XPJXHwmYQhpcS42HLZf9jSOcLMPV10YWKvWnWwozJzjRWJ5w4dMaxKsYB/yTwVZwNX8u29PmsU9QGIFat16/S9tFAcaqJZec9jGnoWJVmtmjodari/QWn3BaTMg/xzGfJzN+WXWm5MTCxX3v+cF1/5zB86TbSONKZVaWOceq0XoHaFv2xnt4WxeaMfF5z/wHjLa7163a82Eu/xz7jJ/HdefCKXtWGiU+IB/zz5Naw3R+3bv4a8wy/vuuOOq3GwuRsvvff1fzz5sGVLy0cqG1RRELSmQxXmG+tnXCqZRWdc0UunHwFoga8epNv91IORA1jd+N+HN25kpi8NXS/eGLZSWUNJlCX2QxUWwYyViiu04mx4JxYp3VpeezYX0CHVo3pcEFjoi9oVOly3TXGbUgBeN1W7MjhlpdX8d8JlnGNkmv9un2dfpBr/7WcF24bwsT+1fdWVypya1inZ7e3473sGJY/PL5O+d+ZsJqv9+az4uHxhHtOOJkwUNuiiIScOhe5xphGQBNgIRBP2eA2WgCfWmurPbvrnCxya2H6sukA3Dvq3gaPlZubC0DkCYccz/VYgY6nWIoVSrGstUx4bjEtGoXxwT2X1jrWzMQ0fv3eJpb8Ylz5bCJVOKnIrcYLi3fy1KfbWHDPEFo2Ca/VeqUfOMqYvyzk3nE9auxNrkmg91Uicm6orsit6VqRP8KZOqy3/3fpz4fAv2p4XMh6fdPrvL7p9YDEys3NLduhh1KsQMdTLMUKpVjGGKaO6MKG9INs3pdf61hbMvJpHuFnGDJoAAAUa0lEQVShY6tqruRYR32jnbG9iclptV6vWavTMMDNwzqfdtxA76tE5NxWbZFrrf27tbYr8JC1tpu1tqv/Z6C1dnoAcxQREb/rB3ckzG34YP2+Wj9ma8Yh+sS0qH6sex2VXnJ3R3bBKe7psNbywfoMxsRFEVPdJdNFROpZTT25AFhr/2mMGWmMucUYc3vpTyCSExGRylo2CWNMzyjmbsrE5zv1icNenyUp83BZ72t9aNMsgnYtIti5v3ZF7rq0g+w7eIzJA2JOfWcRkXpyyiLXGPM68AwwCrjY/3PSuAcREQmMyQNjyMw/ztq0vFPeNzX3CMeKvTVPH3Ya+ka3YMc3tSty52zMINzj4vJ+7eo1BxGRmtRmntyhQF9bm7nGQtyqu1cFLFYgr80e6OvAh+q6KZZiBSrWZX3bEeFxMefrDC6ObV1jrC0ZzsVW+tZzkdsvpiVLtreic9fuNd7P67PM3ZhJfFzUSVc1rKtA76tE5Nx2yp5cYDPQvqETERGR2mkW4WF877bM3ZSF9xRDFrZmHCLMbejZtnm95tA3pgVen2X7KYYsrE49QPbhQiYN1FAFEQms2hS5bYCtxpjPjDEflf40dGIiIlK9SQNiyCkoZNWummcb2JKRT8+2zU+el/YMlQ5/2FTNLA+l5mzMoFGYiwm929ZrfBGRU6ntZX0FGP68c7GGQAxbSElJAQJzeC6QsQIdT7EUK1Rjje/dlibhbj7emMnIHm2qjJV96Dgrd+YybWRsvcUt1alVE1oX5/DG519xy/CqpwUr8fr4dFMWE/q0o2lEbT5uahbofZWInNtqM7vC4oo/QAkwpeFTExGR6jQOd3NZn3bM25xJsddX5X3eWp1Oic9y64gu9R7f5TJMHhTDhvSD7Mg+XOV9Vu7KJfdIEZMHVH+VNRGRhlKr41fGmEHGmKeNManAH4CkBs1KREROadKAaPKOFrN8R85Jt5V4fbyZmMbonm3o2qZpg8S/un80YS7D/75Kq/L2OV9n0jTcTXwvDVUQkcCrtsg1xsQZY35rjEkCpgPpOJcBHqeLQYiIBN/YXlE0j/AwZ2PmSbfN35ZNZv5xpjZAL26pVk3DGdsrinfX7uVIYUml24pKfHy6OZMr+rWnUZi7wXIQEalOTYOktgFLgcnW2h0Axpj7A5LVWWrqhVMDFiuQ12YP9HXgQ3XdFEuxAh0rwuPmin7t+WxLFr+d3JcWjcLKYv3+gx3EtGzE+AY84SsyMpLbx/Vn8axkPtyQUWls7vyk/Rw6XsKkehyqEOh9lYic22oqcr8DfBdYaIyZB8wC6ueakOeoe0fdG7BYofABfDbEUyzFCvVYt43ozIcb9vGD19Yw4/vDiIyMZNc3BSzdnsNDV8ThcdfvrAoVRUZGMr51a/oszmTGylRuHtYJYwxbMw7xy3c30i2qKaN7RtVrPBGR2qp272etfd9aexPQG1gE3A+0M8Y8b4y5IkD5iYhIDQZ3bsVzNw1ideoB7nljHcVeH2+sSiPMbZhycacGj2+MYeqILmzLOsy6tDx25xzh9lcTaRbh4fU7h9f71GUiIrV1yjldrLVHgDeAN4wxrYEbgYeBzxs4t7PO9GXOUORA9Ojm5jpzXwai5yKQsQIdT7EU63yI9a2BMRw6VsyjH2zm7pcXsWJnLhMH96Bt80YNEq9U6XpdOyiGP32SxD/m72BHdgE+a3n9zhF0uKBxg8RTj66I1EadvmJbaw9Ya/9jrR3fUAmdzV7f9Dqvb3o9ILFyc3PLduihFCvQ8RRLsc6XWLeN6MIvruzFp2t3kH8wr0FPOCtVul5NIzx856KOLE75hvxjxbz2vWH0aNusweKJiNTGmc/OLSIiZ4WfxHcnM20XqTlHuDi2VUBjf//Srmzel89DV/biwo4tAxpbRKQqKnJFREKEMYbbL4kt+zuQOkc2YfbdIwMaU0SkJjojQERERERCjrHW1v+TGvMNsKfenzj0tAFOvlSRBILaPnjU9sGjtg8OtXvwqO2DJ5Bt38Vae9J8hQ1S5ErtGGPWWGuHBjuP85HaPnjU9sGjtg8OtXvwqO2D52xoew1XEBEREZGQoyJXREREREKOitzgejHYCZzH1PbBo7YPHrV9cKjdg0dtHzxBb3uNyRURERGRkKOeXBEREREJOSpyRURERCTkqMgVERERkZCjIldEREREQo6KXBEREREJOSpyRURERCTkqMgVERERkZDjaYgnbdOmjY2NjW2Ipw6q5NxkAHpF9gpyJiKh6ehR5z3WpIneY8FQH/s4vYYiEmhr167NsdZGnbi8QYrc2NhY1qxZ0xBPHVTxCfEALJq2KKh5iISq9evjARg8eFFQ8zhf1cc+Tq+hiASaMWZPVcs1XEFEREREQo6KXBEREREJOQ0yXCFUaZiCSMPSIW4REakv6skVERERkZCjIldEREREQo6K3DqIT4gvO/tYROrf+vXxZWfni4iInAkVuSIiIiISclTkioiIiEjIUZErIiIiIiFHU4jVwbRB04KdgkhIa99+WrBTEBGREKEitw5U5Io0rOjoacFOQUREQoSGK4iIiIhIyFGRWwcJGxJI2JAQ7DREQlZmZgKZmQnBTkNEREKAitw6UJEr0rCyshLIykoIdhoiIhICVOSKiIiISMhRkSsiIiIiIUdFroiIiIiEHE0hVgeLpi0KdgoiIW3w4EXBTkFEREKEenJFREREJOSoyBURERGRkKMitw7iE+KJT4gPdhoiIWv9+njWr48PdhoiIhICVOSKiIiISMhRkSsiIiIiIUdFroiIiIiEHE0hVgfTBk0LdgpSS3v37mX58uXcdNNNwU5F6qB9+2nBTkFEREKEitw6UJF77pg/fz5bt25VkXuOiY6eFuwUREQkRGi4goScZcuW8cADDzB79mwGDRrE7t27g52SiIiIBJiK3DpI2JBAwoaEYKchpzBq1CguvvhiPvzwQzZs2EDXrl2DnZLUUmZmApmZCcFOQ07w/vvvY4xh27ZtZcv27t3LW2+9FcSsRERqpiK3DlTknjuSk5Pp1atX2f9PPPGEenTPAVlZCWRlJQQ7DTnBzJkzGTp0KLNmzSpbNn/+fNatWxfErEREaqYiV0JObm4uLVu2JCwsjGPHjnH33Xcza9YsfvrTn3Lo0KFgpydyTikoKGDx4sW88sorzJw5E9CQIBE5N+jEMwk5u3fvJiYmBoB///vfTJ06lePHjzNw4EA2btzIqFGjgpyhyLnjgw8+4LLLLmPAgAE0bdqUdevWlQ0JeuaZZ+jfv3+wUxQRqZJ6ciXk9O7dm5ycHPr378/cuXNp06YNnTp1YtOmTfTr1y/Y6YmcU2bOnMmUKVMAmDJlSllv7olDgkREzjbqya2DRdMWBTsFqYVmzZqRmJgIwDvvvMOdd95JeHg43/ve92jVqlWQs5OaDB68KNgpSAW5ubkkJiby3nvvAXDTTTcxduxYHn744bIhQSIiZyv15J6hwsJCtm/fHuw0pBo33ngjI0eOZObMmdx2223BTkcqyMnJYf/+/cFOQ2owe/ZsJk6cWDbmtmvXrrRv356tW7cSExNDXl4ee/fuDXKWIiJVU5F7mgoLC3nhhRfo2bMnzz33XLDTkRr8+c9/pm3btsFOQ06wdOlS+vTpw3333UdmZmaw05ETlJSU8Le//Y0333yTiy66iNjYWGJjY0lKSuLVV18lJyeHIUOG0LdvX+666y5SU1ODnbKISCUarlAH8Qnx+Hw+hm0dxowZM4iNjeXBBx+kV69ezJs3L9jpiZxTGjduzPTp05k9ezZxcXFMmDCBu+7KIjq6kYYtBNnvf/97/vOf/9CqVSuefPJJBgwYgDGmyvseOnSI9957jwEDBnDppZfygx8coVu3pgHOWETkZCpy68h7zMuLL75ISUkJPp+PTz75hE8//TTYaYmcs44ePUrjxo2ZO3cu/frFcsMNHYKd0nnNWss//vEPDh06RJs2bViwYAELFy6s8THHjh2jadOmfPHFF3Tt2lFFroicFVTk1lFY0zDy8vJ4++23eeKJJ4iIiOCpp55i9OjRwU5N5JySkZHBo48+ykcffcQ999zDfffdR2rqt4Od1nnPGEN2djZz5szh8ccfZ//+/Tz55JNcffXVJ903NzeX3/72t8ycOZMf/OAHPPTQQ+zbNyUIWYuInExF7mlwu93cfPPNTJkyhbfffpsFCxaoyBWpo/Xr19OlSxe2b99eNuuFhnWeHYwxTJ48mUmTJjFnzhwWLFhQZZG7efNmWrZsybZt28rGve/bF+hsRUSqpiK3DqYNmlbp/9JiV0Tq7pprruGaa66ptKx9+2nBSUaqVFrsTp48ucrbx44dy9ixYwOclYhI7ajIrYMTi1wRqV/R0dOCnYKIiIQITSEmIiIiIiFHRW4dJGxIIGFDQrDTEAlZmZkJZGYmBDsNEREJASpy60BFrkjDyspKICsrIdhpiIhICFCRKyIiIiIhR0WuiIiIiIQcFbkiIiIiEnI0hVgdLJq2KNgpiIS0wYMXBTsFEREJEerJFREREZGQoyJXREREREKOitw6iE+IJz4hPthpiISs9evjWb8+PthpiIhICFCRKyIiIiIhR0WuiIiIiIQcFbkiIiIiEnI0hVgdTBs0LdgpiIS09u2nBTsFEREJESpy60BFrkjDio6eFuwUREQkRGi4goiIiIiEHBW5dZCwIYGEDQnBTkMkZGVmJpCZmRDsNEREJASoyK0DFbkiDSsrK4GsrIRgpyEiIiFARa6IiIiIhBwVuSIiIiISclTkioiIiEjIMdba+n9SY74B9tT7E4eeNkBOsJM4T6ntg0dtHzxq++BQuweP2j54Atn2Xay1UScubJAiV2rHGLPGWjs02Hmcj9T2waO2Dx61fXCo3YNHbR88Z0Pba7iCiIiIiIQcFbkiIiIiEnJU5AbXi8FO4Dymtg8etX3wqO2DQ+0ePGr74Al622tMroiIiIiEHPXkioiIiEjIUZErIiIiIiFHRW4AGGNuNMZsMcb4jDFDT7jt18aYHcaYZGPMlRWWT/Qv22GMeTjwWYceY8zjxph9xpgN/p+rK9xW5esg9UfbdGAZY1KNMZv82/oa/7LWxpgvjDHb/b9bBTvPUGCMedUYk22M2VxhWZVtbRz/8L8PNhpjhgQv83NfNW2vfX0DM8Z0MsYsNMYk+eubn/uXn1XbvYrcwNgMXA8sqbjQGNMX+C7QD5gI/NsY4zbGuIF/AVcBfYGb/feVM/dXa+0g/88nUP3rEMwkQ4226aAZ59/WS79cPwzMt9b2BOb7/5czl4Cz76ioura+Cujp/7kLeD5AOYaqBE5ue9C+vqGVAA9aa/sAI4B7/O17Vm33KnIDwFqbZK1NruKma4FZ1tpCa+1uYAcwzP+zw1q7y1pbBMzy31caRnWvg9QfbdNnh2uB1/x/vwZcF8RcQoa1dglw4ITF1bX1tcAM6/gKuMAYEx2YTENPNW1fHe3r64m1NtNau87/92EgCejAWbbdq8gNrg5AeoX/9/qXVbdczty9/kMlr1Y4VKv2bnhq48CzwOfGmLXGmLv8y9pZazPB+ZAC2gYtu9BXXVvrvRAY2tcHiDEmFhgMrOIs2+5V5NYTY8yXxpjNVfzU1Ftlqlhma1gup3CK1+F5oDswCMgEni19WBVPpfauX2rjwLvUWjsE5zDhPcaYMcFOSAC9FwJB+/oAMcY0A94F7rPWHqrprlUsa/C29zR0gPOFtfay03jYXqBThf87Ahn+v6tbLjWo7etgjHkJmOP/t6bXQeqH2jjArLUZ/t/Zxpj3cQ7L7jfGRFtrM/2HCrODmmRoq66t9V5oYNba/aV/a1/fcIwxYTgF7hvW2vf8i8+q7V49ucH1EfBdY0yEMaYrzoDsRGA10NMY09UYE44zUP6jIOYZEk4Y//NtnBMCofrXQeqPtukAMsY0NcY0L/0buAJne/8IuMN/tzuAD4OT4Xmhurb+CLjdf7b5CCC/9PCu1A/t6xueMcYArwBJ1trnKtx0Vm336skNAGPMt4F/AlHAXGPMBmvtldbaLcaYt4GtOGcq3mOt9fofcy/wGeAGXrXWbglS+qHkaWPMIJxDJKnAjwBqeh2kflhrS7RNB1Q74H3ncwgP8Ka1dp4xZjXwtjHmTiANuDGIOYYMY8xMIB5oY4zZCzwGPEXVbf0JcDXOSU9Hge8FPOEQUk3bx2tf3+AuBaYCm4wxG/zLHuEs2+51WV8RERERCTkariAiIiIiIUdFroiIiIiEHBW5IiIiIhJyVOSKiIiISMhRkSsiIiIiIUdFroiIiIiEHBW5IiK1ZIyJNMZs8P9kGWP2Vfh/RQPEm2aM+cYY8/JpPv4v/jwfqu/cRETOdroYhIhILVlrc4FBAMaYx4ECa+0zDRz2LWvtvafzQGvtL4wxR+o7IRGRc4F6ckVE6oExpsD/O94Ys9gY87YxJsUY85Qx5lZjTKIxZpMxprv/flHGmHeNMav9P5fWIsY0Y8x7xph5xpjtxpin/cvdxpgEY8xmf4z7G3ZtRUTOfurJFRGpfwOBPsABYBfwsrV2mDHm58BPgfuAvwN/tdYuM8Z0xrnkcZ9aPPcgYDBQCCQbY/4JtAU6WGv7AxhjLqjvFRIROdeoyBURqX+rrbWZAMaYncDn/uWbgHH+vy8D+hpjSh/TwhjT3Fp7+BTPPd9am+9/7q1AF2AL0M1f8M6tEE9E5LylIldEpP4VVvjbV+F/H+X7XRdwibX22Bk8txfwWGvzjDEDgSuBe4ApwPfrnLWISAjRmFwRkeD4HCg7ocwYM+h0n8gY0wZwWWvfBX4DDDnz9EREzm3qyRURCY6fAf8yxmzE2RcvAX58ms/VAfivMaa04+LX9ZCfiMg5zVhrg52DiIhUwRgzDRh6ulOI+Z/jcQIz1ZmIyFlFwxVERM5ex4CrzuRiEMBtgObKFZHzjnpyRURERCTkqCdXREREREKOilwRERERCTkqckVEREQk5KjIFREREZGQ8/8AEYO/Vgr6VgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axes = beacon_sync_figure(\n", " time, impulses, beacons,\n", " delta_t = (B + [0,-0])/f_beacon + t_phi,\n", " beacon_offsets = phase2time(beacon_init_phase, f_beacon) + t_phi,\n", " impulse_offsets = impulses_offsets,\n", " f_beacon = f_beacon,\n", " show_annotations = True\n", ")\n", "axes[0].set_title(\"Beacons synchronised, Period alignment\")\n", "fig.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }