#!/usr/bin/env python3 # vim: fdm=indent ts=4 """ Find beacon phases in antenna traces And save these to a file """ import h5py import matplotlib.pyplot as plt import numpy as np import aa_generate_beacon as beacon import lib from lib import figlib if __name__ == "__main__": from os import path import sys import matplotlib import os if os.name == 'posix' and "DISPLAY" not in os.environ: matplotlib.use('Agg') from scriptlib import MyArgumentParser parser = MyArgumentParser() group1 = parser.add_mutually_exclusive_group() group1.add_argument('--AxB', dest='use_AxB_trace', action='store_true', help='Only use AxB trace, if both AxB and beacon are not used, we use the antenna polarisations.') group1.add_argument('--beacon', dest='use_beacon_trace', action='store_true', help='Only use the beacon trace') parser.add_argument('--N-mask', type=float, default=500, help='Mask N_MASK samples around the absolute maximum of the trace. (Default: %(default)d)') args = parser.parse_args() f_beacon_band = (49e-3,55e-3) #GHz allow_frequency_fitting = False read_frequency_from_file = True N_mask = int(args.N_mask) use_only_AxB_trace = args.use_AxB_trace use_only_beacon_trace = args.use_beacon_trace # only applicable if AxB = False show_plots = args.show_plots figsize = (12,8) print("use_only_AxB_trace:", use_only_AxB_trace, "use_only_beacon_trace:", use_only_beacon_trace) #### fname_dir = args.data_dir antennas_fname = path.join(fname_dir, beacon.antennas_fname) snr_fname = path.join(fname_dir, beacon.snr_fname) fig_dir = args.fig_dir # set None to disable saving if not path.isfile(antennas_fname): print("Antenna file cannot be found, did you try generating a beacon?") sys.exit(1) snrs = beacon.read_snr_file(snr_fname) snr_str = f"$\\langle SNR \\rangle$ = {snrs['mean']: .1e}" # read in antennas with h5py.File(antennas_fname, 'a') as fp: if 'antennas' not in fp.keys(): print("Antenna file corrupted? no antennas") sys.exit(1) group = fp['antennas'] f_beacon = None if read_frequency_from_file and 'tx' in fp: tx = fp['tx'] if 'f_beacon' in tx.attrs: f_beacon = tx.attrs['f_beacon'] else: print("No frequency found in file.") sys.exit(2) f_beacon_estimate_band = 0.01*f_beacon elif allow_frequency_fitting: f_beacon_estimate_band = (f_beacon_band[1] - f_beacon_band[0])/2 f_beacon = f_beacon_band[1] - f_beacon_estimate_band else: print("Not allowed to fit frequency and no tx group found in file.") sys.exit(2) N_antennas = len(group.keys()) # just for funzies found_data = np.zeros((N_antennas, 3)) # freq, phase, amp noise_data = np.zeros((N_antennas, 2)) # phase, amp # Determine frequency and phase for i, name in enumerate(group.keys()): h5ant = group[name] # use E_AxB only instead of polarisations if use_only_AxB_trace: traces_key = 'E_AxB' if traces_key not in h5ant.keys(): print(f"Antenna does not have '{traces_key}' in {name}") sys.exit(1) traces = h5ant[traces_key] t_trace = traces[0] test_traces = [ traces[1] ] orients = ['E_AxB'] # Only beacon elif use_only_beacon_trace: traces_key = 'filtered_traces' if traces_key not in h5ant.keys(): print(f"Antenna file corrupted? no '{traces_key}' in {name}") sys.exit(1) traces = h5ant[traces_key] t_trace = traces[0] test_traces = [traces[4]] orients = ['B'] # use separate polarisations else: traces_key = 'filtered_traces' if traces_key not in h5ant.keys(): print(f"Antenna file corrupted? no '{traces_key}' in {name}") sys.exit(1) traces = h5ant[traces_key] t_trace = traces[0] test_traces = [traces[i] for i in range(1,4)] orients = ['Ex', 'Ey', 'Ez'] # Really only select the first component if True: test_traces = [test_traces[0]] orients = [orients[0]] # TODO: refine masking # use beacon but remove where E_AxB-Beacon != 0 # Uses the first traces as reference t_mask = 0 if N_mask and orients[0] != 'B': N_pre, N_post = N_mask//2, N_mask//2 max_idx = np.argmax(test_traces[0]) low_idx = max(0, max_idx-N_pre) high_idx = min(len(t_trace), max_idx+N_post) t_mask = np.ones(len(t_trace), dtype=bool) t_mask[low_idx:high_idx] = False t_trace = t_trace[t_mask] for j, t in enumerate(test_traces): test_traces[j] = t[t_mask] orients[j] = orients[j] + ' masked' # Do Fourier Transforms # to find phases and amplitudes if True: freqs, beacon_phases, amps = lib.find_beacon_in_traces( test_traces, t_trace, f_beacon_estimate=f_beacon, frequency_fit=allow_frequency_fitting, f_beacon_estimate_band=f_beacon_estimate_band ) else: # Testing freqs = [f_beacon] t0 = h5ant.attrs['t0'] beacon_phases = [ 2*np.pi*t0*f_beacon ] amps = [ 3e-7 ] # Also try to find the phase from the noise trace if available if len(h5ant[traces_key]) > 4: noise_trace = h5ant[traces_key][5] if np.any(t_mask): # Mask the same area noise_trace = noise_trace[t_mask] real, imag = lib.direct_fourier_transform(f_beacon, t_trace, noise_trace) noise_phase = np.arctan2(imag, real) noise_amp = (real**2 + imag**2)**0.5 noise_data[i] = noise_phase, noise_amp # choose highest amp idx = np.argmax(amps) if False and len(beacon_phases) > 1: #idx = np.argmax(amplitudes, axis=-1) raise NotImplementedError frequency = freqs[idx] beacon_phase = beacon_phases[idx] amplitude = amps[idx] orientation = orients[idx] # Correct for phase by t_trace[0] corr_phase = lib.phase_mod(2*np.pi*f_beacon*t_trace[0]) if False: # Subtract phase due to not starting at t=0 # This is already done in beacon_find_traces beacon_phase = lib.phase_mod(beacon_phase + corr_phase) # for reporting using plots found_data[i] = frequency, beacon_phase, amplitude if (show_plots or fig_dir) and (i == 0 or i == 72): p2t = lambda phase: phase/(2*np.pi*f_beacon) fig, ax = plt.subplots(figsize=figsize) ax.set_title(f"Beacon at antenna {h5ant.attrs['name']}\nF:{frequency:.2e}, P:{beacon_phase:.4f}, A:{amplitude:.1e}") ax.set_xlabel("t [ns]") ax.set_ylabel("Amplitude") if True: # let the trace start at t=0 t_0 = min(t_trace) extra_phase = corr_phase else: t_0 = 0 extra_phase = -1*corr_phase for j, trace in enumerate(test_traces): ax.plot(t_trace - t_0, test_traces[j], marker='.', label='trace '+orients[j]) myt = np.linspace(min(t_trace), max(t_trace), 10*len(t_trace)) - t_0 ax.plot(myt, lib.sine_beacon(frequency, myt, amplitude=amplitude, t0=0, phase=beacon_phase+extra_phase), ls='dotted', label='simulated beacon') ax.axvline( p2t(lib.phase_mod(-1*(beacon_phase+extra_phase), low=0)), color='r', ls='dashed', label='$t_\\varphi$') ax.axvline(0,color='grey',alpha=0.5) ax.axhline(0,color='grey',alpha=0.5) ax.legend(title=snr_str) if fig_dir: old_xlims = ax.get_xlim() ax.set_xlim(min(t_trace)-t_0-10,min(t_trace)-t_0+40) fig.savefig(path.join(fig_dir, path.basename(__file__) + f".A{h5ant.attrs['name']}.zoomed.pdf")) ax.set_xlim(*old_xlims) fig.savefig(path.join(fig_dir, path.basename(__file__) + f".A{h5ant.attrs['name']}.pdf")) # save to file h5beacon_info = h5ant.require_group('beacon_info') # only take n_sig significant digits into account # for naming in hdf5 file n_sig = 3 decimal = int(np.floor(np.log10(abs(frequency)))) freq_name = str(np.around(frequency, n_sig-decimal)) # delete previous values if freq_name in h5beacon_info: del h5beacon_info[freq_name] h5beacon_freq_info = h5beacon_info.create_group(freq_name) h5attrs = h5beacon_freq_info.attrs h5attrs['freq'] = frequency h5attrs['beacon_phase'] = beacon_phase h5attrs['amplitude'] = amplitude h5attrs['orientation'] = orientation if noise_phase: h5attrs['noise_phase'] = noise_phase h5attrs['noise_amp'] = noise_amp print("Beacon Phases, Amplitudes and Frequencies written to", antennas_fname) # show histogram of found frequencies if show_plots or fig_dir: if True or allow_frequency_fitting: fig, ax = plt.subplots(figsize=figsize) ax.set_xlabel("Frequency") ax.set_ylabel("Counts") ax.axvline(f_beacon, ls='dashed', color='g') ax.hist(found_data[:,0], bins='sqrt', density=False) ax.legend(title=snr_str) if fig_dir: fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_freq.pdf")) if True: fig, _ = figlib.fitted_histogram_figure(found_data[:,2], fit_distr=['rice']) ax = fig.axes[0] ax.set_xlabel("Amplitude") ax.set_ylabel("Counts") ax.hist(found_data[:,2], bins='sqrt', density=False) ax.legend(title=snr_str) if fig_dir: fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_amp.pdf")) if (noise_data[0] != 0).any(): if True: fig, ax = plt.subplots(figsize=figsize) ax.set_title("Noise Phases") ax.set_xlabel("Phase") ax.set_ylabel("#") ax.hist(noise_data[:,0], bins='sqrt', density=False) ax.legend(title=snr_str) if fig_dir: fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.hist_phase.pdf")) if True: fig, ax = plt.subplots(figsize=figsize) ax.set_title("Noise Phase vs Amplitude") ax.set_xlabel("Phase") ax.set_ylabel("Amplitude [a.u.]") ax.plot(noise_data[:,0], noise_data[:,1], ls='none', marker='x') if fig_dir: fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.phase_vs_amp.pdf")) if True: fig, _ = figlib.fitted_histogram_figure(noise_data[:,1], fit_distr=['rice', 'rayleigh']) ax = fig.axes[0] ax.set_title("Noise Amplitudes") ax.set_xlabel("Amplitude [a.u.]") ax.set_ylabel("#") ax.legend(title=snr_str) if fig_dir: fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.hist_amp.pdf")) if show_plots: plt.show()