#!/usr/bin/env python3 # vim: fdm=indent ts=4 """ Find the best integer multiple to shift antennas to be able to resolve """ import h5py from itertools import combinations, zip_longest, product import matplotlib.pyplot as plt import numpy as np from os import path import os from scipy.interpolate import interp1d from earsim import REvent from atmocal import AtmoCal import aa_generate_beacon as beacon import lib from lib import rit try: from tqdm import tqdm except: tqdm = lambda x: x def find_best_period_shifts_summing_at_location(test_loc, antennas, allowed_ks, period=1, dt=None, period_shift_first_trace=0, plot_iteration_with_shifted_trace=None, fig_dir=None, fig_distinguish=None,snr_str=None, shower_plane_loc=None): """ Find the best sample_shift for each antenna by summing the antenna traces and seeing how to get the best alignment. """ a_ = [] t_ = [] t_min = 1e9 t_max = -1e9 a_maxima = [] N_ant = len(antennas) if dt is None: dt = antennas[0].t_AxB[1] - antennas[0].t_AxB[0] if not hasattr(plot_iteration_with_shifted_trace, '__len__'): if plot_iteration_with_shifted_trace: plot_iteration_with_shifted_trace = [ plot_iteration_with_shifted_trace ] else: plot_iteration_with_shifted_trace = [] # propagate to test location for i, ant in enumerate(antennas): aloc = [ant.x, ant.y, ant.z] delta, dist = atm.light_travel_time(test_loc, aloc) delta = delta*1e9 t__ = np.subtract(ant.t_AxB, delta) t_.append(t__) a_.append(ant.E_AxB) a_maxima.append(max(ant.E_AxB)) if t__[0] < t_min: t_min = t__[0] if t__[-1] > t_max: t_max = t__[-1] # sort traces with descending maxima sort_idx = np.argsort(a_maxima)[::-1] t_ = [ t_[i] for i in sort_idx ] a_ = [ a_[i] for i in sort_idx ] # Interpolate and find best sample shift max_neg_shift = 0 #np.min(allowed_sample_shifts) * dt max_pos_shift = 0 #np.max(allowed_sample_shifts) * dt t_sum = np.arange(t_min+max_neg_shift, t_max+max_pos_shift, dt) a_sum = np.zeros(len(t_sum)) a_first = np.zeros(len(t_sum)) best_period_shifts = np.zeros( (len(antennas)) ,dtype=int) for i, (t_r, E_) in enumerate(zip(t_, a_)): f = interp1d(t_r, E_, assume_sorted=True, bounds_error=False, fill_value=0) if i == 0: a_sum += f(t_sum) a_first = a_sum best_period_shifts[i] = period_shift_first_trace continue # init figure if i in plot_iteration_with_shifted_trace: fig, ax = plt.subplots(figsize=figsize) if shower_plane_loc is not None: title_location = "s({:.1g},{:.1g},{:.1g})".format(*shower_plane_loc) else: title_location = "({.1g},{:.1g},{:.1g})".format(*test_loc) ax.set_title("Traces at {}; i={i}/{tot}".format(title_location, i=i, tot=N_ant)) ax.set_xlabel("Time [ns]") ax.set_ylabel("Amplitude") ax.plot(t_sum, a_sum) fig2, ax2 = plt.subplots(figsize=figsize) ax2.set_title("Maxima at {}; i={i}/{tot}".format(title_location, i=i, tot=N_ant)) ax2.set_xlabel("$k$th Period") ax2.set_ylabel("Summed Amplitude") ax2.plot(0, np.max(a_first), marker='*', label='strongest trace', ls='none', ms=20) # find the maxima for each period shift k shift_maxima = np.zeros( len(allowed_ks) ) for j, k in enumerate(allowed_ks): augmented_a = f(t_sum + k*period) shift_maxima[j] = np.max(augmented_a + a_first) if i in plot_iteration_with_shifted_trace and abs(k) <= 3: ax.plot(t_sum, augmented_a, alpha=0.7, ls='dashed', label=f'{k:g}') ax2.plot(k, shift_maxima[j], marker='o', ls='none', ms=20) # transform maximum into best_sample_shift best_idx = np.argmax(shift_maxima) best_period_shifts[i] = allowed_ks[best_idx] best_augmented_a = f(t_sum + k*period) a_sum += best_augmented_a # cleanup figure if i in plot_iteration_with_shifted_trace: # plot the traces if True: # plot best k again ax.plot(t_sum, best_augmented_a, alpha=0.8, label=f'best $k$={best_period_shifts[i]:g}', lw=2) if True: # plot best shift ax2.plot(allowed_ks[best_idx], shift_maxima[best_idx], marker='*', ls='none', ms=20, label=f'best $k$={best_period_shifts[i]:g}') ax.legend(title='period shift $k$; '+snr_str, ncol=5 ) ax2.legend(title=snr_str) if fig_dir: fig.tight_layout() fig2.tight_layout() if shower_plane_loc is not None: fname_location = '.sloc{:.1g}-{:.1g}-{:.1g}'.format(*shower_plane_loc) else: fname_location = '.loc{:.1f}-{:.1f}-{:.1f}'.format(*test_loc) fname = path.join(fig_dir, path.basename(__file__) + f'.{fig_distinguish}i{i}' + fname_location) if True: old_xlim = ax.get_xlim() if True: # zoomed on part without peak of this trace wx = 100 x = max(t_r) - wx ax.set_xlim(x-wx, x+wx) fig.savefig(fname + ".zoomed.beacon.pdf") if True: # zoomed on peak of this trace x = t_r[np.argmax(E_)] wx = 50 + (max(best_period_shifts) - min(best_period_shifts))*dt ax.set_xlim(x-wx, x+wx) fig.savefig(fname + ".zoomed.peak.pdf") ax.set_xlim(*old_xlim) fig.savefig(fname + ".pdf") fig2.savefig(fname + ".maxima.pdf") plt.close(fig) plt.close(fig2) # sort by antenna (undo sorting by maximum) undo_sort_idx = np.argsort(sort_idx) best_period_shifts = best_period_shifts[undo_sort_idx] # Return ks return best_period_shifts, np.max(a_sum) if __name__ == "__main__": import sys import os import matplotlib if os.name == 'posix' and "DISPLAY" not in os.environ: matplotlib.use('Agg') plt.rcParams.update({'figure.max_open_warning': 0}) atm = AtmoCal() from scriptlib import MyArgumentParser parser = MyArgumentParser(default_fig_dir="./figures/periods_from_shower_figures/") parser.add_argument('--quick_run', action='store_true', help='Use a very coarse grid (6x6)') parser.add_argument('--max-k', type=float, default=2, help='Maximum abs(k) allowed to be shifted. (Default: %(default)d)') parser.add_argument('-N', '--N_runs', type=int, default=5, help='Maximum amount of iterations to grid search. (Default: %(default)d)') parser.add_argument('-l', '--passband-low', type=float, default=30e-3, help='Lower frequency [GHz] of the passband filter. (set -1 for np.inf) (Default: %(default)g)') parser.add_argument('-u', '--passband-high', type=float, default=80e-3, help='Upper frequency [GHz] of the passband filter. (set -1 for np.inf) (Default: %(default)g)') parser.add_argument('--input-fname', type=str, default=None, help='Path to mysim.sry, either directory or path. If empty it takes DATA_DIR and appends mysim.sry. (Default: %(default)s)') args = parser.parse_args() if not args.input_fname: args.input_fname = args.data_dir if path.isdir(args.input_fname): args.input_fname = path.join(args.input_fname, "mysim.sry") figsize = (12,8) fig_dir = args.fig_dir fig_subdir = path.join(fig_dir, 'shifts/') show_plots = args.show_plots max_k = int(args.max_k) allowed_ks = np.arange(-max_k, max_k+1, dtype=int) Xref = 400 N_runs = args.N_runs remove_beacon_from_trace = True apply_signal_window_from_max = True low_bp = args.passband_low if args.passband_low >= 0 else np.inf # GHz high_bp = args.passband_high if args.passband_high >= 0 else np.inf # GHz #### fname_dir = args.data_dir antennas_fname = path.join(fname_dir, beacon.antennas_fname) time_diffs_fname = 'time_diffs.hdf5' if not True else antennas_fname tx_fname = path.join(fname_dir, beacon.tx_fname) beacon_snr_fname = path.join(fname_dir, beacon.beacon_snr_fname) ## This is a file indicating whether the k-finding algorithm was ## stopped early. This happens when the ks do not change between ## two consecutive iterations. run_break_fname = path.join(fname_dir, 'ca_breaked_run') # create fig_dir if fig_dir: os.makedirs(fig_dir, exist_ok=True) if fig_subdir: os.makedirs(fig_subdir, exist_ok=True) # Read in antennas from file _, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) _, __, txdata = beacon.read_tx_file(tx_fname) # Read original REvent ev = REvent(args.input_fname) # .. patch in our antennas ev.antennas = antennas # read in snr information beacon_snrs = beacon.read_snr_file(beacon_snr_fname) snr_str = f"$\\langle SNR \\rangle$ = {beacon_snrs['mean']: .1g}" # For now only implement using one freq_name freq_names = antennas[0].beacon_info.keys() if len(freq_names) > 1: raise NotImplementedError freq_name = next(iter(freq_names)) f_beacon = ev.antennas[0].beacon_info[freq_name]['freq'] ## ## Manipulate time and traces of each antenna ## ### Remove time due to true phase ### and optionally remove the beacon ### Note: there is no use in changing *_AxB variables here (except for plotting), ### they're recomputed by the upcoming rit.set_pol_and_bp call. measured_repair_offsets = beacon.read_antenna_clock_repair_offsets(ev.antennas, mode='phases', freq_name=freq_name) for i, ant in enumerate(ev.antennas): ev.antennas[i].orig_t = ev.antennas[i].t ev.antennas[i].t += measured_repair_offsets[i] # t_AxB will be set by the rit.set_pol_and_bp function ev.antennas[i].t_AxB += measured_repair_offsets[i] if apply_signal_window_from_max: N_pre, N_post = 250, 250 # TODO: make this configurable # Get max idx from all the traces # and select the strongest max_idx = [] maxs = [] for trace in [ant.Ex, ant.Ey, ant.Ez]: idx = np.argmax(np.abs(trace)) max_idx.append(idx) maxs.append( np.abs(trace[idx]) ) idx = np.argmax(maxs) max_idx = max_idx[idx] # Create window around max_idx low_idx = max(0, max_idx-N_pre) high_idx = min(len(ant.t), max_idx+N_post) ev.antennas[i].orig_t = ant.orig_t[low_idx:high_idx] ev.antennas[i].t = ant.t[low_idx:high_idx] ev.antennas[i].Ex = ant.Ex[low_idx:high_idx] ev.antennas[i].Ey = ant.Ey[low_idx:high_idx] ev.antennas[i].Ez = ant.Ez[low_idx:high_idx] ev.antennas[i].t_AxB = ant.t_AxB[low_idx:high_idx] ev.antennas[i].E_AxB = ant.E_AxB[low_idx:high_idx] # .. and remove the beacon from the traces # Note: ant.E_AxB is recalculated by rit.set_pol_and_bp if remove_beacon_from_trace: clock_phase = measured_repair_offsets[i]*2*np.pi*f_beacon beacon_phase = ant.beacon_info[freq_name]['beacon_phase'] f = ant.beacon_info[freq_name]['freq'] ampl = ant.beacon_info[freq_name]['amplitude'] calc_beacon = lib.sine_beacon(f, ev.antennas[i].t, amplitude=ampl, phase=beacon_phase-clock_phase) tx_amps = txdata['amplitudes'] tx_amps_sum = np.sum(tx_amps) # Split up contribution to the various polarisations for j, amp in enumerate(tx_amps): if j == 0: ev.antennas[i].Ex -= amp*(1/tx_amps_sum)*calc_beacon elif j == 1: ev.antennas[i].Ey -= amp*(1/tx_amps_sum)*calc_beacon elif j == 2: ev.antennas[i].Ez -= amp*(1/tx_amps_sum)*calc_beacon # Subtract the beacon from E_AxB ev.antennas[i].E_AxB -= calc_beacon # Make a figure of the manipulated traces if i == 72: orig_beacon_amplifier = ampl/max(ant.beacon) fig, ax = plt.subplots(figsize=figsize) ax.set_title(f"Signal and Beacon traces Antenna {ant.name}") ax.set_xlabel("Time [ns]") ax.set_ylabel("Amplitude [$\\mu V/m$]") ax.plot(ant.t_AxB, ant.E_AxB + calc_beacon, alpha=0.6, ls='dashed', label='Signal') # calc_beacon was already removed ax.plot(ant.t_AxB, calc_beacon, alpha=0.6, ls='dashed', label='Calc Beacon') ax.plot(ant.t_AxB, ant.E_AxB, alpha=0.6, label="Signal - Calc Beacon") ax.legend(title=snr_str) # save if fig_dir: fig.tight_layout() if True: # zoom old_xlim = ax.get_xlim() if True: # zoomed on part without peak of this trace wx, x = 200, min(ant.t_AxB) ax.set_xlim(x-5, x+wx) fig.savefig(path.join(fig_dir, path.basename(__file__)+f'.traces.A{ant.name}.zoomed.beacon.pdf')) if True: # zoomed on peak of this trace idx = np.argmax(ev.antennas[i].E_AxB) x = ev.antennas[i].t_AxB[idx] wx = 300 ax.set_xlim(x-wx//2, x+wx//2) fig.savefig(path.join(fig_dir, path.basename(__file__)+f".traces.A{ant.name}.zoomed.peak.pdf")) ax.set_xlim(*old_xlim) fig.savefig(path.join(fig_dir, path.basename(__file__)+f'.traces.A{ant.name}.pdf')) if show_plots: plt.show() # Prepare polarisation and passbands rit.set_pol_and_bp(ev, low=low_bp, high=high_bp) # determine allowable ks per location dt = ev.antennas[0].t_AxB[1] - ev.antennas[0].t_AxB[0] print("Checking k:", allowed_ks) ## ## Determine grid positions ## dXref = atm.distance_to_slant_depth(np.deg2rad(ev.zenith),Xref,0) scale2d = dXref*np.tan(np.deg2rad(2.)) scale4d = dXref*np.tan(np.deg2rad(4.)) if args.quick_run: #quicky x_coarse = np.linspace(-scale2d, scale2d, 6) y_coarse = np.linspace(-scale2d, scale2d, 6) x_fine = x_coarse/4 y_fine = y_coarse/4 else: # long x_coarse = np.linspace(-scale4d, scale4d, 40) y_coarse = np.linspace(-scale4d, scale4d, 40) x_fine = np.linspace(-scale2d, scale2d, 40) y_fine = np.linspace(-scale2d, scale2d, 40) ## Remove run_break_fname if it exists try: os.remove(run_break_fname) except OSError: pass ## ## Do calculations on the grid ## for r in range(N_runs): # Setup Plane grid to test if r == 0: xoff, yoff = 0,0 x = x_coarse y = y_coarse else: # zooming in # best_idx is defined at the end of the loop old_ks_per_loc = ks_per_loc[best_idx] xoff, yoff = locs[best_idx] if r == 1: x = x_fine y = y_fine else: x /= 4 y /= 4 print(f"Testing grid run {r} centered on ({xoff}, {yoff})") ks_per_loc = np.zeros( (len(x)*len(y), len(ev.antennas)) , dtype=int) maxima_per_loc = np.zeros( (len(x)*len(y))) ## Check each location on grid xx = [] yy = [] N_loc = len(maxima_per_loc) for i, (x_, y_) in tqdm(enumerate(product(x,y)), total=N_loc, ): tmp_fig_subdir = None if i % 10 ==0: if hasattr(tqdm, '__code__') and tqdm.__code__.co-name == '': print(f"Testing location {i} out of {N_loc}") tmp_fig_subdir = fig_subdir test_loc = (x_+xoff)* ev.uAxB + (y_+yoff)*ev.uAxAxB + dXref *ev.uA xx.append(x_+xoff) yy.append(y_+yoff) # Find best k for each antenna ks_per_loc[i], maxima_per_loc[i] = find_best_period_shifts_summing_at_location(test_loc, ev.antennas, allowed_ks, period=1/f_beacon, dt=dt, plot_iteration_with_shifted_trace=[ 5, len(ev.antennas)-1], fig_dir=tmp_fig_subdir, fig_distinguish=f"run{r}.", snr_str=snr_str,shower_plane_loc=((x_+xoff)/1e3, (y_+yoff)/1e3, dXref)) xx = np.array(xx) yy = np.array(yy) locs = list(zip(xx, yy)) ## Save maxima to file np.savetxt(path.join(fig_dir, path.basename(__file__)+f'.maxima.run{r}.txt'), np.column_stack((locs, maxima_per_loc, ks_per_loc)) ) if True: #plot maximum at test locations fig, axs = plt.subplots(figsize=figsize) axs.set_title(f"Optimizing signal strength by varying $k$ per antenna,\n Grid Run {r}") axs.set_ylabel("vxvxB [km]") axs.set_xlabel(" vxB [km]") axs.set_aspect('equal', 'datalim') sc = axs.scatter(xx/1e3, yy/1e3, c=maxima_per_loc, cmap='Spectral_r', alpha=0.6) fig.colorbar(sc, ax=axs, label='Max Amplitude [$\\mu V/m$]') axs.legend(title=snr_str) # indicate maximum value idx = np.argmax(maxima_per_loc) axs.plot(xx[idx]/1e3, yy[idx]/1e3, 'bx', ms=30) if fig_dir: old_xlims = axs.get_xlim() old_ylims = axs.get_ylim() fig.tight_layout() fig.savefig(path.join(fig_dir, path.basename(__file__)+f'.maxima.run{r}.pdf')) if False: axs.plot(tx.x/1e3, tx.y/1e3, marker='X', color='k') fig.tight_layout() fig.savefig(path.join(fig_dir, path.basename(__file__)+f'.maxima.run{r}.with_tx.pdf')) axs.set_xlim(*old_xlims) axs.set_ylim(*old_ylims) fig.tight_layout() ## best_idx = np.argmax(maxima_per_loc) best_k = ks_per_loc[best_idx] print("Max at location: ", locs[best_idx]) print('Best k:', best_k) ## Save best ks to file np.savetxt(path.join(fig_dir, path.basename(__file__)+f'.bestk.run{r}.txt'), best_k ) ## Do a small reconstruction of the shower for best ks if True: print("Reconstructing for best k") for j in range(2): power_reconstruction = j==1 if power_reconstruction: # Do power reconstruction # backup antenna times backup_times = [ ant.t_AxB for ant in ev.antennas ] # incorporate ks into timing for i, ant in enumerate(ev.antennas): ev.antennas[i].t_AxB = ant.t_AxB - best_k[i] * 1/f_beacon xx, yy, p, ___ = rit.shower_plane_slice(ev, X=Xref, Nx=len(x), Ny=len(y), wx=x[-1]-x[0], wy=y[-1]-y[0], xoff=xoff, yoff=yoff, zgr=0) # repair antenna times for i, backup_t_AxB in enumerate(backup_times): ev.antennas[i].t_AxB = backup_t_AxB else: # get maximum amplitude at each location maxima = np.empty( len(locs) ) for i, loc in enumerate(locs): test_loc = loc[0]* ev.uAxB + loc[1]*ev.uAxAxB + dXref *ev.uA P, t_, a_, a_sum, t_sum = rit.pow_and_time(test_loc, ev, dt=dt) maxima[i] = np.max(a_sum) fig, axs = plt.subplots(figsize=figsize) axs.set_title(f"Shower slice for best k, Grid Run {r}") axs.set_ylabel("vxvxB [km]") axs.set_xlabel(" vxB [km]") axs.set_aspect('equal', 'datalim') if power_reconstruction: sc = axs.scatter(xx/1e3, yy/1e3, c=p, cmap='Spectral_r', alpha=0.6) fig.colorbar(sc, ax=axs, label='Power') else: sc = axs.scatter(xx/1e3, yy/1e3, c=maxima, cmap='Spectral_r', alpha=0.6) fig.colorbar(sc, ax=axs, label='Max Amplitude [$\\mu V/m$]') axs.legend(title=snr_str) if fig_dir: if power_reconstruction: fname_extra = "power" else: fname_extra = "max_amp" fig.tight_layout() fig.savefig(path.join(fig_dir, path.basename(__file__)+f'.reconstruction.run{r}.{fname_extra}.pdf')) # Abort if no improvement if ( r!= 0 and (old_ks_per_loc == ks_per_loc[best_idx]).all() ): print(f"No changes from previous grid, breaking at iteration {r} out of {N_runs}") try: with open(run_break_fname, 'wt', encoding='utf-8') as fp: fp.write(f"Breaked at grid iteration {r} out of {N_runs}") except: pass break old_ks_per_loc = ks_per_loc[best_idx] # Save best ks to hdf5 antenna file with h5py.File(antennas_fname, 'a') as fp: group = fp.require_group('antennas') for i, ant in enumerate(antennas): h5ant = group[ant.name] h5beacon_info = h5ant['beacon_info'] # find out freq_name if freq_name is None: freq_name = [ k for k in h5beacon_info.keys() if np.isclose(h5beacon_info[k].attrs['freq'], f_beacon)][0] h5attrs = h5beacon_info[freq_name].attrs h5attrs['best_k'] = old_ks_per_loc[i] h5attrs['best_k_time'] = old_ks_per_loc[i]/f_beacon if show_plots: plt.show()