import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats from itertools import zip_longest def phase_comparison_figure( measured_phases, true_phases, plot_residuals=True, f_beacon=None, hist_kwargs={}, sc_kwargs={}, colors=['blue', 'orange'], legend_on_scatter=True, secondary_axis='time', fit_gaussian=False, **fig_kwargs ): """ Create a figure comparing measured_phase against true_phase by both plotting the values, and the residuals. """ default_fig_kwargs = dict(sharex=True) fig_kwargs = {**default_fig_kwargs, **fig_kwargs} do_hist_plot = hist_kwargs is not False do_scatter_plot = sc_kwargs is not False fig, axs = plt.subplots(0+do_hist_plot+do_scatter_plot, 1, **fig_kwargs) if not hasattr(axs, '__len__'): axs = [axs] if f_beacon and secondary_axis in ['phase', 'time']: phase2time = lambda x: x/(2*np.pi*f_beacon) time2phase = lambda x: 2*np.pi*x*f_beacon if secondary_axis == 'time': functions = (phase2time, time2phase) label = 'Time $\\varphi/(2\\pi f_{beac})$ [ns]' else: functions = (time2phase, phase2time) label = 'Phase $2\\pi t f_{beac}$ [rad]' secax = axs[0].secondary_xaxis('top', functions=functions) # Histogram if do_hist_plot: i=0 default_hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step') hist_kwargs = {**default_hist_kwargs, **hist_kwargs} axs[i].set_ylabel("#") _counts, _bins, _patches = axs[i].hist(measured_phases, color=colors[0], label='Measured', ls='solid', **hist_kwargs) if not plot_residuals: # also plot the true clock phases axs[i].hist(true_phases, color=colors[1], label='Actual', ls='dashed', **{**hist_kwargs, **dict(bins=_bins)}) if fit_gaussian:# Fit a gaussian to the histogram gauss_kwargs = dict(color=colors[0], ls='dotted') xs = np.linspace(min(_bins), max(_bins)) mean, std = norm.fit(measured_phases) dx = _bins[1] - _bins[0] scale = len(measured_phases)*dx fit_ys = norm.pdf(xs, mean, std) * scale axs[i].axvline(mean, ls='dotted', color='k', lw=2) axs[i].plot( xs, fit_ys, label='fit', **gauss_kwargs) # put mean, sigma and chisq on plot text_str = f"$\\mu$ = {mean: .2e}\n$\\sigma$ = {std: .2e}" text_kwargs = dict( transform=axs[i].transAxes, fontsize=14, verticalalignment='top') axs[i].text(0.02, 0.95, text_str, **text_kwargs) # Scatter plot if do_scatter_plot: i=1 default_sc_kwargs = dict(alpha=0.6, ls='none') sc_kwargs = {**default_sc_kwargs, **sc_kwargs} axs[i].set_ylabel("Antenna no.") axs[i].plot(measured_phases, np.arange(len(measured_phases)), marker='x' if plot_residuals else '3', color=colors[0], label='Measured', **sc_kwargs) if not plot_residuals: # also plot the true clock phases axs[i].plot(true_phases, np.arange(len(true_phases)), marker='4', color=colors[1], label='Actual', **sc_kwargs) if not plot_residuals and legend_on_scatter: axs[i].legend() fig.tight_layout() return fig def fitted_histogram_figure( amplitudes, fit_distr = None, calc_chisq = True, text_kwargs={}, hist_kwargs={}, mean_snr = None, ax = None, **fig_kwargs ): """ Create a figure showing $amplitudes$ as a histogram. If fit_distr is a (list of) string, also fit the respective distribution function and show the parameters on the figure. """ default_hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step', label='hist') default_text_kwargs = dict(fontsize=14, verticalalignment='top') if isinstance(fit_distr, str): fit_distr = [fit_distr] hist_kwargs = {**default_hist_kwargs, **hist_kwargs} text_kwargs = {**default_text_kwargs, **text_kwargs} if ax is None: fig, ax = plt.subplots(1,1, **fig_kwargs) else: fig = ax.get_figure() text_kwargs['transform'] = ax.transAxes counts, bins, _patches = ax.hist(amplitudes, **hist_kwargs) fit_info = [] if fit_distr: min_x = min(amplitudes) max_x = max(amplitudes) dx = bins[1] - bins[0] scale = len(amplitudes) * dx xs = np.linspace(min_x, max_x) for distr in fit_distr: fit_params2text_params = lambda x: x if 'rice' == distr: name = "Rice" param_names = [ "$\\nu$", "$\\sigma$" ] distr_func = stats.rice fit_params2text_params = lambda x: (x[0]*x[1], x[1]) elif 'gaussian' == distr: name = "Norm" param_names = [ "$\\mu$", "$\\sigma$" ] distr_func = stats.norm elif 'rayleigh' == distr: name = "Rayleigh" param_names = [ "$\\sigma$" ] distr_func = stats.rayleigh fit_params2text_params = lambda x: (x[0]+x[1]/2,) else: raise ValueError('Unknown distribution function '+distr) label = name +"(" + ','.join(param_names) + ')' fit_params = distr_func.fit(amplitudes) fit_ys = distr_func.pdf(xs, *fit_params) ax.plot(xs, fit_ys*scale, label=label) chisq_strs = [] if calc_chisq: ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts) c2t = stats.chisquare(counts, ct, ddof=len(fit_params)) chisq_strs = [ f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}" ] # change parameters if needed text_fit_params = fit_params2text_params(fit_params) text_str = "\n".join( [label] + [ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, text_fit_params, fillvalue='?') ] + chisq_strs ) this_info = { 'name': name, 'param_names': param_names, 'param_values': text_fit_params, 'text_str': text_str, } if chisq_strs: this_info['chisq'] = c2t[0] this_info['dof'] = len(fit_params) fit_info.append(this_info) loc = (0.02, 0.95) ax.text(*loc, "\n\n".join([info['text_str'] for info in fit_info]), **{**text_kwargs, **dict(ha='left')}) if mean_snr: text_str = f"$\\langle SNR \\rangle$ = {mean_snr: .1e}" loc = (0.98, 0.95) ax.text(*loc, text_str, **{**text_kwargs, **dict(ha='right')}) return fig, fit_info