#!/usr/bin/env python3 # vim: fdm=indent ts=4 import h5py from itertools import combinations, zip_longest import matplotlib.pyplot as plt import numpy as np import aa_generate_beacon as beacon import lib if __name__ == "__main__": from os import path import sys import os import matplotlib if os.name == 'posix' and "DISPLAY" not in os.environ: matplotlib.use('Agg') from scriptlib import MyArgumentParser parser = MyArgumentParser() args = parser.parse_args() fname = "ZH_airshower/mysim.sry" c_light = lib.c_light show_plots = args.show_plots remove_absolute_phase_offset_first_antenna = True # takes precedence remove_absolute_phase_offset_minimum = True #### fname_dir = path.dirname(fname) antennas_fname = path.join(fname_dir, beacon.antennas_fname) fig_dir = args.fig_dir # set None to disable saving if not path.isfile(antennas_fname): print("Antenna file cannot be found, did you try generating a beacon?") sys.exit(1) # Read in antennas from file f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) # Make sure at least one beacon has been identified if not hasattr(antennas[0], 'beacon_info') or len(antennas[0].beacon_info) == 0: print(f"No analysed beacon found for {antennas[0].name}, try running the phase analysis script first.") sys.exit(1) # N_beacon_freqs = len(antennas[0].beacon_info) for freq_name in antennas[0].beacon_info.keys(): measured_phases = np.empty( (len(antennas)) ) for i, ant in enumerate(antennas): measured_phases[i] = ant.beacon_info[freq_name]['phase'] f_beacon = antennas[0].beacon_info[freq_name]['freq'] true_phases = lib.remove_antenna_geometry_phase(tx, antennas, f_beacon, measured_phases, c_light=c_light) # Remove the phase from one antenna # this is a free parameter # (only required for absolute timing) if remove_absolute_phase_offset_first_antenna or remove_absolute_phase_offset_minimum: if remove_absolute_phase_offset_first_antenna: # just take the first phase minimum_phase = true_phases[0] else: # take the minimum minimum_phase = np.min(true_phases, axis=-1) true_phases -= minimum_phase true_phases = lib.phase_mod(true_phases) # Save to antennas in file with h5py.File(antennas_fname, 'a') as fp: h5group = fp['antennas'] for i, ant in enumerate(antennas): h5ant = fp['antennas'][ant.name] h5beacon_freq = h5ant['beacon_info'][freq_name] h5beacon_freq.attrs['true_phase'] = true_phases[i] # Plot True Phases at their locations if show_plots or fig_dir: fig, ax = plt.subplots() spatial_unit='m' fig.suptitle('Clock phases\nf_beacon= {:2.0f}MHz'.format(f_beacon*1e3)) antenna_locs = list(zip(*[(ant.x, ant.y) for ant in antennas])) ax.set_xlabel('x' if spatial_unit is None else 'x [{}]'.format(spatial_unit)) ax.set_ylabel('y' if spatial_unit is None else 'y [{}]'.format(spatial_unit)) scatter_kwargs = {} scatter_kwargs['cmap'] = 'inferno' #scatter_kwargs['vmin'] = -np.pi #scatter_kwargs['vmax'] = +np.pi color_label='$\\varphi(\\sigma_t)$ [rad]' sc = ax.scatter(*antenna_locs, c=true_phases, **scatter_kwargs) fig.colorbar(sc, ax=ax, label=color_label) if False: for i, ant in enumerate(antennas): ax.text(ant.x, ant.y, ant.name) if not True: ax.plot(tx.x, tx.y, 'X', color='k', markeredgecolor='white') if fig_dir: fig.savefig(path.join(fig_dir, path.basename(__file__) + f".F{freq_name}.pdf")) # Plot True Phases - Actual True Phases at their location if show_plots or fig_dir: fig, ax = plt.subplots() fig.suptitle('Clock phase Residuals\nf_beacon={:2.0f}MHz'.format(f_beacon*1e3)) actual_true_phases = np.array([ -2*np.pi*a.attrs['clock_offset']*f_beacon for a in antennas ]) # Modify actual_true_phases, the same way as true_phases # was modified if remove_absolute_phase_offset_first_antenna or remove_absolute_phase_offset_minimum: if remove_absolute_phase_offset_first_antenna: # just take the first phase minimum_phase = actual_true_phases[0] else: # take the minimum minimum_phase = np.min(actual_true_phases, axis=-1) actual_true_phases -= minimum_phase actual_true_phases = lib.phase_mod(actual_true_phases) true_phase_residuals = lib.phase_mod(true_phases - actual_true_phases) antenna_locs = list(zip(*[(ant.x, ant.y) for ant in antennas])) ax.set_xlabel('x' if spatial_unit is None else 'x [{}]'.format(spatial_unit)) ax.set_ylabel('y' if spatial_unit is None else 'y [{}]'.format(spatial_unit)) scatter_kwargs = {} scatter_kwargs['cmap'] = 'inferno' color_label='$\\Delta\\varphi(\\sigma_t) = \\varphi_{meas} - \\varphi_{true}$ [rad]' sc = ax.scatter(*antenna_locs, c=true_phase_residuals, **scatter_kwargs) fig.colorbar(sc, ax=ax, label=color_label) if fig_dir: fig.savefig(path.join(fig_dir, path.basename(__file__) + f".residual.F{freq_name}.pdf")) print(f"True phases written to", antennas_fname) if show_plots: plt.show()