""" Various utilities """ import numpy as np rng = np.random.default_rng() def phasemod(phase, low=np.pi): """ Modulo phase such that it falls within the interval $[-low, 2\pi - low)$. """ return (phase + low) % (2*np.pi) - low # Alias phase_mod to phasemod phase_mod = phasemod def sine_fitfunc(t, amp=1, freq=1, phase=0, baseline=0, t_delay=0): """Simple sine wave for fitting purposes""" return amp*np.cos( 2*np.pi*freq*(t-t_delay) + phase) + baseline def sin_delay(f, t, phase=0): return sine_fitfunc(t, amp=1, freq=f, phase=phase, baseline=1, t_delay=0) def sampled_time(sample_rate=1, start=0, end=1, offset=0): return offset + np.arange(start, end, 1/sample_rate) def normalise_sine_params(params): params[2] = phase_mod(params[2]) return params def noisy_sine_sampling(time, init_params, noise_sigma=1, rng=rng): if init_params[2] is None: init_params[2] = phasemod(2*np.pi*rng.random()) samples = sine_fitfunc(time, *init_params) noise = rng.normal(0, noise_sigma, size=len(samples)) return samples, noise # Alias noisy_sine noisy_sine = noisy_sine_sampling def find_nearest(value, array, return_idx=True): array = np.asarray(array) idx = (np.abs(array - value)).argmin() if return_idx: return idx else: return array[idx]