#!/usr/bin/env python3 # vim: fdm=indent ts=4 import h5py from itertools import combinations, zip_longest import matplotlib.pyplot as plt import numpy as np import aa_generate_beacon as beacon import lib if __name__ == "__main__": from os import path import sys fname = "ZH_airshower/mysim.sry" #### fname_dir = path.dirname(fname) antennas_fname = path.join(fname_dir, beacon.antennas_fname) if not path.isfile(antennas_fname): print("Antenna file cannot be found, did you try generating a beacon?") sys.exit(1) # Read in antennas from file f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname) if True and 'beacon_phase_true' in antennas[0].attrs: true_phases = np.array([a.attrs['beacon_phase_true'] for a in antennas]) else: true_phases = np.empty( (len(antennas)) ) for i, ant in enumerate(antennas): measured_phase = ant.attrs['beacon_phase_measured'] geom_time = lib.geometry_time(tx, ant, c_light=3e8*1e-9) geom_phase = geom_time * 2*np.pi*f_beacon true_phases[i] = lib.phase_mod(measured_phase) - lib.phase_mod(geom_phase) ant.attrs['beacon_phase_true'] = true_phases[i] # Plot True Phases if True: fig, ax = plt.subplots() spatial_unit=None fig.suptitle('f= {:2.0f}MHz'.format(f_beacon*1e3)) antenna_locs = list(zip(*[(ant.x, ant.y) for ant in antennas])) ax.set_xlabel('x' if spatial_unit is None else 'x [{}]'.format(spatial_unit)) ax.set_ylabel('y' if spatial_unit is None else 'y [{}]'.format(spatial_unit)) scatter_kwargs = {} scatter_kwargs['cmap'] = 'Spectral_r' scatter_kwargs['vmin'] = -np.pi scatter_kwargs['vmax'] = +np.pi color_label='$\\varphi$' sc = ax.scatter(*antenna_locs, c=true_phases, **scatter_kwargs) fig.colorbar(sc, ax=ax, label=color_label) # run over all baselines if True: baselines = list(combinations(antennas,2)) # use ref_ant else: ref_ant = antennas[0] baselines = list(zip_longest([], antennas, fillvalue=ref_ant)) integer_periods = None # read integer ks from file if possible # and save beacon_phase_true with h5py.File(antennas_fname, 'a') as fp: for i, ant in enumerate(antennas): name = ant.name # set true beacon_phase fp['antennas'][name].attrs['beacon_phase_true'] = true_phases[i] # read integer period from file if True and 'beacon_ks' in fp: integer_periods = np.array(fp['beacon_ks']) # Determine integer multiple of periods to shift if integer_periods is None: integer_periods = np.empty( (len(baselines), 3) ) for i, base in enumerate(baselines): # Delta between first timestamp from both antennas delta_t_a = base[0].t[0] - base[1].t[0] # + phase difference delta_t_p = np.diff([ant.attrs['beacon_phase_true'] for ant in base])[0]/(2*np.pi*f_beacon) sampling_dt = (base[1].t[1] - base[1].t[0]) print("DT(A,P)", delta_t_a, delta_t_p, 1/f_beacon) # which traces to keep track of traces = [ base[0].Ex, base[1].Ex ] # how many samples to shift ks, maxima = lib.coherence_sum_maxima(-1*traces[0], -1*traces[1]) max_idx = np.argmax(maxima) delta_t_c = sampling_dt*ks[max_idx] # ns print("K", ks[max_idx], sampling_dt, '=', delta_t_c) k, rest = np.divmod(delta_t_c, f_beacon) integer_periods[i] = [int(base[0].name), int(base[1].name), k] print(k, rest*f_beacon, delta_t_p) # Only continue for two random combinations if i not in [ 50, 51 ]: continue fig, ax = plt.subplots() ax.set_xlabel("k") ax.set_ylabel("Maximum correlation") ax.plot(ks, maxima) ax.plot(ks[max_idx], maxima[max_idx], marker='X') fig, ax = plt.subplots() dt = base[1].t[1] - base[1].t[0] ax.set_xlabel('t') ax.plot(base[0].t, traces[0], label='Reference') ax.plot(base[1].t, traces[1], label='Original', alpha=0.4) ax.plot(base[1].t + delta_t_a + delta_t_c, traces[1], label='Coherence', alpha=0.6) ax.legend() # Save integer periods to antennas with h5py.File(antennas_fname, 'a') as fp: group_name = 'beacon_ks' if group_name in fp: del fp[group_name] fp.create_dataset(group_name, data=integer_periods) plt.show() # Report back to CLI print("Period Multiples resolved in", antennas_fname)