m-thesis-introduction/lib/timing.py

249 lines
8.1 KiB
Python

"""
Routines needed to analyse a beacon signal
"""
import numpy as np
from scipy import signal
# monkey patch correlation_lags into signal if it does not exist
if not hasattr(signal, 'correlation_lags'):
def correlation_lags(in1_len, in2_len, mode='full'):
r"""
Calculates the lag / displacement indices array for 1D cross-correlation.
Parameters
----------
in1_size : int
First input size.
in2_size : int
Second input size.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output.
See the documentation `correlate` for more information.
See Also
--------
correlate : Compute the N-dimensional cross-correlation.
Returns
-------
lags : array
Returns an array containing cross-correlation lag/displacement indices.
Indices can be indexed with the np.argmax of the correlation to return
the lag/displacement.
Notes
-----
Cross-correlation for continuous functions :math:`f` and :math:`g` is
defined as:
.. math::
\left ( f\star g \right )\left ( \tau \right )
\triangleq \int_{t_0}^{t_0 +T}
\overline{f\left ( t \right )}g\left ( t+\tau \right )dt
Where :math:`\tau` is defined as the displacement, also known as the lag.
Cross correlation for discrete functions :math:`f` and :math:`g` is
defined as:
.. math::
\left ( f\star g \right )\left [ n \right ]
\triangleq \sum_{-\infty}^{\infty}
\overline{f\left [ m \right ]}g\left [ m+n \right ]
Where :math:`n` is the lag.
Examples
--------
Cross-correlation of a signal with its time-delayed self.
>>> from scipy import signal
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> x = rng.standard_normal(1000)
>>> y = np.concatenate([rng.standard_normal(100), x])
>>> correlation = signal.correlate(x, y, mode="full")
>>> lags = signal.correlation_lags(x.size, y.size, mode="full")
>>> lag = lags[np.argmax(correlation)]
"""
# calculate lag ranges in different modes of operation
if mode == "full":
# the output is the full discrete linear convolution
# of the inputs. (Default)
lags = np.arange(-in2_len + 1, in1_len)
elif mode == "same":
# the output is the same size as `in1`, centered
# with respect to the 'full' output.
# calculate the full output
lags = np.arange(-in2_len + 1, in1_len)
# determine the midpoint in the full output
mid = lags.size // 2
# determine lag_bound to be used with respect
# to the midpoint
lag_bound = in1_len // 2
# calculate lag ranges for even and odd scenarios
if in1_len % 2 == 0:
lags = lags[(mid-lag_bound):(mid+lag_bound)]
else:
lags = lags[(mid-lag_bound):(mid+lag_bound)+1]
elif mode == "valid":
# the output consists only of those elements that do not
# rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
# must be at least as large as the other in every dimension.
# the lag_bound will be either negative or positive
# this let's us infer how to present the lag range
lag_bound = in1_len - in2_len
if lag_bound >= 0:
lags = np.arange(lag_bound + 1)
else:
lags = np.arange(lag_bound, 1)
return lags
signal.correlation_lags = correlation_lags
##### end of monkey patch correlation_lags
def beacon_time_delay(samplerate, ref_beacon, beacon):
"""
Determine the time delay between two beacons using correlation.
"""
grid = correlation_grid(in1_len=len(ref_beacon), in2_len=len(beacon), mode='full')
time_lag, errs = lag_gridsearch(grid, samplerate, ref_beacon, beacon)
return time_lag, errs
def beacon_phase_delay(samplerate, f_beacon, ref_beacon, beacon):
"""
Determine total phase delay between two beacons using correlation.
Internally uses beacon_time_delay.
"""
time_delay, errs = beacon_time_delay(samplerate, ref_beacon, beacon)
phase = 2*np.pi*f_beacon*time_delay
phase_err = 2*np.pi*f_beacon*errs
return phase, phase_err
def beacon_integer_period(samplerate, f_beacon, ref_impulse, impulse, k_step=1):
return _beacon_integer_period_sum(samplerate, f_beacon, ref_impulse, impulse, k_step=k_step)
def _beacon_integer_period_sum(samplerate, f_beacon, ref_impulse, impulse, k_step=1):
"""
Use the maximum of a coherent sum to determine
the best number of periods of f_beacon.
"""
max_k = int( len(ref_impulse)*f_beacon/samplerate )
ks = np.arange(0, max_k, step=k_step)
maxima = np.empty(len(ks))
best_i = 0
for i,k in enumerate(ks, 0):
augmented_impulse = util.time_roll(impulse, samplerate, k/f_beacon)
maxima[i] = max(ref_impulse + augmented_impulse)
if maxima[i] > maxima[best_i]:
best_i = i
return ks[best_i], (ks, maxima)
def lag_gridsearch(grid, sample_rate, reference, signal_data):
"""
Return the best time shift found when doing a grid search.
Parameters
----------
lag_grid - ndarray
The array specifying the grid that is to be searched.
sample_rate - float
Sample rate of signal_data to transform index to time.
signal_data - ndarray
The real signal to find the time shift for.
reference - ndarray
Real signal to use as reference to obtain lag.
Returns
-------
lag : ndarray
The best time shift obtained
err : tuple
Difference to the previous and next time shift from lag, resp.
"""
assert signal_data.shape >= reference.shape, str(signal_data.shape) + " " + str(reference.shape)
corrs = grid_correlate(grid, reference, signal_data)
idx = np.argmax(corrs)
lag = grid[idx]/sample_rate
err_min = (grid[idx-1]-grid[idx])/(2*sample_rate)
err_plus = (grid[idx+1]-grid[idx])/(2*sample_rate)
return lag, np.array([err_min, err_plus])
def grid_correlate(grid, reference, x):
"""
Determine correlation between x and reference using grid as
the lags to be used for the correlation.
Parameters
----------
grid - ndarray
The array specifying the grid that is to be searched.
x - ndarray
The real signal to find the time shift for.
reference - ndarray
Real signal to use as reference to obtain lag.
Returns
-------
corrs - ndarray
The correlations along grid.
"""
grid = np.asarray(grid)
x = np.asarray(x)
reference = np.asarray(reference)
assert x.shape >= reference.shape, str(signal_data.shape) + " " + str(reference.shape)
reference = np.pad(reference, (0,len(x)-len(reference)), 'constant', constant_values=0)
ref_conj = np.conjugate(reference)
corrs = np.array([np.dot(np.roll(ref_conj, lag), x) for lag in grid], dtype=np.float64)
return corrs
def correlation_grid(grid_size=None, in1_len=None, in2_len = None, end = None, start=None, mode='full'):
"""
Abuse correlation_lags to determine the endpoints of the grid.
"""
if in1_len is not None or in2_len is not None:
if in2_len is None:
in2_len = in1_len
elif in1_len is None:
in1_len = in2_len
lags = signal.correlation_lags(in1_len, in2_len, mode=mode)
max_lag = max(lags)
min_lag = min(lags)
else:
max_lag = np.inf
min_lag = -np.inf
if end is None:
end = max_lag
elif end > max_lag:
raise ValueError("Grid end is too high")
if start is None:
start = min_lag
elif start < min_lag:
raise ValueError("Grid start is too low")
if grid_size is None:
grid_size = end - start
return np.linspace(start, end, grid_size, dtype=int, endpoint=False)